

ADVANCED HOMOMORPHIC ENCRYPTION ITS APPLICATIONS
AND DERIVATIVES (AHEAD)

IBM WATSON RESEARCH CENTER

SEPTEMBER 2013

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2013-191

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2013-191 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /

CARL THOMAS MARK LINDERMAN
Work Unit Manager Technical Advisor, Computing
 & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

SEPTEMBER 2013
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

FEB 2011 – MAR 2013
4. TITLE AND SUBTITLE

ADVANCED HOMOMORPHIC ENCRYPTION ITS APPLICATIONS
AND DERIVATIVES (AHEAD)

5a. CONTRACT NUMBER
FA8750-11-C-0096

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)
Tal Rabin, Nigel Smart, Daniel Wichs, Craig Gentry,
Zvika Brakerski, Stefano Tessaro, Shai Halevi, Dan Boneh,
Victor Shoup, Daniele Micciancio, Mark Zhandry. Chris Peikert
David Cash, Michelle Downes, Alptekin Kupcu

5d. PROJECT NUMBER
AHEA

5e. TASK NUMBER
DI

5f. WORK UNIT NUMBER
BM

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
PRIME SUB
IBM Watson Research Center Stanford University
1101 Kitchewan Road 340 Panama St
Yorktown Heights, NY 10598 Stanford, CA 64305

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Air Force Research Laboratory/RITA
Projects Agency 525 Brooks Road
3701 North Fairfax Dr Rome NY 13441-4505
Arlington, VA 2203

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2013-191

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.

See next page for more details.
SUPPLEMENTARY NOTES

14. ABSTRACT
The ultimate goal of the Programming on Encrypted Data (PROCEED) program is to advance the study and
design of flexible and efficient techniques for processing encrypted data, outsourcing computation and adding
robustness to cryptographic computations. The IBM portion of PROCEED, Advanced Homomorphic
Encryption its Applications and Derivatives (AHEAD) is documented in this report. The AHEAD team has
developed and implemented new and improved protocols for computing on encrypted data, and a deepened
understanding of the foundations of secure computation. This report describes the work performed by IBM
Watson Research Center and the subcontractors on this effort, Stanford University and the University of
California, San Diego from February 2011 through March 2013.

15. SUBJECT TERMS
Fully Homomorphic Encryption (FHE), Secure Multi-Party Computation (SMC), Cryptographic Computation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

452

19a. NAME OF RESPONSIBLE PERSON
CARL THOMAS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

The program was cancelled due to budget constraints.

All papers cited are approved for public release.

Papers authored by IBM personnel or in collaboration with IBM personnel have previously been reviewed by
DARPA Public Release Center.

Papers authored by University subcontractors with work conducted on campus at a University are Contracted
Fundamental Research (CFR) and do not require public release reviews.

A list of each paper with the appropriate DISTAR Public Affairs Review number and date, or indication that it
meets the criteria for contracted Fundamental Research exclusion from public affairs review is below:

Public Affairs Approval of papers in Appendix

1. Fully Homomorphic Encryption without Squashing Using Depth-3 Arithmetic Circuits.
Approved for Public Release, DISTAR Case # 18107, October 25, 2011

2. Fully Homomorphic Encryption without Bootstrapping.
Approved for Public Release, DISTAR Case #17837, August 8, 2011

3. Targeted Malleability: Homomorphic Encryption for Restricted Computations.
Approved for Public Release, Contracted Fundamental Research

4. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller.
Approved for Public Release, Contracted Fundamental Research

5. Homomorphic Evaluation of the AES Circuit.
Approved for Public Release, DISTAR Case # 19368, June 11, 2012

6. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP.
Approved for Public Release, Contracted Fundamental Research

7. When Homomorphism Becomes a Liability.
Approved for Public Release, Contracted Fundamental Research

8. Quantum-Secure Message Authentication Codes.
Approved for Public Release, Contracted Fundamental Research

9. Dynamic Proofs of Retreivability via Oblivious RAM.
Approved for Public Release, DISTAR Case # 19972, October 1, 2012

10. Hardness of SIS and LWE with Small Parameters.
Approved for Public Release, Contracted Fundamental Research

11. How to Delegate Secure Multiparty Computation to the Cloud.
Approved for Public Release, Contracted Fundamental Research

12. An Equational Approach to Secure Multi-Party Computation.
 Approved for Public Release, Contracted Fundamental Research

13. Semantic Security for the Wiretap Channel.
Approved for Public Release, Contracted Fundamental Research

14. Multi-Instance Security and its Application to Password-Based Cryptography.
Approved for Public Release, Contracted Fundamental Research

15. To Hash or Not to Hash Again? (In)differentiability Results for H2 and HMAC.
Approved for Public Release, Contracted Fundamental Research

16. FHE Library - Design and Implementation of a Homomorphic-Encryption Library
Approved for Public Release, DISTAR Case # 20493, January 18, 2013

17. Using Homomorphic Encryption for Large Scale Statistical Analysis
Approved for Public Release, Contracted Fundamental Research

Table of Contents

1.0 Executive Summary ...1

2.0 Introduction and Program Overview ...2

2.1 Background ...2

2.1.1 The PROCEED PROGRAM...2

2.1.2 The AHEAD PROJECT ..3

3.0 Program Work: Methods and Assumptions ..4

3.1 Work Plans and Methods ..4

3.1.1 TA 2: Foundations of secure computations...4

3.1.2 TA 3: Foundations of supporting security technologies4

3.1.3 TA 4: Implementing fully homomorphic encryption ..4

3.2 Deliverables and Assumptions ..4

4.0 Accomplishments and Results ...6

4.1 Summary of Major Contributions ...6

4.2 Technology Transitions and Deliverables ...7

4.3 Publications ...9

5.0 Conclusions and Recommendations ...17

6.0 References ...18

7.0 Appendix ...20

8.0 List of Symbols, Abbreviations, and Acronyms ..21

9.0 Public Release Approvals for Papers in Appendix ..…………………………………….22

i

1

1.0 Executive Summary

The ultimate goal of the PROCEED AHEAD project was to advance the study and design of

flexible and efficient techniques for processing encrypted data, outsourcing computation and

adding robustness to cryptographic computations. Examples of problems that would benefit from

such techniques are the verification of policy compliance on encrypted data, spam detection on

encrypted data, efficient delegation of computation and more. The contributions of this program

are already and will continue to improve the ability to process and manage data, in particular

encrypted data, in a robust and fully functional way without sacrificing the confidentiality of

information and the privacy of users.

We have provided an implementation of Fully Homomorphic Encryption (FHE). The main

goal of the implementation was to help us evaluate the different algorithmic approaches, and to

innovate on implementation techniques to bypass bottlenecks in the proposed schemes. We

stress that building a usable implementation is not just about programming tricks, but rather

mathematical innovations that improve the running times in practice. These improvements

resulted in large constant factor speed-ups that are ignored in the asymptotic calculations of

theoretical research papers, but are essential for a practical implementation. Our approach to

making fully homomorphic encryption more efficient using speed-ups improved performance by

several orders of magnitude. These improvements come from modifications to the basic schemes

of Gentry and others that have little asymptotic impact, but have a large impact in practice.

An attractive approach to address issues of privacy is to resort to the area of secure multiparty

computations (SMC) as extensively studied in cryptography. However previous solutions in this

area are mostly theoretical, and are hardly used in practice due to their complexity. To address

this we have proposed a novel framework for the design and analysis of secure computation

protocols which allows for much simpler modeling and analysis of cryptographic protocols.

Outsourcing computations has also previously suffered from the lack of efficient algorithms. In

addition, we created algorithms for delegating computation and spam filters.

During just the first two years of the project the PROCEED AHEAD team has developed and

implemented new and improved protocols for computing on encrypted data, and a deepened

understanding of the foundations of secure computation. The report that follows describes the

work of IBM, Stanford University, and University of California, San Diego on the PROCEED

AHEAD project from February 2011 through March 2013.

Approved for Public Release; Distribution Unlimited.

2

2.0 Introduction and Program Overview

2.1 Background

Homomorphic Encryption is a form of encryption where a specified algebraic operation is

performed on the plaintext and another (possibly different) algebraic operation is performed on

the ciphertext. There are several forms of homomorphic encryption that allow an addition or

multiplication operation on the plaintext, but to preserve the ring structure of plaintext both

addition and multiplication operations must be supported. Using these methods, any circuit could

be homomorphically evaluated, effectively allowing the construction of programs which may be

run on encryptions of their inputs to produce an encryption of their output. Since the program

would never decrypt its input, it could be run by an untrusted party, or transmitted over an

untrusted media, without revealing its inputs or internal state.

The utility of this scheme is well known, but the algorithms and computation complexity of

current implementations are burdensome. To be useful an efficient scheme must be developed

and integrated into modern computing.

2.1.1 The PROCEED PROGRAM

PROgramming Computation on EncryptEd Data (PROCEED) is a program focused on creating

practical methods for computing on encrypted data and is made up of the six Technical Areas

(TA) listed below. The PROCEED AHEAD program which we report on here covers Technical

Areas 2, 3, and 4 only.

 TA1. Mathematical Foundations of Fully Homomorphic Encryption

 TA2. Mathematical Foundations of Computation on Encrypted Data via Secure Multiparty

Computation

 TA3. Mathematical Foundations of Supporting Security Technologies

 TA4. Implementation/Measurement/Optimization of Homomorphic Cryptography and

Secure Multiparty Protocols

 TA5. Algorithms for Computation on Encrypted Data

 TA6. Programming Languages

The scope of the PROCEED effort is to design, develop, evaluate, integrate, demonstrate and

deliver: new mathematical foundations for efficient secure multiparty computation; new

mathematical foundations for efficient computation on encrypted data and supporting

technologies/techniques; implementations of known and new schemes/protocols, measure and

optimize these implementations; develop libraries of efficient algorithms and data structures;

develop new programming languages and accompanying compilers and; provide input to the

Integration Contractor for the development of a common Application Programmers Interface

(API) and integration and evaluation of the research areas.

Approved for Public Release; Distribution Unlimited.

3

The PROCEED program efforts are broken up into four program phases as described

below.

 Program Phase I Initial Capabilities. Phase I will focus on developing the initial capabilities

for the mathematical foundations, measurement, algorithms for computation, and

programming languages. An API will be developed and coordinated across all performers at

the first Principal Investigator (PI) meeting.

 Program Phase II Alpha. Phase II will focus on development of alpha quality

implementations of algorithms, optimized implementations, programming languages, an

initial demonstration of remote regular expression matching and spam filter, and a refined

definition of program metrics.

 Program Phase III Beta. Phase III will focus on the beta development of core algorithms,

interoperability integration, and development of optimized implementations tested against

defined program metrics.

 Program Phase IV Research Prototype. Phase IV will focus on the development of the

research prototype and embedded application prototypes. Final demonstrations will include a

functional spam filter prototype.

2.1.2 The AHEAD PROJECT

Advancing Homomorphic Encryption its Applications and Derivatives (AHEAD) is a sub-

project within the broader PROCEED program focused on conducting research in Technical

Areas 2, 3, and 4. The AHEAD research team has an extensive background in secure multiparty

computation and homomorphic Encryption made up of IBM Research’s Cryptography Group

(Prime), and the Departments of Computer Science at Stanford University and the University of

California, San Diego (UCSD). The AHEAD research team has worked to advance the study and

design of flexible and efficient techniques for processing encrypted data, outsourcing

computation and to add robustness to cryptographic computations including protection against

accidental or malicious leakage of secret information. Examples of problems that will benefit

from our work are the verification of policy compliance on encrypted data, spam detection on

encrypted data, efficient delegation of computation, leakage resilient computation and more.

Approved for Public Release; Distribution Unlimited.

4

3.0 Program Work: Methods and Assumptions

3.1 Work Plans and Methods

We outline below the p l ann ed work to be accomplished within the three PROCEED

program Technical Areas covered by AHEAD as defined at the onset of the program. Program

work has been carried out jointly between IBM Research, Stanford University, and UCSD. In

addition to the technical work, the AHEAD research team has participated in DARPA PI

meetings and contributed to related DARPA events. All program results have been made

available on the project website hosted by the PROCEED program integrator, Galois.

3.1.1 TA 2: Foundations of secure computations

 Programming models for secure computation. Extend Yao’s garbled circuits to handle

arithmetic functions efficiently. Design protocols for repeated executions and for programs

with loops.

 Develop relations among different execution models and construct general transformations

for transferring desirable protocol properties from one model to another.

 Design dedicated solutions for problems, e.g., pattern matching.

3.1.2 TA 3: Foundations of supporting security technologies

 Design homomorphic encryption for certain function families to enable restricted

computation delegation.

 Verifying computation. Remove the need for FHE to delegate computation. Introduce proxy

re-signatures in order to control malicious servers.

 Prevent side channel attacks using leakage resilience. Attempt to remove the reliance on

leakage resilient hardware.

3.1.3 TA 4: Implementing fully homomorphic encryption

 Optimize Fully Homomorphic Encryption by speeding up key generation and encryption.

Shrink the public key and ciphertext size.

 Explore fast two-party computation via fast Yao Circuits

3.2 Deliverables and Assumptions

Through the course of the planned four year PROCEED AHEAD program IBM, Stanford

University and UCSD planned to deliver the

following:

 An optimized implementation of fully homomorphic encryption.

 For all three tasks we delivered white papers and technical papers describing the results of

the work.

 As we made progress on the theoretical underpinnings of these tasks we experimented with

prototype implementations when appropriate.

Approved for Public Release; Distribution Unlimited.

5

Towards the end of the project we initiated technology transfer discussions with product

groups within IBM and devoted resources to supporting a successful transition to real-world

products. Completion criteria for all three tasks was planned to be the development of the

required cryptographic systems along with theoretical optimizations and prototype software if

appropriate.

The following is an outline of the planned schedule for the PROCEED AHEAD program.

When the schedule for program work and deliverables was defined, it was assumed that IBM,

Stanford, and USCD would all jointly contribute to program efforts for the duration of the

planned four year program. This final report covers year one and year two contributions by the

AHEAD team. At the close of year two IBM took leave of the program. Stanford and UCSD

have continued their work under a new contract put in place with the Office of Naval Research

and DARPA.

Year 1: Develop initial protocols for pattern matching on encrypted data. Begin investigating

improved 2-party computation techniques of the tasks outlines in the proposal. Experiment with

optimizations to our fully homomorphic encryption implementation.

Year 2: Continue developing our techniques for 2-party computation. Examine multiple

executions of the same protocol in a multiparty setting. Tune protocols for pattern matching to

the specific tasks of network guards and mail filtering on encrypted data. Continue

experimenting with optimizations and modifications to the fully homomorphic system based on

the results for year 1. Begin investigating the problem of delegating computation. Write and

publish technical papers on intermediate results for all three tasks.

After Year 2 the program was cancelled. The Year 3 and 4 planned work is outlined below but

was not completed.

Year 3: Build on our work from year 2 to and begin prototyping an application for our 2-party

protocols, extend the investigation to include loops. Work on additional aspects of computation

delegation. Use our optimized fully homomorphic encryption scheme for real world tasks such as

network guards and other computations on encrypted data such as curve fitting (e.g., least-

squares fit) on encrypted data. Initiate discussions with products within IBM to promote

technology transfer. Submit additional papers for publication in leading conferences.

Year 4: Tune the research results to address the needs of product groups within IBM and to

support technology transfer. As appropriate, release open source tools to enable other researchers

to build on our work. Continue publishing technical papers on results of our research.

Approved for Public Release; Distribution Unlimited.

6

4.0 Accomplishments and Results

4.1 Summary of Major Contributions

IBM's work in PROCEED (in cooperation with others) significantly advanced the state-of-the-art

in homomorphic encryption beyond the original blueprint of Gentry[1], taking it a big step

toward practicality. First, the works of Gentry-Halevi[2], and Brakerski-Gentry-

Vaikuntanathan[3], allow us to perform homomorphic computation without the need for

squashing or even bootstrapping. Specifically the latter work provides much better handle on the

growth of the noise during homomorphic computation, resulting in a significant speedup. Then

the work of Gentry-Halevi-Smart[4] provides effective tools for working on many plaintext

values at once, again resulting in significant speedups. Finally, the works of Gentry-Halevi-

Smart[5], Brakerski[6], Gentry-Halevi-Smart[7], and Brakerski-Gentry-Halevi[8] provide

different variants and optimizations that are likely to have additional practical advantages. The

IBM FARTHER program administered through the Navy under PROCEED also contributed to

these results.

Taken together, these works already provide roughly three orders of magnitude speedup over the

Gentry-Halevi[9], results, allowing us to evaluate homomorphically circuits that were out of

reach using only the Gentry '09 blueprint. For example, Gentry-Halevi-Smart[7], demonstrated

that the AES-128 circuit can be evaluated homomorphically in under 36 hours. Since then we

further optimized our code, and our current estimate is that we can do the same in just 3-4 hours.

UCSD has investigated the foundation and basic building blocks of lattice cryptography, used in

the construction of some fully homomorphic encryption schemes and has published their results

in two papers: "Trapdoor for Lattices: Simpler, Tighter, Faster, Smaller"[10] and "Hardness of

SIS and LWE with Small Parameters"[11].

The first paper describes a new method for generating computationally hard lattices together with a

trapdoor basis. The method is both much simpler and efficient, and produces better quality

trapdoors than previous methods. The second paper studies the parameters for which the short

integer solution (SIS) and learning with errors (LWE) problems are provably as hard as worst-case

lattice problems. These are the two most fundamental problems used in all lattice cryptographic

constructions, and using small parameters has clear efficiency benefits. The SIS problem is used in

the construction of certain homomorphic hash functions, and it is shown that the modulus q used in

SIS can be set almost as low as sqrt{n}, (Previous work required q>n.). The LWE problem is at the

basis of the most recent fully homomorphic encryption schemes, and the parameter under

investigation is the noise distribution. All previous work requires the noise to be at least sqrt{n},

and to follow a Gaussian distribution. This can be undesirable, especially in the context of fully

homomorphic encryption, because Gaussian distributions are harder to sample (than say,

uniformly random strings) and because errors accumulate during the execution of homomorphic

operations. So, larger noise rates results in reduced homomorphic capabilities. Our work shows

that at least in some settings (when the number of LWE samples is sufficiently small) LWE is still

hard when the noise is chosen uniformly at random, and with much smaller magnitude.

UCSD has also proposed a novel framework for the design and analysis of secure computation

protocols in the work "An equational approach to secure multi-party computation"[12]. The main

Approved for Public Release; Distribution Unlimited.

7

feature of the framework is that it is fully asynchronous: local computations are independent of

the relative ordering of messages coming from different communication channels. This allows

for much simpler modeling and analysis of cryptographic protocols, which does not need a

sequential ordering of all events. Besides making the formal proof of secure computation

protocols more manageable, the framework has also potential efficiency benefits: as messages

can be transmitted as soon as they can be computed (without compromising the security of the

protocol), this may results in distributed protocols with lower latency. As a proof of concept, the

paper analyzes two simple protocols, one for secure broadcast, and one for verifiable secret

sharing, which demonstrate how the framework is capable to deal with probabilistic protocols,

still in a simple and equational way.

Stanford’s work has focused on different forms of homomorphic encryption and began with

introducing a concept called "targeted malleability" which is designed to limit the homomorphic

operations that can be done on encrypted data[13]. The primary motivation for this is to limit

what can be done on ciphertexts. For example, a spam filter operating on encrypted data should

only be allowed to run the spam predicate and nothing else. Several constructions for this

concept have been provided.

Next, Sanford turned to optimizing fully homomorphic encryption. They first developed a variant

of the BGV system that eliminates the need for the expensive modulus switching step[6]. This

variant also enables us to use any modulus, including a power of 2, which can result in more

efficient arithmetic. The resulting system has become known as Brakerski's FHE, named after

the post-doc who developed it as part of the PROCEED program. Along the same lines Stanford

also looked at a recent proposal for FHE due to Bogdanov and Lee which constructs an efficient

FHE from coding theoretic assumptions[14]. They showed that the Bogdanov-Lee proposal is

insecure, and in fact, any construction using their approach will be insecure[15].

Using these new FHE systems the team at Stanford built a prototype system that computes

statistics on encrypted data, such as mean, standard deviation, and linear regression. The

implementation is based on an optimized version of Brakerski's FHE that takes advantage of its

arithmetic properties. Stanford also used large-scale batching to speed-up much of the

computation. The resulting system can perform linear regression on moderate size encrypted data

sets within a few hours on a single laptop. Parallelism can bring this down to a few minutes.

Finally, since the underlying mechanism behind FHE is based on hard problems on lattices,

which are assumed to remain secure in the presence of quantum computers, Stanford looked at

secure cryptographic primitives in the age of quantum computation. In particular, they built

Message Authentication Codes that remains secure even when the devices using them are

quantum[16]. One of the team’s instantiations is a lattice-based MAC the presumably remains

secure in a post-quantum settings.

4.2 Technology Transitions and Deliverables

The Stanford team developed a prototype system for performing statistical analysis on encrypted

data. Their work focused on two tasks: computing the mean and variance of univariate and

multivariate data as well as performing linear regression on a multidimensional, encrypted

corpus. Due to the high overhead of homomorphic computation, previous implementations of

Approved for Public Release; Distribution Unlimited.

8

similar methods have been restricted to small datasets (on the order of a few hundred to a

thousand elements) or data with low dimension (generally 1-4).

In this work[17], the Stanford team first constructed a working implementation of the scale-

invariant leveled homomorphic encryption system of Brakerski. Then, by taking advantage of

batched computation as well as a message encoding technique based on the Chinese Remainder

Theorem, they showed that it becomes not only possible, but computationally feasible, to

perform statistical analysis on encrypted datasets with over four million elements and dimension

as high as 24. By using these methods along with some additional optimizations, the team was

able to demonstrate the viability of using leveled homomorphic encryption for large scale

statistical analysis.

The IBM team designed, implemented and delivered a Homomorphic Encryption (HE) software

library[18] that implements the Brakerski-Gentry-Vaikuntanathan (BGV) homomorphic

encryption scheme, along with many optimizations to make homomorphic evaluation runs faster,

focusing mostly on effective use of the Smart-Vercauteren ciphertext packing techniques. Our

library is written in C++ and uses the Number Theory Library (NTL) mathematical library. The

NTL is a high-performance, portable C++ library providing data structures and algorithms for

manipulating signed, arbitrary length integers, and for vectors, matrices, and polynomials over

the integers and over finite fields (and can be found at http://www.shoup.net/ntl).

Very roughly, our HE library consists of four layers: in the bottom layer we have modules for

implementing mathematical structures and various other utilities, the second layer implements

our Double-CRT representation of polynomials, the third layer implements the cryptosystem

itself (with the \native" plaintext space of binary polynomials), and the top layer provides

interfaces for using the cryptosystem to operate on arrays of plaintext values. We think of the

bottom two layers as the \math layers", and the top two layers as the \crypto layers", and describe

then in detail in our work[18]. A block-diagram description of the library is given in Figure 1.

At the top level of the library we provide some interfaces that allow the application to manipulate

arrays of plaintext values homomorphically. The arrays are translated to plaintext polynomials

using the encoding/decoding routines and then encrypted and manipulated homomorphically

using the lower-level interfaces from the crypto layer.

The basic operations that we have in the HE library scheme are the usual key-generation,

encryption, and decryption, the homomorphic evaluation routines for addition, multiplication and

automorphism (and also addition-of-constant and multiplication-by-constant), and the ciphertext

maintenance operations of key-switching and modulus-switching.

In addition to the software described above the PROCEED AHEAD team has delivered many

significant publications which are summarized in the Publications section of this report.

Approved for Public Release; Distribution Unlimited.

9

Figure 1: A block diagram of the Homomorphic-Encryption library

4.3 Publications

Full versions of PROCEED AHEAD papers are provided as an attachment to this report as noted

in the appendix to this report.

1. “Fully Homomorphic Encryption without Squashing Using Depth-3 Arithmetic Circuits”

by Craig Gentry and Shai Halevi[2]

We describe a new approach for constructing fully homomorphic encryption (FHE) schemes.

Previous FHE schemes all use the same blueprint from Gentry[1]. First construct a somewhat

homomorphic encryption (SWHE) scheme, next "squash" the decryption circuit until it is simple

enough to be handled within the homomorphic capacity of the SWHE scheme, and finally

"bootstrap" to get a FHE scheme. In all existing schemes, the squashing technique induces an

additional assumption: that the sparse subset sum problem (SSSP) is hard.

Our new approach constructs FHE as a hybrid of a SWHE and a multiplicatively homomorphic

encryption (MHE) scheme, such as Elgamal. Our construction eliminates the need for the

squashing step, and thereby also removes the need to assume the SSSP is hard. We describe a

few concrete instantiations of the new method, including a "simple" FHE scheme where we

replace SSSP with Decision Diffie-Hellman, an optimization of the simple scheme that let us

"compress" the FHE ciphertext into a single Elgamal ciphertext(!), and a scheme whose security

can be (quantumly) reduced to the approximate ideal-SIVP.

Approved for Public Release; Distribution Unlimited.

10

We stress that the new approach still relies on bootstrapping, but it shows how to bootstrap

without having to "squash" the decryption circuit. The main technique is to express the

decryption function of SWHE schemes as a depth-3 (∑ ∏ ∑) arithmetic circuit of a particular

form. When evaluating this circuit homomorphically (as needed for bootstrapping), we

temporarily switch to a MHE scheme, such as Elgamal, to handle the∏ part. Due to the special

form of the circuit, the switch to the MHE scheme can be done without having to evaluate

anything homomorphically. We then translate the result back to the SWHE scheme by

homomorphically evaluating the decryption function of the MHE scheme. Using our method, the

SWHE scheme only needs to be capable of evaluating the MHE scheme's decryption function,

not its own decryption function. We thereby avoid the circularity that necessitated squashing in

the original blueprint.

2. “Fully Homomorphic Encryption without Bootstrapping” by Zvika Brakerski, Craig

Gentry, and Vinod Vaikuntanathan[3]

We present a radically new approach to fully homomorphic encryption (FHE) that dramatically

improves performance and bases security on weaker assumptions. A central conceptual

contribution in our work is a new way of constructing leveled fully homomorphic encryption

schemes (capable of evaluating arbitrary polynomial-size circuits), without Gentry’s

bootstrapping procedure.

Specifically, we offer a choice of FHE schemes based on the learning with error (LWE) or ring-

LWE (RLWE) problems that have 2 security against known attacks. For RLWE, we have:

 A leveled FHE scheme that can evaluate L-level arithmetic circuits with Õ (y · L³) per-gate

computation– i.e., computation quasi-linear in the security parameter. Security is based on

RLWE for an approximation factor exponential in L. This construction does not use the

bootstrapping procedure.

 A leveled FHE scheme that uses bootstrapping as an optimization, where the per-gate

computation (which includes the bootstrapping procedure) is Õ (y²), independent of L.

Security is based on the hardness of RLWE for quasi-polynomial factors (as opposed to the

sub-exponential factors needed in previous schemes).

We obtain similar results for LWE, but with worse performance. We introduce a number of

further optimizations to our schemes. As an example, for circuits of large width – e.g., where a

constant fraction of levels have width at least y– we can reduce the per-gate computation of the

bootstrapped version to Õ (y), independent of L, by batching the bootstrapping operation.

Previous FHE schemes all required Ώ(y^3.5) computation per gate.

At the core of our construction is a much more effective approach for managing the noise level

of lattice-based ciphertexts as homomorphic operations are performed, using some new

techniques recently introduced by Brakerski and Vaikuntanathan[19].

3. “Targeted Malleability: Homomorphic Encryption for Restricted Computations” by

Dan Boneh, Gil Segev and Brent Waters[13]

We put forward the notion of targeted malleability: given a homomorphic encryption scheme, in

various scenarios we would like to restrict the homomorphic computations one can perform on

Approved for Public Release; Distribution Unlimited.

11

encrypted data. We introduce a precise framework, generalizing the foundational notion of non-

malleability introduced by Dolev, Dwork, and Naor[20], ensuring that the malleability of a

scheme is targeted only at a specific set of "allowable" functions.

In this setting we are mainly interested in the efficiency of such schemes as a function of the

number of repeated homomorphic operations. Whereas constructing a scheme whose ciphertext

grows linearly with the number of such operations is straightforward, obtaining more realistic (or

merely non-trivial) length guarantees is significantly more challenging.

We present two constructions that transform any homomorphic encryption scheme into one that

offers targeted malleability. Our constructions rely on standard cryptographic tools and on

succinct non-interactive arguments, which are currently known to exist in the standard model

based on variants of the knowledge-of-exponent assumption. The two constructions offer

somewhat different efficiency guarantees, each of which may be preferable depending on the

underlying building blocks.

4. “Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller” by Daniele Micciancio and

Chris Peikert[10]

We give new methods for generating and using “strong trapdoors” in cryptographic lattices,

which are simultaneously simple, efficient, easy to implement (even in parallel), and

asymptotically optimal with very small hidden constants. Our methods involve a new kind of

trapdoor, and include specialized algorithms for inverting LWE, randomly sampling SIS

preimages, and securely delegating trapdoors. These tasks were previously the main bottleneck

for a wide range of cryptographic schemes, and our techniques substantially improve upon the

prior ones, both in terms of practical performance and quality of the produced outputs. Moreover,

the simple structure of the new trapdoor and associated algorithms can be exposed in

applications, leading to further simplifications and efficiency improvements. We exemplify the

applicability of our methods with new digital signature schemes and CCA-secure encryption

schemes, which have better efficiency and security than the previously known lattice-based

constructions.

5. “Homomorphic Evaluation of the AES Circuit” by Craig Gentry, Shai Halevi and Nigel

Smart[7]

We describe a working implementation of leveled homomorphic encryption (without

bootstrapping) that can evaluate the AES-128 circuit in three different ways. One variant takes

under over 36 hours to evaluate an entire AES encryption operation, using NTL (over GMP) as

our underlying software platform, and running on a large-memory machine. Using SIMD

techniques, we can process over 54 blocks in each evaluation, yielding an amortized rate of just

under 40 minutes per block. Another implementation takes just over two and a half days to

evaluate the AES operation, but can process 720 blocks in each evaluation, yielding an amortized

rate of just over five minutes per block. We also detail a third implementation, which

theoretically could yield even better amortized complexity, but in practice turns out to be less

competitive.

Approved for Public Release; Distribution Unlimited.

12

For our implementations we develop both AES-specific optimizations as well as several “generic”

tools for FHE evaluation. These last tools include (among others) a different variant of the

Brakerski-Vaikuntanathan key-switching technique that does not require reducing the norm of

the ciphertext vector, and a method of implementing the Brakerski-Gentry-Vaikuntanathan

modulus-switching transformation on ciphertexts in CRT representation.

6. “Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP”

by Zvika Brakerski[6]

We present a new tensoring technique for LWE-based fully homomorphic encryption. While in

all previous works, the ciphertext noise grows quadratically (B→ B² • poly(n)) with every

multiplication (before “refreshing”), our noise only grows linearly (B → B • poly(n)).

We use this technique to construct a scale-invariant fully homomorphic encryption scheme,

whose properties only depend on the ratio between the modulus q and the initial noise level B,

and not on their absolute values.

Our scheme has a number of advantages over previous candidates: It uses the same modulus

throughout the evaluation process (no need for “modulus switching”), and this modulus can take

arbitrary form. In addition, security can be classically reduced from the worst-case hardness of

the GapSVP problem (with quasi-polynomial approximation factor), whereas previous

constructions could only exhibit a quantum reduction from GapSVP.

7. “When Homomorphism Becomes a Liability” by Zvika Brakerski[15]

We show that an encryption scheme cannot have a simple decryption function and be

homomorphic at the same time, even with added noise. Specifically, if a scheme can

homomorphically evaluate the majority function, then its decryption cannot be weakly-learnable

(in particular, linear), even if large decryption error is allowed. (In contrast, without

homomorphism, such schemes do exist and are presumed secure, e.g., based on LPN.)

An immediate corollary is that known schemes that are based on the hardness of decoding in the

presence of low hamming-weight noise cannot be fully homomorphic. This applies to known

schemes such as LPN-based symmetric or public key encryption.

Using these techniques, we show that the recent candidate fully homomorphic encryption,

suggested by Bogdanov and Lee (BL)[14], is insecure. In fact, we show two attacks on the BL

scheme: One that uses homomorphism, and another that directly attacks a component of the

scheme.

8. “Quantum-secure Message Authentication Codes” by Dan Boneh and Mark Zhandry[16]

We construct the first Message Authentication Codes (MACs) that are existentially unforgeable

against a quantum chosen message attack. These chosen message attacks model a quantum

adversary’s ability to obtain the MAC on a superposition of messages of its choice. We begin by

showing that a quantum secure PRF is sufficient for constructing a quantum secure MAC, a fact

that is considerably harder to prove than its classical analogue. Next, we show that a variant of

Carter-Wegman MACs can be proven to be quantum secure. Unlike the classical settings, we

Approved for Public Release; Distribution Unlimited.

13

present an attack showing that a pair-wise independent hash family is insufficient to construct a

quantum secure one-time MAC, but we prove that a four-wise independent family is sufficient

for one-time security.

9. “Dynamic Proofs of Retrievability via Oblivious RAM” by David Cash and Alptekin

Kupcu and Daniel Wichs[21]

Proofs of retrievability allow a client to store her data on a remote server (``in the cloud'') and

periodically execute an efficient audit protocol to check that all of the data is being maintained

correctly and can be recovered from the server. For efficiency, the computation and

communication of the server and client during an audit protocol should be significantly smaller

than reading/transmitting the data in its entirety. Although the server is only asked to access a

few locations of its storage during an audit, it must maintain full knowledge of all client data to

be able to pass.

Starting with the work of Juels and Kaliski[22], all prior solutions to this problem crucially

assume that the client data is static and do not allow it to be efficiently updated. Indeed, they all

store a redundant encoding of the data on the server, so that the server must delete a large

fraction of its storage to `lose' any actual content. Unfortunately, this means that even a single bit

modification to the original data will need to modify a large fraction of the server storage, which

makes updates highly inefficient. Overcoming this limitation was left as the main open problem

by all prior works.

In this work we give the first solution providing proofs of retrievability for dynamic storage,

where the client can perform arbitrary reads/writes on any location within her data by running an

efficient protocol with the server. At any point in time, the client can execute an efficient audit

protocol to ensure that the server maintains the latest version of the client data. The computation

and communication complexity of the server and client in our protocols is only polylogarithmic

in the size of the client's data. The starting point of our solution is to split up the data into small

blocks and redundantly encode each block of data individually, so that an update inside any data

block only affects a few codeword symbols. The main difficulty is to prevent the server from

identifying and deleting too many codeword symbols belonging to any single data block. We do

so by hiding where the various codeword symbols for any individual data lock are stored on the

server and when they are being accessed by the client, using the algorithmic techniques of

oblivious RAM.

10. “Hardness of SIS and LWE with Small Parameters” by Daniele Micciancio and Chris

Peikert[11]

The Short Integer Solution (SIS) and Learning With Errors (LWE) problems are the foundations

for countless applications in lattice-based cryptography, and are provably as hard as approximate

lattice problems in the worst case. An important question from both a practical and theoretical

perspective is how small their parameters can be made, while preserving their worst-case

hardness. We prove two main results on SIS and LWE with small parameters. For SIS, we show

that the problem retains worst-case hardness for moduli q >= beta*n^delta for any constant delta

> 0, where beta is the bound on the Euclidean norm of the solution. This improves upon prior

results which required q>=beta*sqrt{n log n}, and is essentially optimal since the problem is

Approved for Public Release; Distribution Unlimited.

14

trivially easy for q<=beta. For LWE, we show that it remains hard even when the errors are small

(e.g., uniformly random from {0, 1}), provided that the number of samples is small enough (e.g.,

linear in the dimension n of the LWE secret). Prior results required the errors to have magnitude

at least sqrt{n} and to come from a Gaussian-like distribution.

11. “How to Delegate Secure Multiparty Computation to the Cloud” by Nishanth Chandran,

Rosario Gennaro, Abhishek Jain, Amit Sahai.[23]

We initiate the study of verifiable computation in the presence of many clients who rely on a

server to perform computations over inputs privately held by each client. This generalizes the

single-client model for verifiable outsourced computation previously studied in the literature. We

put forward a computational model and security definitions for this task. We then present a new

protocol that allows the clients to securely outsource an arbitrary computation over privately held

inputs to a powerful server. At the end the clients will be assured that the result of the

computation is correct, while at the same time protecting their data from the server and each

other. Our new protocol satisfies the crucial efficiency requirement of outsourced computation

where the work of the client is substantially smaller than what is required to compute the

function. We use the Gennaro et al. amortized model, whereas the clients are allowed to invest

into a one-time computationally expensive preprocessing phase. Additionally our protocol

minimizes the interaction between the clients, by requiring only one round of interaction between

them for each computation outsourced to the server. Such single round of interaction is necessary

if input privacy is to be preserved.

12. “An Equational Approach to Secure Multi-Party Computation” by Daniele Micciancio

and Stefano Tessaro[12]

We present a novel framework for the description and analysis of secure computation protocols

that is at the same time mathematically rigorous and notationally lightweight and concise. The

distinguishing feature of the framework is that it allows to specify (and analyze) protocols in a

manner that is largely independent of time, greatly simplifying the study of cryptographic

protocols. At the notational level, protocols are described by systems of mathematical equations

(over domains), and can be studied through simple algebraic manipulations like substitutions and

variable elimination. We exemplify our framework by analyzing in detail two classic protocols: a

protocol for secure broadcast, and a verifiable secret sharing protocol, the second of which

illustrates the ability of our framework to deal with probabilistic systems, still in a purely

equational way.

13. “Semantic Security for the Wiretap Channel” by Mihir Bellare, Stephano Tessaro, and

Alexander Vardy [24]

The wiretap channel is a setting where one aims to provide information-theoretic privacy of

communicated data based solely on the assumption that the channel from sender to adversary is

“noisier” than the channel from sender to receiver. It has developed in the Information and

Coding (I&C) community over the last 30 years largely divorced from the parallel development

of modern cryptography. This paper aims to bridge the gap with a cryptographic treatment

involving advances on two fronts, namely definitions and schemes. On the first front

(definitions), we explain that the mis-r definition in current use is weak and propose two

Approved for Public Release; Distribution Unlimited.

15

alternatives: mis (based on mutual information) and ss (based on the classical notion of semantic

security). We prove them equivalent, thereby connecting two fundamentally different ways of

defining privacy and providing a new, strong and well-founded target for constructions. On the

second front (schemes), we provide the first explicit scheme with all the following

characteristics: it is proven to achieve both security (ss and mis, not just mis-r) and decodability;

it has optimal rate; and both the encryption and decryption algorithms are proven to be

polynomialtime.

14. “Multi-Instance Security and its Application to Password-Based Cryptography,” by

Mihir Bellare, Thomas Ristenpart, and Stephano Tessaro[25]

This paper develops a theory of multi-instance (mi) security and applies it to provide the first

proof-based support for the classical practice of salting in password-based cryptography. Mi-

security comes into play in settings (like password-based cryptography) where it is

computationally feasible to compromise a single instance, and provides a second line of defense,

aiming to ensure (in the case of passwords, via salting) that the effort to compromise all of some

large number m of instances grows linearly with m. The first challenge is definitions, where we

suggest LORX-security as a good metric for mi security of encryption and support this claim by

showing it implies other natural metrics, illustrating in the process that even lifting simple results

from the si setting to the mi one calls for new techniques. Next we provide a composition-based

framework to transfer standard single-instance (si) security to mi-security with the aid of a key-

derivation function. Analyzing password-based KDFs from the PKCS#5 standard to show that

they meet our indifferentiability-style mi-security definition for KDFs, we are able to conclude

with the first proof that per password salts amplify mi-security as hoped in practice. We believe

that mi-security is of interest in other domains and that this work provides the foundation for its

further theoretical development and practical application.

15. “To Hash or Not to Hash Again? (In)differentiability Results for H
2

and HMAC,” by

Yevgeniy Dodis, Thomas Ristenpart, John Steinberger, and Stephano Tessaro[26]

We show that the second iterate H
2
(M) = H(H(M)) of a random oracle H cannot achieve strong

security in the sense of indifferentiability from a random oracle. We do so by proving that

indifferentiability for H
2

holds only with poor concrete security by providing a lower bound (via

an attack) and a matching upper bound (via a proof requiring new techniques) on the complexity

of any successful simulator. We then investigate HMAC when it is used as a general-purpose

hash function with arbitrary keys (and not as a MAC or PRF with uniform, secret keys). We

uncover that HMAC’s handling of keys gives rise to two types of weak key pairs. The first

allows trivial attacks against its indifferentiability; the second gives rise to structural issues

similar to that which ruled out strong indifferentiability bounds in the case of H
2
. However, such

weak key pairs do not arise, as far as we know, in any deployed applications of HMAC. For

example, using keys of any fixed length shorter than d − 1, where d is the block length in bits of

the underlying hash function, completely avoids weak key pairs. We therefore conclude with a

positive result: a proof that HMAC is indifferentiable from a RO (with standard, good bounds)

when applications use keys of a fixed length less than d − 1.

16. “Design and Implementation of a Homomorphic-Encryption Library”, by Shai Halevi and
Approved for Public Release; Distribution Unlimited.

16

Victor Shoup.

We describe the design and implementation of a softwwre library that implements the Brakerski-

Gentry-Vaikuntanathan (BGV) homomorphic encryption scheme, along with many optimizations

to make homomorphic evaluation run faster, focusing mostly on effective use of the Smart-

Vercauteren ciphertext packing techniques. Our library is written in C++ and uses the NTL

mathematical library.

17. “Using Homomorphic Encryption for large Scale Statistical Analysis”, by David Wu,

Jacob Haven and Dan Boneh.

We describe in a Viewgraph format, the scale-invariant leveled fully homomorphic encryption

scheme. With this scheme we are able to use batching and CRT-based message encoding to

perform large scale statistical analysis on millions of data points and data of moderate dimension.

The chart progresses through; the motivation, the approach, the theory of computation on large

integers, the Client side and Server sides of the Homomorphic Encryption Schemes, Experimental

Timing Results and Conclusions.

Approved for Public Release; Distribution Unlimited.

17

5.0 Conclusions and Recommendations

The PROCEED AHEAD team has delivered outstanding results in just the first half (two years)

of the intended four year project. Our results spanned from both fundamental theoretical

contributions to the development of Fully Homomorphic Encryption (FHE), special forms of

FHE, better lattice design, through applications such as delegation of computations and

understanding of the underlyings of multiparty computations, to implementations and

optimizations of FHE.

There lies significant opportunity to build upon our work from the first two years of the

PROCEED AHEAD project including additional aspects of computation delegation. There is

also an opening to apply our prototype system for performing statistical analysis on large scale

data computing the mean and covariance of multivariate data and performing linear regression

over encrypted datasets. Also, the Homomorphic Encryption (HE) software library[18] requires

the cooperation from PROCEED program partners and the cryptographic research community at

large to advance it from its current "proof of concept" state into a fully homomorphic encryption

scheme applicable to real world tasks such as network guards and other computations on

encrypted data such as curve fitting (e.g., least-squares fit).

Even with the major advances in the state of HE over the last few years, both the size of HE

ciphertext and the complexity of computing them remain quite high. An obvious direction for

future work is to find additional optimizations to reduce this overhead further. One direction

which was not explored but seems to have large potential, is finding a cheaper method to replace

Gentry's bootstrapping technique. Namely, it is still plausible that we can reduce the noise in the

ciphertext by applying a cheaper transformation than full homomorphic decryption.

The team has worked intensely on the AHEAD project, collaborating with other participants

within the PROCEED program, and has delivered results in a pace that even surprised us! IBM

has enjoyed working on the project and will take leave (resulting from limitation of funds) while

Stanford and UCSD continue to work within the PROCEED program.

Approved for Public Release; Distribution Unlimited.

18

6.0 References

[1] Gentry, Craig, "A fully homomorphic encryption scheme" PhD thesis, Stanford University,

2009. http://crypto.stanford.edu/craig.

[2] Gentry, Craig, and Halevi, Shai, "Fully Homomorphic Encryption without Squashing

Using Depth-3 Arithmetic Circuits," FOCS pps 107-109, 2011,

http://eprint.iacr.org/2011/279

[3] Brakerski, Zvika; Gentry, Craig; and Vaikuntanathan, Vinod, "Fully Homomorphic

Encryption without Bootstrapping," ITCS, pps 309-325, 2012,

http://eprint.iacr.org/2011/277

[4] Gentry, Craig; Halevi, Shai; and Smart, Nigel, "Fully Homomorphic Encryption with

Polylog Overhead," Eurocrypt pps 465-482, 2012, http://eprint.iacr.org/2011/566

[5] Gentry, Craig; Halevi, Shai; and Smart, Nigel, "Better Bootstrapping in Fully

Homomorphic Encryption," PKC 2012. LNCS vol. 7293, pps 1-16,

http://eprint.iacr.org/2011/680

[6] Brakerski, Zvika, "Fully Homomorphic Encryption without Modulus Switching from

Classical GapSVP," Crypto, pps 868-886, 2012, http://eprint.iacr.org/2012/078

[7] Gentry, Craig; Halevi, Shai; and Smart, Nigel, "Homomorphic Evaluation of the AES

Circuit," CRYPTO pps 850-867, 2012, http://eprint.iacr.org/2012/099

[8] Brakerski, Zvika; Gentry, Craig; and Halevi, Shai, "Packed Ciphertexts in LWE-based

Homomorphic Encryption," PKC 2012, http://eprint.iacr.org/2012/565

[9] Gentry, Craig, and Halevi, Shai, "Implementing Gentry's Fully-Homomorphic Encryption

Scheme," EUROCRYPT LNCS vol. 6632, 2 pps 129-148, 011,

http://eprint.iacr.org/2010/520

[10] Micciancio, Daniele, and Peikert, Chris, "Trapdoors for Lattices: Simpler, Tighter, Faster,

Smaller," Eurocrypt pps 700-718, 2012, http://link.springer.com/chapter/10.1007%2F978-

3-642-29011-4_41

[11] Micciancio, Daniele, and Peikert, Chris, "Hardness of SIS and LWE with Small

Parameters," submitted to CCC 2013. http://eprint.iacr.org/2013/069.pdf

[12] Micciancio, Daniele, and Tessaro, Stefano, "An Equational Approach to Secure Multi-

Party Computation," ITCS pps 355-372, 2013,

http://cseweb.ucsd.edu/~daniele/papers/ITCS13.pdf

[13] Boneh, Dan; Segev, Gil; and Waters, Brent, "Targeted Malleability: Homomorphic

Encryption for Restricted Computations", ITCS, pp 350-366, 2012,

http://eprint.iacr.org/2011/311

Approved for Public Release; Distribution Unlimited.

19

[14] Bogdanov, Andrej, and Lee, Chin Ho, "Homomorphic encryption from codes" Cryptology

ePrint Archive, Report 2011/622, 2011. http://eprint.iacr.org/2011/622

[15] Brakerski, Zvika, "When Homomorphism Becomes a Liability," TCC 2013,

http://eprint.iacr.org/2012/225

[16] Boneh, Dan, and Zhandry, Mark, "Quantum-secure Message Authentication Codes,"

Eurocrypt, 2013, http://eprint.iacr.org/2012/606

[17] Wu, David; Haven, Jacob; and Boneh, Dan, "Using Homomorphic Encryption for Large

Scale Statistical Analysis," CURIS 2012. www.stanford.edu/~dwu4/CURISPoster.pdf

[18] Halevi, Shai, and Shoup, Victor, "Design and Implementation of a Homomorphic-

Encryption Library," to be submitted. http://researcher.ibm.com/researcher/files/us-

shaih/he-library.pdf

[19] Brakerski, Zvika, and Vaikuntanathan, Vinod, "Efficient fully homomorphic encryption

from (standard) LWE" FOCS 2011, http://eprint.iacr.org/2011/344

[20] Dolev, D.; Dwork, C.; and Naor. M., "Non-malleable cryptography" SIAM Journal on

Computing, 30(2), pps 391–437, 2000, http://noodle.cs.huji.ac.il/~dolev/pubs/nmc.pdf

[21] Cash, David; Kupcu, Alptekin; and Wichs, Daniel, "Dynamic Proofs of Retrievability via

Oblivious RAM," Eurocrypt 2013, http://eprint.iacr.org/2012/550

[22] Juels, A. and Kaliski, B., "PORs: Proofs of Retrievability for Large Files," ACM CCS, pp.

584—597. 2007

[23] Chandran, Nishanth; Gennaro, Rosario; Jain, Abhishek; and Sahai, Amit, "How to Delegate

Secure Multiparty Computation to the Cloud," to be submitted.

[24] Bellare, Mihir; Tessaro, Stephano; and Vardy, Alexander, “Semantic Security for the

Wiretap Channel,” CRYPTO 2012, http://cseweb.ucsd.edu/~mihir/papers/wiretap-

crypto12.pdf

[25] Bellare, Mihir; Ristenpart, Thomas; and Tessaro, Stephano, “Multi-Instance Security and

its Application to Password-Based Cryptography,” CRYPTO 2012,

http://eprint.iacr.org/2012/196.pdf

[26] Dodis, Yevgeniy; Ristenpart, Thomas; Steinberger, John, and Tessaro, Stephano, “To Hash

or Not to Hash Again? (In)differentiability Results for H2 and HMAC,” CRYPTO 2012,

http://people.csail.mit.edu/tessaro/papers/h2fullprelim.pdf

Approved for Public Release; Distribution Unlimited.

20

7.0 Appendix

Please see Attachment 1 – Publications (PROCEED AHEAD Final Report Full Papers

Attachment 1 Mar 2013.pdf) for the following publications:

1. Fully Homomorphic Encryption without Squashing Using Depth-3 Arithmetic Circuits

2. Fully Homomorphic Encryption without Bootstrapping

3. Targeted Malleability: Homomorphic Encryption for Restricted Computations

4. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller

5. Homomorphic Evaluation of the AES Circuit

6. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP

7. When Homomorphism Becomes a Liability

8. Quantum-Secure Message Authentication Codes

9. Dynamic Proofs of Retrievability via Oblivious RAM

10. Hardness of SIS and LWE with Small Parameters

11. How to Delegate Secure Multiparty Computation to the Cloud

12. An Equational Approach to Secure Multi-party Computation

13. Semantic Security for the Wiretap Channel

14. Multi-Instance Security and its Application to Password-Based Cryptography

15. To Hash or Not to Hash Again (In)differentiability Results for H
2

and HMAC

16. FHE Library - Design and Implementation of a Homomorphic-Encryption Library

17. Using Homomorphic Encryption for Large Scale Statistical Analysis

Approved for Public Release; Distribution Unlimited.

21

8.0 List of Symbols, Abbreviations, and Acronyms

Abbreviation Definition

AES Advanced Encryption Standard

AHEAD Advancing Homomorphic Encryption its Applications and Derivatives

API Application Programmers Interface

BGV Brakerski-Gentry-Vaikuntanathan

BL Bogdanov and Lee

CCA Chosen Cyphertext Attack

CRT Chinese Remainder Theorem

DARPA Defense Advanced Research Projects Agency

FHE Fully Homomorphic Encryption

GapSVP GapShort Vector Problem

GMP The GNU MP Bignum Library

HE Homomorphic Encryption

IBM International Business Machines Corporation

LPN Learning Parity with Noise

LWE Learning With Errors

MAC Message Authentication Code

MHE Multiplicatively Homomorphic Encryption

NTL Number Theory Library

PI Principal Investigator

PRF Pseudo Random Function

PROCEED PROgramming Computation on EncryptEd Data

RAM Random Access Memory

RLWE Ring Learning With Errors

SIMD Single Instruction Multiple Data

SIS Short Integer Solution

SSSP Sparse Subset Sum Problem

SWHE SomeWhat Homomorphic Encryption

TA Technical Area

UCSD University of California, San Diego

Approved for Public Release; Distribution Unlimited.

2н

9.0 Public Affairs Approval of papers in Appendix

1. Fully Homomorphic Encryption without Squashing Using Depth-3 Arithmetic Circuits.

Approved for Public Release, DISTAR Case # 18107, October 25, 2011

2. Fully Homomorphic Encryption without Bootstrapping.

Approved for Public Release, DISTAR Case #17837, August 8, 2011

3. Targeted Malleability: Homomorphic Encryption for Restricted Computations.

Approved for Public Release, Contracted Fundamental Research

4. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller.

Approved for Public Release, Contracted Fundamental Research

5. Homomorphic Evaluation of the AES Circuit.

Approved for Public Release, DISTAR Case # 19368, June 11, 2012

6. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP.

Approved for Public Release, Contracted Fundamental Research

7. When Homomorphism Becomes a Liability.

Approved for Public Release, Contracted Fundamental Research

8. Quantum-Secure Message Authentication Codes.

Approved for Public Release, Contracted Fundamental Research

9. Dynamic Proofs of Retreivability via Oblivious RAM.

Approved for Public Release, DISTAR Case # 19972, October 1, 2012

10. Hardness of SIS and LWE with Small Parameters.

Approved for Public Release, Contracted Fundamental Research

11. How to Delegate Secure Multiparty Computation to the Cloud.

Approved for Public Release, Contracted Fundamental Research

12. An Equational Approach to Secure Multi-Party Computation.

Approved for Public Release, Contracted Fundamental Research

13. Semantic Security for the Wiretap Channel.

Approved for Public Release, Contracted Fundamental Research

Approved for Public Release; Distribution Unlimited.

2о

Public Affairs Approvals for papers in Appendix, Continued.

14. Multi-Instance Security and its Application to Password-Based Cryptography.

Approved for Public Release, Contracted Fundamental Research

15. To Hash or Not to Hash Again? (In)differentiability Results for H2 and HMAC.

Approved for Public Release, Contracted Fundamental Research

16. FHE Library - Design and Implementation of a Homomorphic-Encryption Library

Approved for Public Release, DISTAR Case # 20493, January 18, 2013

17. Using Homomorphic Encryption for Large Scale Statistical Analysis

Approved for Public Release, Contracted Fundamental Research

Approved for Public Release; Distribution Unlimited.

Fully Homomorphic Encryption without Squashing

Using Depth-3 Arithmetic Circuits

Craig Gentry and Shai Halevi
IBM T.J. Watson Research Center

September 14, 2011

Abstract

We describe a new approach for constructing fully homomorphic encryption (FHE) schemes.
Previous FHE schemes all use the same blueprint from [Gentry 2009]: First construct a some-
what homomorphic encryption (SWHE) scheme, next “squash” the decryption circuit until it is
simple enough to be handled within the homomorphic capacity of the SWHE scheme, and finally
“bootstrap” to get a FHE scheme. In all existing schemes, the squashing technique induces an
additional assumption: that the sparse subset sum problem (SSSP) is hard.

Our new approach constructs FHE as a hybrid of a SWHE and a multiplicatively homomor-
phic encryption (MHE) scheme, such as Elgamal. Our construction eliminates the need for the
squashing step, and thereby also removes the need to assume the SSSP is hard. We describe
a few concrete instantiations of the new method, including a “simple” FHE scheme where we
replace SSSP with Decision Diffie-Hellman, an optimization of the simple scheme that let us
“compress” the FHE ciphertext into a single Elgamal ciphertext(!), and a scheme whose security
can be (quantumly) reduced to the approximate ideal-SIVP.

We stress that the new approach still relies on bootstrapping, but it shows how to bootstrap
without having to “squash” the decryption circuit. The main technique is to express the decryp-
tion function of SWHE schemes as a depth-3 (

∑∏∑
) arithmetic circuit of a particular form.

When evaluating this circuit homomorphically (as needed for bootstrapping), we temporarily
switch to a MHE scheme, such as Elgamal, to handle the

∏
part. Due to the special form of

the circuit, the switch to the MHE scheme can be done without having to evaluate anything
homomorphically. We then translate the result back to the SWHE scheme by homomorphically
evaluating the decryption function of the MHE scheme. Using our method, the SWHE scheme
only needs to be capable of evaluating the MHE scheme’s decryption function, not its own de-
cryption function. We thereby avoid the circularity that necessitated squashing in the original
blueprint.

Key words. Arithmetic Circuits, Depth-3 Circuits, Homomorphic Encryption, Symmetric Poly-
nomials

1. Fully Homomorphic Encryption without Squashing

Contents

1 Introduction 1
1.1 Our Main Technical Innovation . 1
1.2 An Illustration of an Elgamal-Based Instantiation . 2
1.3 Leveled FHE Based on Worst-Case Hardness . 3

2 Decryption as a Depth-3 Arithmetic Circuit 4
2.1 Restricted Depth-3 Arithmetic Circuits . 4
2.2 Lattice-Based Somewhat-Homomorphic Cryptosystems 6
2.3 Decryption Using a Restricted Depth-3 Circuit . 6

3 Leveled FHE from SWHE and MHE 7
3.1 Notations . 7
3.2 Compatible SWHE and MHE Schemes . 8
3.3 Chimeric Leveled FHE: The Construction . 9

4 Optimizations 10
4.1 Computing Only One Product . 10
4.2 Short FHE Ciphertexts: Decryption as a Pure Symmetric Polynomial 11

References 12

A Instantiations of Chimeric FHE 14
A.1 The Homomorphic Capacity of SWHE Schemes . 14
A.2 Elgamal-based Instantiation . 14
A.3 Leveled FHE Based on Worst-Case Hardness . 16

A.3.1 Decryption under Sml . 17
A.3.2 The SWHE scheme Lrg. 18
A.3.3 Setting the parameters. 18

B Proof of Lemma 1 19

1. Fully Homomorphic Encryption without Squashing

1 Introduction

Fully homomorphic encryption allows anyone to perform arbitrarily computations on encrypted
data, despite not having the secret decryption key. Several fully homomorphic encryption (FHE)
schemes appeared recently [Gen09b, vDGHV10, SV10, GH11], all following the same blueprint as
Gentry’s original construction [Gen09b, Gen09a]:

1. SWHE. Construct a somewhat homomorphic encryption (SWHE) scheme – roughly, a scheme
that can evaluate low-degree polynomials homomorphically.

2. Squash. “Squash” the decryption function of the SWHE scheme, until decryption can be
expressed as polynomial of degree low enough to be handled within the homomorphic capacity of
the SWHE scheme, with enough capacity left over to evaluate a NAND gate. This is done by
adding a “hint” to the public key – namely, a large set of elements that has a secret sparse subset
that sums to the original secret key.

3. Bootstrap. Given a SWHE scheme that can evaluate its decryption function (plus a NAND),
apply Gentry’s transformation to get a “leveled”1 FHE scheme.

In this work we construct leveled FHE by combining a SWHE scheme with a “compatible”
multiplicatively homomorphic encryption (MHE) scheme (such as Elgamal) in a surprising way.
Our construction still relies on bootstrapping, but it does not use squashing and does not rely
on the assumed hardness of the sparse subset sum problem (SSSP). Using the new method, we
construct a “simple” leveled FHE scheme where SSSP is replaced with Decision Diffie-Hellman. We
also describe an optimization of this simple scheme where at one point during the bootstrapping
process, the entire leveled FHE ciphertext consists of a single MHE (e.g., Elgamal) ciphertext!
Finally, we show that it is possible to replace the MHE scheme by an additively homomorphic
encryption (AHE) scheme that encrypts discrete logarithms. This allows us to construct a leveled
FHE scheme whose security is based entirely on the worst-case hardness of the shortest independent
vector problem over ideal lattices (ideal-SIVP) (compare [Gen10]). As in Gentry’s original blueprint,
we obtain a pure FHE scheme by assuming circular security. At present, our new approach does
not improve efficiency, aside from the optimization that reduces the ciphertext length.

1.1 Our Main Technical Innovation

Our main technical innovation is a new way to evaluate homomorphically the decryption circuits
of the underlying SWHE schemes. Decryption in these schemes involves computing a threshold
function, that can be expressed as a multilinear symmetric polynomial. Previous works [Gen09b,
vDGHV10, SV10, GH11] evaluated those polynomials in the “obvious way” using boolean circuits.
Instead, here we use Ben-Or’s observation (reported in [NW97]) that multilinear symmetric poly-
nomials can be computed by depth-3 (

∑∏∑
) arithmetic circuits over Zp for large enough prime

p. Let ek(·) be the n-variable degree-k elementary symmetric polynomial, and consider a vector
~x = 〈x1, . . . , xn〉 ∈ {0, 1}n. The value of ek(~x) is simply the coefficient of zn−k in the univari-
ate polynomial P (z) =

∏n
i=1(z + xi). This coefficient can be computed by fixing an arbitrary

set A = {a1, . . . , an+1} ⊆ Zp, then evaluating the polynomial P (z) at the points in A to obtain

1In a “leveled” FHE scheme, the size of the public key is linear in the depth of the circuits to evaluate. A “pure”
FHE scheme (with a fixed-sized public key) can be obtained by assuming “circular security” – namely, that it is safe
to encrypt the leveled FHE secret key under its own public key.

1

1. Fully Homomorphic Encryption without Squashing

tj = P (aj), and finally interpolating the coefficient of interest as a linear combination of the tj ’s.
The resulting circuit has the form

ek(~x) =
n+1∑
j=1

λjk

n∏
i=1

(aj + xi) (mod p), (1)

where λjk’s are the interpolation coefficients, which are some known constants in Zp. Any multi-
linear symmetric polynomial over ~x can be computed as a linear combination of the ek(~x)’s, and
thus has the same form (with different λ’s).

By itself, Ben-Or’s observation is not helpful to us, since (until now) we did not know how to
bootstrap unless the polynomial degree of the decryption function is low. Ben-Or’s observation
does not help us lower the degree (it actually increases the degree).2 Our insight is that we can
evaluate the

∏
part by temporarily working with a MHE scheme, such as Elgamal [ElG85]. We

first use a simple trick to get an encryption under the MHE scheme of all the (aj + xi) terms in
Ben-Or’s circuit, then use the multiplicative homomorphism to multiply them, and finally convert
them back to SWHE ciphertexts to do the final sum. Conversion back from MHE to SWHE is
done by running the MHE scheme’s decryption circuit homomorphically within the SWHE scheme,
which may be expensive. However, the key point is that the degree of the translation depends only
on the MHE scheme and not on the SWHE scheme. This breaks the self-referential requirement
of being able to evaluate its own decryption circuit, hence obviating the need for the squashing
step. Instead, we can now just increase the parameters of the SWHE scheme until it can handle
the MHE scheme’s decryption circuit.

1.2 An Illustration of an Elgamal-Based Instantiation

Perhaps the simplest illustration of our idea is using Elgamal encryption to do the multiplication.
Let p = 2q + 1 be a safe prime. Elgamal messages and ciphertext components will live in QR(p),
the group of quadratic residues modulo p. We also use a SWHE scheme with plaintext space Zp.
(All previous SWHE schemes can be adapted to handle this large plaintext space). We also require
the SWHE scheme to have a “simple” decryption function that can be expressed as a “restricted”
depth-3 arithmetic circuit. These terms are defined later in Section 2, for now we just mention that
all known SWHE schemes [Gen09b, vDGHV10, SV10, GH11] meet this condition

For simplicity of presentation here, imagine that the SWHE secret key is a bit vector ~s =
(s1, . . . , sn) ∈ {0, 1}n, the ciphertext that we want to decrypt is also a bit vector ~c = (c1, . . . , cn) ∈
{0, 1}n, and that decryption works by first computing xi ← si · ci for all i, and then running
the

∑∏∑
circuit, taking ~x as input. Imagine that decryption simply performs something like

interpolation – namely, it computes f(~x) =
∑n+1

j=1 λj
∏n
i=1(aj + xi), where the aj ’s and λj ’s are

publicly known constants in Zp.
To enable bootstrapping, we provide (in the public key) the Elgamal secret key encrypted under

the SWHE public key, namely we encrypt the bits of the secret Elgamal exponent e individually
under the SWHE scheme. We also use a special form of encryption of the SWHE secret key under
the Elgamal public key. Namely, for each secret-key bit si and each public constant aj , we provide

2The degree of P (z) is n, whereas in the previous blueprint Gentry’s squashing technique is used to ensure that
the Hamming weight of ~x is at most m� n, so that it suffices to compute ek(~x) only for k ≤ m.

2

1. Fully Homomorphic Encryption without Squashing

an ElGamal encryption of the value aj + si ∈ Zp. The public values aj ’s are chosen so that both
aj , aj + 1 ∈ QR(p), so that aj + si is always in the Elgamal plaintext space.3

Now let ~c ∈ {0, 1}n be a SWHE ciphertext that we want to decrypt homomorphically. First,
for each (i, j), we obtain an Elgamal ciphertext that encrypts aj + (si · ci) as follows: if ci = 0 then
aj + (si · ci) = aj , so we simply generate a fresh encryption of the public value aj . On the other
hand, if ci = 1 then aj + (si · ci) = aj + si, so we use the encryption of aj + si from the public key.
(Note how the “restricted” form of these sums aj + xi makes it possible to put in the public key
all the Elgamal ciphertexts that are needed for these sums.)

Next we use Elgamal’s multiplicative homomorphism for the
∏

part of the circuit, thus getting
Elgamal encryptions of the values λj · P (aj) (where P (z) =

∏
i(z + xi)). We then convert these

Elgamal encryptions into SWHE encryptions of the same values in Zp by homomorphically eval-
uating the Elgamal decryption, using the SWHE encryption of the Elgamal secret exponent from
the public key. Denote by ei the i’th bit of the secret exponent e (so the public key includes an
SWHE encryption of ei), and let (y, z) = (gr,m · g−er) be an Elgamal ciphertext to be converted.
We compute y2

i − 1 mod p for all i, then compute SWHE ciphertexts that encrypt the powers

yei·2
i

= eiy
2i + (1− ei)y0 = ei(y

2i − 1) + 1,

and then use multiplicative homomorphism of the SWHE scheme to multiply these powers and
obtain an encryption of ye. (This requires degree dlog qe). Finally, inside the SWHE scheme, we
multiply the encryption of ye by the known value z, thereby obtaining a SWHE ciphertext that
encrypts m.

At this point, we have SWHE ciphertexts that encrypt the results of the
∏

operations – the
values λj ·P (aj). We now use the SWHE scheme’s additive homomorphism to finish off the depth-
3 circuit, thus completing the homomorphic decryption. We can now compute another MULT or
ADD operation, before running homomorphic decryption again to “refresh” the result, ad infinitum.

As explained above, using this approach the SWHE scheme only needs to evaluate polynomials
that are slightly more complex than the MHE scheme’s decryption circuit. Specifically, for Elgamal
we need to evaluate polynomials of degree 2 dlog qe. We can use any of the prior SWHE schemes
from the literature, and set the parameters large enough to handle these polynomials. The security
of the resulting leveled FHE scheme is based on the security of its component SWHE and MHE
schemes.

We also show that by a careful choice of the constants aj , we can set things up so that we
always have P (aj) = wj · P (a1)

ej for some known constants ej , wj ∈ Zp. Hence we can compute
all the Elgamal ciphertexts at the output of the Π layer given just the Elgamal ciphertext that
encrypts P (a1), which yields a compact representation of the ciphertext.

1.3 Leveled FHE Based on Worst-Case Hardness

We use similar ideas to get a leveled FHE scheme whose security is based entirely on the (quantum)
worst-case hardness of ideal-SIVP. At first glance this may seem surprising: how can we use a lattice-
based scheme as our MHE scheme when current lattice-based schemes do not handle multiplication
very well? (This was the entire reason the old blueprint required squashing!) We get around this

3An amusing exercise: Prove that the number of aj ’s with aj , aj + 1 ∈ QR(p) is (p− 3)/4 when p = 3 mod 4 and
(p− 5)/4 when p = 1 mod 4. See Lemma 5 for the answer.

3

1. Fully Homomorphic Encryption without Squashing

apparent problem by replacing the MHE scheme with an additively homomorphic encryption (AHE)
scheme, applied to discrete logs.

In more detail, as in the Elgamal-based instantiation, the SWHE scheme uses plaintext space
Zp for prime p = 2q+1. But p is chosen to be a small prime, polynomial in the security parameter,
so it is easy to compute discrete logs modulo p. The plaintext space of the AHE scheme is Zq,
corresponding to the space of exponents of a generator g of Z∗p. Rather than encrypting in the
public key the values aj + si (as in the Elgamal instantiation), we provide AHE ciphertexts that
encrypt the values DLg(aj + si) ∈ Zq, and use the same trick as above to get AHE ciphertexts
that encrypt the values DLg(aj + (si · ci)). We homomorphically add these values, getting an AHE
encryption of DLg(λj · P (aj)). Finally, we use the SWHE scheme to homomorphically compute
the AHE decryption followed by exponentiation, getting SWHE encryption of the values λj ·P (aj),
which we add within the SWHE scheme to complete the bootstrapping.

As before, the SWHE scheme only needs to support the AHE decryption (and exponentiation
modulo the small prime p), thus we don’t have the self-reference problem that requires squashing.
We note, however, that lattice-based additively-homomorphic schemes are not completely error
free, so once must set the parameters so that it supports sufficient number of summands. Since the
dependence of the AHE noise on the number of summands is very weak (only logarithmic), this
can be done without the need for squashing. See Section A.3 for more details on this construction.

2 Decryption as a Depth-3 Arithmetic Circuit

Recall that, in Gentry’s FHE, we “refresh” a ciphertext c by expressing decryption of this cipher-
text as a function Dc(s) in the secret key s, and evaluating that function homomorphically. Below,
we describe “restricted” depth-3 circuits, sketch a “generic” lattice based construction that encom-
passes known SWHE schemes (up to minor modifications), and show how to express its decryption
function Dc(s) as a restricted depth-3 circuit over a large enough ring Zp. We note that Klivans
and Sherstov [KS06] have already shown that the decryption functions of Regev’s cryptosystems
[Reg04, Reg09] can be computed using depth-3 circuits.

2.1 Restricted Depth-3 Arithmetic Circuits

In our construction, the circuit that computes Dc(s) depends on the ciphertext c only in a very
restricted manner. By “restricted” we roughly mean that the bottom sums in the depth-3 circuit
must come from a fixed (polynomial-size) set L of polynomials, where L itself is independent of the
ciphertext. Thus, the bottom sums used in the circuit can depend on the ciphertext only to the
extent that the ciphertext is used to select which and how many of the polynomials in L are used
as bottom sums in the circuit.

Definition 1 (Restricted Depth-3 Circuit). Let L = {Lj(x1, . . . , xn)} be a set of polynomials, all
in the same n variables. An arithmetic circuit C is an L-restricted depth-3 circuit over (x1, . . . , xn)
if there exists multisets S1, . . . , St ⊆ L and constants λ0, λ1, . . . , λt such that

C(~x) = λ0 +
t∑
i=1

λi ·
∏
Lj∈Si

Lj(x1, . . . , xn),

The degree of C with respect to L is d = maxi |Si| (we also call it the L-degree of C).

4

1. Fully Homomorphic Encryption without Squashing

Remark 1. In all our instantiations of decryption circuits for known SWHE schemes, the Lj’s
happen to be linear. However, our generic construction in Section 3 does not require that they be
linear (or even low degree).

To express decryption as restricted circuit as above, we use Ben-Or’s observation that multilinear
symmetric polynomials can be computed by restricted depth-3 arithmetic circuits that perform
interpolation. Recall that a multilinear symmetric polynomial M(~x) is a symmetric polynomial
where, for each i, every monomial is of degree at most 1 in xi; there are no high powers of xi.
A simple fact is that every multilinear symmetric polynomial M(~x) is a linear combination of the
elementary symmetric polynomials: M(~x) =

∑n
i=0 `i · ei(~x), where ei(~x) is the sum of all degree-i

monomials that are the product of i distinct variables. Also, for every symmetric polynomial S(~x),
there is a multilinear symmetric polynomial M(~x) that agrees with S(~x) on all binary vectors
~x ∈ {0, 1}. The reason is that xki = xi for xi ∈ {0, 1}, and therefore all higher powers in S(~x)
can be “flattened”; the end result is multilinear symmetric. The following lemma states Ben-Or’s
observation formally.

Lemma 1 (Ben-Or, reported in [NW97]). Let p ≥ n + 1 be a prime, let A ⊆ Zp have cardinality

n+ 1, let ~x = (x1, . . . , xn) be variables, and denote LA
def
= {(a+ xi) : a ∈ A, 1 ≤ i ≤ n}. For every

multilinear symmetric polynomial M(~x) over Zp, there is a circuit C(~x) such that:

• C is a LA-restricted depth-3 circuit over Zp such that C(~x) ≡M(~x) (in Zp).

• C has n+ 1 product gates of LA-degree n, one gate for each value aj ∈ A, with the j’th gate
computing the value λj · P (aj) =

∏
i(aj + xi) for some scalar λj.

• A description of C can be computed efficiently given the values M(~x) at all ~x = 1i0n−i.

The final bullet clarifies that Ben-Or’s observation is constructive – we can compute the re-
stricted depth-3 representation from any initial representation that lets us evaluate M . For com-
pleteness, we prove Lemma 1 in Appendix B.

In some cases, it is easier to work with univariate polynomials. The following fact, captured
in Lemma 2, will be useful for us: Suppose f(x) is an arbitrary univariate function and we want
to compute f(

∑
bi · ti), where the bi’s are bits and the ti’s are small (polynomial). Then, we can

actually express this computation as a multilinear symmetric polynomial, and hence a restricted
depth-3 circuit in the bi’s.

Lemma 2. Let T, n be positive integers, and f(x) a univariate polynomial over Zp (for p prime,
p ≥ Tn + 1). Then there is a multilinear symmetric polynomial Mf (·) on Tn variables such that
for all t1, . . . , tn ∈ {0, . . . , T},

f(b1 · t1 + · · ·+ bn · tn) = Mf (b1, . . . , b1︸ ︷︷ ︸
t1 times

, 0, . . . , 0︸ ︷︷ ︸
T−t1 times

, b2, . . . , b2︸ ︷︷ ︸
t2 times

, 0, . . . , 0︸ ︷︷ ︸
T−t2 times

, . . . , bn, . . . , bn︸ ︷︷ ︸
tn times

, 0, . . . , 0︸ ︷︷ ︸
T−tn times

)

for all ~b ∈ {0, 1}n. Moreover, a representation of Mf as a LA-restricted depth-3 circuit can be
computed in time poly(Tn) given oracle access to f .

Proof. Define a Tn-variate polynomial g : ZTnp → Zp as g(~x) = f(
∑
xi), then g is symmetric and

we have

f(b1 · t1 + · · ·+ bn · tn) = g(b1, . . . , b1︸ ︷︷ ︸
t1 times

, 0, . . . , 0︸ ︷︷ ︸
T−t1 times

, b2, . . . , b2︸ ︷︷ ︸
t2 times

, 0, . . . , 0︸ ︷︷ ︸
T−t2 times

, . . . , bn, . . . , bn︸ ︷︷ ︸
tn times

, 0, . . . , 0︸ ︷︷ ︸
T−tn times

).

5

1. Fully Homomorphic Encryption without Squashing

As noted above, there is a multilinear symmetric polynomial Mf (~x) that agrees with g(~x) on all
0-1 inputs, By Lemma 1, for any A ⊆ Zq of size Tn+ 1 we can compute an LA-restricted depth-3
circuit representation of Mf (~x) by evaluating g(~x) over the vectors ~x = 1i0Tn−i, which can be done
using the f -oracle.

2.2 Lattice-Based Somewhat-Homomorphic Cryptosystems

In GGH-type [GGH97] lattice-based encryption schemes, the public key describes some lattice L ⊂
Rn and the secret key is a rational matrix S ∈ Qn×n (related to the dual lattice L∗). In the
schemes that we consider, the plaintext space is Zp for a prime p, and an encryption of m is a
vector ~c = ~v + ~e ∈ Zn, where ~v ∈ L and ~e is a short noise vector satisfying ~e ≡ ~m (mod p). It
was shown in [Gen09a] that decryption can be implemented by computing ~m← ~c− d~c · Sc mod p,
where d·c means rounding to the nearest integer. Moreover the parameters can be set to ensure
that ciphertexts are close enough to the lattice so that the vector ~c ·S is less than 1/2(N + 1) away
from Zn.

Somewhat similarly to [Gen09b], such schemes can be modified to make the secret key a bit
vector ~s ∈ {0, 1}N , such that S =

∑N
i=1 si · Ti with the Ti’s public matrices. For example, the

si’s could be the bit description of S itself, and then each Ti’s has only a single nonzero entry,
of the form 2j or 2−j (for as many different values of j as needed to describe S with sufficient
precision). Differently from [Gen09b], the Ti’s in our setting contain no secret information – in
particular we do not require a sparse subset that sums up to S. The ciphertext ~c from the original
scheme is post-processed to yield (~c, {~ui}Ni=1) where ~ui = ~c ·Ti, and the decryption formula becomes

~m← ~c−
⌈∑N

i=1 si · ~ui
⌋

mod p.

Importantly, the coefficients of the ~u’s are output with only κ = dlog(N + 1)e bits of precision
to the right of the binary point, just enough to ensure that the rounding remains correct in the
decryption formula. For simplicity hereafter, we will assume that the plaintext vector is ~m =
〈0, . . . , 0,m〉 – i.e., it has only one nonzero coefficient. Thus, the post-processed ciphertext becomes
(c, {ui}) (numbers rather than vectors).

2.3 Decryption Using a Restricted Depth-3 Circuit

For the rest of this section, the details of the particular encryption scheme E are irrelevant except
insofar as it has the following decryption formula: The secret key is ~s ∈ {0, 1}N , and the ciphertext
is post-processed to the form (c, {ui}), and each ui is split into an integer part and a fractional
part, ui = u′i•u

′′
i , such that the fractional part has only κ = dlog(N + 1)e bits of precision (namely,

u′′i is a κ-bit integer). The plaintext is recovered as:

m ← c−
∑

si · u′i︸ ︷︷ ︸
“simple part”

−
⌈
2−κ ·

∑
si · u′′i

⌋
︸ ︷︷ ︸
“complicated part”

modp. (2)

We now show that we can compute Equation (2) using a LA-restricted circuit.
Lemma 3. Let p be a prime p > 2N2. Regarding the “complicated part” of Equation (2), there is
a univariate polynomial f(x) of degree ≤ 2N2 such that f(

∑
si · u′′i) = d2−κ ·

∑
si · u′′i c mod p.

Proof. Since p > 2N2, there is a polynomial f of degree at most 2N2 such that f(x) = d2−κ · xc mod
p for all x ∈ [0, 2N2]. The lemma follows from the fact that

∑
si ·u′′i ∈ [0, N ·(2κ−1)] ⊆ [0, 2N2].

6

1. Fully Homomorphic Encryption without Squashing

Theorem 1. Let p be a prime p > 2N2. For any A ⊆ Zp of cardinality at least 2N2 + 1,
E’s decryption function (Equation (2)) can be efficiently expressed as and computed using a LA-
restricted depth-3 circuit C of LA-degree at most 2N2 having at most 2N2 +N + 1 product gates.

Proof. First, consider the “complicated part”. By Lemma 3, there is a univariate polynomial f(x)
of degree 2N2 such that f(

∑
si · u′′i) = d2−κ ·

∑
si · u′′i c mod p. Since all u′′i ∈ {0, . . . , 2N}, by

Lemma 2, there is a multilinear symmetric polynomial Mf (~x) taking 2N2 inputs such that

f
(∑

i

si · u′′i
)

= Mf

(
s
u′′1
1 02N−u

′′
1 , . . . , s

u′′N
N 02N−u

′′
N
)

for all ~s ∈ {0, 1}N , and moreover we can efficiently compute Mf ’s representation as a LA-restricted
depth-3 circuit C. By Lemma 1, C has LA-degree at most 2N2 and has at most 2N2 + 1 product
gates. We have proved the theorem for the complicated part. To handle the “simple part” as an
LA-restricted circuit, we can re-write it as (c+ a1 ·

∑
u′i)−

∑
(a1 + si) · u′i mod p with the constant

term λ0 = (c + a1 ·
∑
u′i). The circuit for the simple part has LA-degree 1 and N “product”

gates.

In Section 4.2, we show how to tweak the “generic” lattice-based decryption further to allow a
purely multilinear symmetric decryption formula. (Above, only the complicated part is multilinear
symmetric.) While not essential to construct leveled FHE schemes, this tweak enables interesting
optimizations. For example, in 4.1 we show that we can get a very compact leveled FHE ciphertext
– specifically, at one point, it consists of a single MHE ciphertext – e.g., a single Elgamal ciphertext!
This single MHE ciphertext encrypts the value P (a1), and we show how (through a clever choice
of ai’s) to derive MHE ciphertexts that encrypt P (ai) for the other i’s.

3 Leveled FHE from SWHE and MHE

Here, we show how to take a SWHE scheme that has restricted depth-3 decryption and a MHE
scheme, and combine them together into a “monstrous chimera” [Wik11] to obtain leveled FHE. The
construction works much like the Elgamal-based example given in the Introduction. That is, given
a SWHE ciphertext, we “recrypt” it by homomorphically evaluating its depth-3 decryption circuit,
pre-processing the first level of linear polynomials Lj(~s) (where ~s is the secret key) by encrypting
them under the MHE scheme, evaluating the products under the MHE scheme, converting MHE
ciphertexts into SWHE ciphertexts of the same values by evaluating the MHE’s scheme’s decryption
function under the SWHE scheme using the encrypted MHE secret key, and finally performing the
final sum (an interpolation) under the SWHE scheme. The SWHE scheme only needs to be capable
of evaluating the MHE scheme’s decryption circuit, followed by a quadratic polynomial. Contrary to
the old blueprint, the required “homomorphic capacity” of the SWHE scheme is largely independent
of the SWHE scheme’s decryption function.

3.1 Notations

Recall that an encryption scheme E = (KeyGen,Enc,Dec,Eval) with plaintext space P is somewhat-
homomorphic (SWHE) with respect to a class F of multivariate functions4 over P, if for every

4The class F may depend on the security parameter λ.

7

1. Fully Homomorphic Encryption without Squashing

f(x1, . . . , xn) ∈ F and every m1, . . . ,mn ∈ P, it holds (with probability one) that

Dec(sk,Eval(pk, f, c1, . . . , cn)) = f(m1, . . . ,mn),

where (sk, pk) are generated by KeyGen(1λ) and the ci’s are generated as ci ← Enc(pk,mi). We
refer to F as the “homomorphic capacity” of E . We say that E is multiplicatively (resp. additively)
homomorphic if all the functions in F are naturally described as multiplication (resp. addition).

Given the encryption scheme E , we denote by CE(pk) the space of “freshly-encrypted ciphertexts”
for the public key pk, namely the range of the encryption function for this public key. We also
denote by CE the set of freshly-encrypted ciphertexts with respect to all valid public keys, and
by CE,F the set of “evaluated ciphertexts” for a class of functions F (i.e. those that are obtained
by evaluating homomorphically a function from F on ciphertexts from CE). That is (for implicit
security parameter λ),

CE
def
=

⋃
pk∈KeyGen

CE(pk), CE,F
def
=
{
Eval(pk, f,~c) : pk ∈ KeyGen, f ∈ F , ~c ∈ CE(pk)

}
3.2 Compatible SWHE and MHE Schemes

To construct “chimeric” leveled FHE, the component SWHE and MHE schemes must be compatible:

Definition 2 (Chimerically Compatible SWHE and MHE). Let SWHE be an encryption scheme
with plaintext space Zp, which is somewhat homomorphic with respect to some class F . Let MHE
be a scheme with plaintext space P ⊆ Zp, which is multiplicatively homomorphic with respect to
another F ′.

We say that SWHE and MHE are chimerically compatible if there exists a polynomial-size set
L = {Lj} of polynomials and polynomial bounds D and B such that the following hold:

• For every ciphertext c ∈ CSWHE,F , the function Dc(sk) = SWHE.Dec(sk, c) can be evaluated
by an L-restricted circuit over Zp with L-degree D. Moreover, an explicit description of this
circuit can be computed efficiently given c.

• For any secret key sk ∈ SWHE.KeyGen and any polynomial Lj ∈ L we have Lj(sk) ∈ P. I.e.,
evaluating Lj on the secret key sk lands us in the plaintext space of MHE.

• The homomorphic capacity F ′ of MHE includes all products of D or less variables.

• The homomorphic capacity of SWHE is sufficient to evaluate the decryption of MHE followed
by a quadratic polynomial (with polynomially many terms) over Zp. Formally, the number of
product gates in all the L-restricted circuits from the first bullet above is at most the bound B,
and for any two vectors of MHE ciphertexts ~c = 〈c1, . . . cb〉 and ~c′ =

〈
c′1, . . . c

′
b′
〉
∈ C≤BMHE,F ′,

the two functions

DAdd~c,~c′(sk)
def
=

b∑
i=1

MHE.Dec(sk, ci) +

b′∑
i=1

MHE.Dec(sk, c′i) mod p

DMul~c,~c′(sk)
def
=

(b∑
i=1

MHE.Dec(sk, ci)
)
·
(b′∑
i=1

MHE.Dec(sk, c′i)
)

mod p

are within the homomorphic capacity of SWHE – i.e., DAdd~c,~c′(sk),DMul~c,~c′(sk) ∈ F .

8

1. Fully Homomorphic Encryption without Squashing

We note that the question of whether two schemes are compatible may depend crucially on the
exact representation of the secret keys and ciphertexts in both. Consider for example our Elgamal
instantiation from the introduction. While a naive implementation of exponentiation would have
exponential degree, certainly too high to be evaluated by any known SWHE scheme, we were able
to post-process the Elgamal ciphertext so as to make the degree of decryption more manageable.

We also note that we can view “additively-homomorphic encryption of discrete logarithms” as
a particular type of multiplicative-homomorphic scheme, where encryption include taking discrete-
logarithm (assuming that it can be done efficiently) and decryption includes exponentiation.

3.3 Chimeric Leveled FHE: The Construction

Let SWHE and MHE be chimerically compatible schemes. We construct a leveled FHE scheme as
follows:

FHE.KeyGen(λ, `): Takes as input the security parameter λ and the number of circuit levels ` that
the composed scheme should be capable of evaluating. For i ∈ [1, `], run(

pk
(i)
SW , sk

(i)
SW

)
R← SWHE.KeyGen ,

(
pk

(i)
MH , sk

(i)
MH

)
R← MHE.KeyGen .

Encrypt the i’th MHE secret key under the (i+1)’st SWHE public key, sk
(i)
MH ← SWHE.Enc(pk

(i+1)
SW ,

sk
(i)
MH). Also encrypt the i’th SWHE secret key under the i’th MHE public key, but in a particular

format as follows: Recall that there is a polynomial-size set of polynomials L such that SWHE

decryption can be computed by L-restricted circuits. To encrypt sk
(i)
SW under pk

(i)
MH , compute

mij ← Lj(sk
(i)
SW) for all Lj ∈ L, and then encrypt it cij ← MHE.Enc(pk

(i)
MH ,mij). Let sk

(i)
SW denote

the collection of all the cij ’s. The public key pkFH consists of (pk
(i)
SW , pk

(i)
MH) and the encrypted

secret keys (sk
(i)
SW , sk

(i)
MH) for all i. The secret key skFH consists of sk

(i)
SW for all i.

FHE.Enc(pkFH ,m): Takes as input the public key pkFH and a message in the plaintext space of

the SWHE scheme. It outputs SWHE.Enc(pk
(1)
SW ,m).

FHE.Dec(skFH , c): Takes as input the secret key skFH and a SWHE ciphertext. Suppose the

ciphertext is encrypted under pk
(i)
SW . It is decrypted directly using SWHE.Dec(sk

(i)
SW , c).

FHE.Recrypt(pkFH , c): Takes as input the public key and a ciphertext c that is a valid “evaluated

SWHE ciphertext” under pk
(i)
SW , and outputs a “refreshed” SWHE ciphertext c′, encrypting the

same plaintext but under pk
(i+1)
SW . It works as follows:

Circuit-generation. For a SWHE ciphertext c, generate a description of the L-restricted circuit
C over Zp that computes the decryption of c. Denote it by

Cc(sk) = λ0 +

t∑
k=1

λk
∏

Lj∈Sk

Lj(sk) mod p (= SWHE.Dec(sk, c))

Products. Pick up from the public key the encryptions under the MHE public key pk
(i)
MH of the

values Lj(sk
(i)
SW). Use the homomorphism of MHE to compute MHE encryptions of all the terms

λk ·
∏
Lj∈Sk Lj(sk

(i)
SW). Denote the set of resulting MHE ciphertexts by c1, . . . , ct.

9

1. Fully Homomorphic Encryption without Squashing

Translation. Pick up from the public key the encryption under the SWHE public key pk
(i+1)
SW of the

MHE secret key sk
(i)
MH . For each MHE ciphertext ci from the Products step, use the homomorphism

of SWHE to evaluate the function Dci(sk) = MHE.Dec(sk, ci) on the encrypted secret key. The

results are SWHE ciphertexts c′1, . . . c
′
t, where c′j encrypts the value λk ·

∏
Lj∈Sk Lj(sk

(i)
SW) under

pk
(i+1)
SW .

Summation. Use the homomorphism of SWHE to sum up all the c′j ’s and add λ0 to get a ciphertext

c∗ that encrypts under pk
(i+1)
SW the value

λ0 +

t∑
k=1

λk
∏

Lj∈Sk

Lj(sk
(i)
SW) mod p = SWHE.Dec(sk

(i)
SW , c)

Namely, c∗ encrypts under pk
(i+1)
SW the same value that was encrypted in c under pk

(i)
SW .

FHE.Add(pkFH , c1, c2) and FHE.Mult(pkFH , c1, c2): Take as input the public key and two cipher-

texts that are valid evaluated SWHE ciphertexts under pk
(i)
SW . Ciphertexts within the SWHE

scheme (at any level) may be added and multiplied within the homomorphic capacity of the SWHE
scheme. Once the capacity is reached, they can be recrypted and then at least one more operation
can be applied.

Theorem 2. If SWHE and MHE are chimerically compatible schemes, then the above scheme FHE
is a leveled FHE scheme. Also, if both SWHE and MHE are semantically secure, then so is FHE.

Correctness follows in a straightforward manner from the definition of chimerically compatible
schemes. Security follows by a standard hybrid argument similar to Theorem 4.2.3 in [Gen09a].
We omit the details.

4 Optimizations

In the Products step of the Recrypt process (see Section 3), we compute multiple products homo-
morphically within the MHE scheme. In Section 4.1, we provide an optimization that allows us
to compute only a single product in the Products step. In Section 4.2, we extend this optimiza-
tion so that the entire leveled FHE ciphertext after the Products step can consist of a single MHE
ciphertext.

4.1 Computing Only One Product

For now, let us ignore the “simple part” of our decryption function (Equation 2), which is linear
and therefore does not involve any “real products”.

The products in the “complicated part” all have a special form. Specifically, by Theorem 1 and
the preceding lemmas, for secret key ~s ∈ {0, 1}N , ciphertext (c, {ui}), set A ⊂ Zp with |A| > 2N2,
and fixed scalars {λj} associated to a multilinear symmetric polynomial Mf , the products are all
of the form λj · P (aj) for all a ∈ A, where

P (z) =
∏
i

(z + si)
u′′i · (z + 0)2N−u

′′
i .

10

1. Fully Homomorphic Encryption without Squashing

We will show how to choose the aj ’s so that we can compute P (aj) for all j given only P (a1). This
may seem surprising, but observe that the P (aj)’s are highly redundant. Namely, if we consider
the integer v =

∑
si=1 u

′′
i (which is at most 2N2), then we have

P (aj) = (aj + 1)v · (aj + 0)2N
2−v.

Knowing a1, the value of P (a1) contains enough information to deduce v, and then knowing aj
we can get P (aj) for all j. To be able to compute the P (aj)’s efficiently from P (a1), we choose the
aj ’s so that for all j > 1 we know integers (wj , ej) such that:

aj = wj · a
ej
1 and aj + 1 = wj · (a1 + 1)ej .

We store (wj , ej) in the public key, and then compute P (aj) = w2N2

j · P (a1)
ej .

Importantly for our application to chimeric FHE, we can compute an encryption of P (aj) from
an encryption of P (a1) within the MHE scheme – simply use the multiplicative homomorphism to
exponentiate by ej (using repeated squaring as necessary) and then multiply the result by w2N2

j .
Generating suitable tuples (aj , wj , ej) for j > 1 from an initial value a1 is straightforward:

We choose the ej ’s arbitrarily and then solve for the rest. Namely, we generate distinct ej ’s,
different from 0,1, then set aj ← a

ej
1 /((a1 + 1)ej − aej1) and wj = aj/a

ej
1 . Observe that aj + 1 =

(a1 + 1)ej/((a1 + 1)ej − aej1) – i.e., the ratio (aj + 1)/aj = ((a1 + 1)/a1)
ej , as required.

Some care must be taken to ensure that the values aj , aj + 1 are in plaintext space of the MHE
scheme – e.g., for Elgamal they need to be quadratic residues. Recall the basic fact that for a safe
prime p there are (p− 3)/4 values a for which a, a+ 1 ∈ QR(p) (see Lemma 5). Therefore, finding
suitable a1, a1 + 1 ∈ QR(p) is straightforward. Since a

ej
1 , (a1 + 1)ej ∈ QR(p), we have

aj , aj + 1 ∈ QR(p) ⇔ (a1 + 1)ej − aej1 ∈ QR(p) ⇔ ((a1 + 1)/a1)
ej − 1 ∈ QR(p).

If (a1 + 1)/a1 generates QR(p) (which is certainly true if p is a safe prime), then (re-using the
basic fact above) we conclude that aj , aj + 1 ∈ QR(p) with probability approximately 1/2 over the
choices of ej .

Observe that the amount of extra information needed in the public key is small. The ej ’s need
not be truly random – indeed, by an averaging argument over the choice of a1, one will quickly
find an a1 for which suitable ej ’s are O(1)-dense among very small integers. Hence it is sufficient
to add to the public key only O(log p) bits to specify a1.

4.2 Short FHE Ciphertexts: Decryption as a Pure Symmetric Polynomial

Here we provide an optimization that allows us to compress the entire leveled FHE ciphertext
down to a single MHE ciphertext – e.g., a single Elgamal ciphertext! (The optimization above only
compresses only representation of the “complicated part” of Equation 2, not the “simple part”.)
Typically, a MHE ciphertext will be much much shorter than a SWHE ciphertext: a few thousand
bits vs. millions of bits.

The main idea is that we do not need the full ciphertext (c, {u′i}, {u′′i }) to recover m if we know
a priori that m is in a small interval – e.g., m ∈ {0, 1}. Rather, we can choose a “large-enough”
polynomial-size prime r, so that we can recover m just from ([c]r, {[u′i]r}, {[u′′i]r}), where [x]r denotes
x mod r ∈ {0, . . . , r − 1}. Moreover, after reducing the ciphertext components modulo r, we can
invoke Lemma 2 to represent decryption as a purely multilinear symmetric polynomial, whose
output after the product step can be represented by a single product P (a1) (like the complicated
part in the optimization of Section 4.1).

11

1. Fully Homomorphic Encryption without Squashing

Lemma 4. Let prime p = ω(N2). There is a prime r = O(N) and a univariate polynomial f(x)
of degree O(N2) such that, for all ciphertexts (c, {u′i}, {u′′i }) that encrypt m ∈ {0, 1}, we have
m = f(tr) mod p where

tr
def
= [2κ · c]r +

∑
isi · [−2κ · u′i − u′′i]r. (3)

Proof. Let t = 2κ
(
c−

∑
si · u′i

)
−
∑
si · u′′i . The original decryption formula (Equation 2) is

m = c−
∑

si · u′i − b2−κ ·
∑

si · u′′i e = b2−κ · te mod p

Thus, m can be recovered from t. Since there are only 2 possibilities for m, the (consecutive)
support of t has size 2κ+1 = O(N). Set r to be a prime ≥ 2κ+1. Since the mapping x 7→ [x]r has
no collisions over the support of t, t can be recovered from [t]r. Note that [t]r = [tr]r. Thus m can
be recovered from tr (via [tr]r = [t]r, then t). Since there are O(N · r) = O(N2) possibilities for tr,
the lemma follows.

Theorem 3. Let prime p = ω(N2). There is a prime r = O(N) and a multilinear symmetric
polynomial M such that, for all “hashed” ciphertexts ([2κ · c]r, {[−2κ · u′i − u′′i]r}) that encrypt
m ∈ {0, 1}, we have

m = M(1, . . . , 1︸ ︷︷ ︸
[2κ·c]r

, 0, . . . , 0︸ ︷︷ ︸
r−[2κ·c]r

, . . . s1, . . . , s1︸ ︷︷ ︸
[−2κ·u′1−u′′1]r

, 0, . . . , 0︸ ︷︷ ︸
r−[−2κ·u′1−u′′1]r

, . . . sN , . . . , sN︸ ︷︷ ︸
[−2κ·u′N−u

′′
N]r

, 0, . . . , 0︸ ︷︷ ︸
r−[−2κ·u′N−u

′′
N]r

) mod p

Proof. This follows easily from Lemmas 4 and 2.

Thus, decryption can be turned into a purely multilinear symmetric polynomial M whose
product gates output λj · P (aj) (for known ciphertext-independent λj ’s), where P (z) is similar
to the polynomial described in Section 4.1. Using the optimization of Section 4.1, we can compress
the entire leveled FHE ciphertext down to a single MHE ciphertext that encrypts P (a1).

Acknowledgments This material is based on research sponsored by DARPA under agreement
number FA8750-11-C-0096. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon. The views and con-
clusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of DARPA or the
U.S. Government. Distribution Statement “A” (Approved for Public Release, Distribution Unlim-
ited)

References

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption for ring-
lwe and security for key dependent messages. In Advances in Cryptology - CRYPTO
2011, Lecture Notes in Computer Science. Springer, 2011.

[ElG85] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In Advances in Cryptology – CRYPTO ’84, volume 196 of Lecture Notes
in Computer Science, pages 10–18. Springer-Verlag, 1985.

12

1. Fully Homomorphic Encryption without Squashing

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. http://crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
41st ACM Symposium on Theory of Computing – STOC 2009, pages 169–178. ACM,
2009.

[Gen10] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness.
In Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010, volume 6223 of Lecture
Notes in Computer Science, pages 116–137. Springer, 2010.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from
lattice reduction problems. In Burton S. Kaliski Jr., editor, Advances in Cryptology -
CRYPTO 1997, volume 1294 of Lecture Notes in Computer Science, pages 112–131.
Springer, 1997.

[GH11] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In Advances in Cryptology - EUROCRYPT’11, volume 6632 of Lecture Notes
in Computer Science, pages 129–148. Springer, 2011. Full version available on-line
from http://eprint.iacr.org/2010/520.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC’08, pages 197–206. ACM, 2008.

[KR] Richard M. Karp and Vijaya Ramachandran. A survey of parallel algorithms for
shared-memory machines. Chapter 17 of Handbook of Theoretical Computer Science,
Volume A: Algorithms and Complexity, MIT Press, 1990, pages 869-941.

[KS06] Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learning
intersections of halfspaces. In FOCS, pages 553–562. IEEE Computer Society, 2006.

[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial
derivatives. Computational Complexity, 6(3):217–234, 1997. Cites “M. Ben-Or, Private
communication”.

[Pei11] Chris Peikert, 2011. Private communication.

[Reg04] Oded Regev. New lattice-based cryptographic constructions. JACM, 51(6):899–942,
2004.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
JACM, 56(6), 2009.

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In Masayuki
Abe, editor, Advances in Cryptology - ASIACRYPT 2010, volume 6477 of Lecture
Notes in Computer Science, pages 377–394. Springer, 2010.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with rela-
tively small key and ciphertext sizes. In Phong Q. Nguyen and David Pointcheval,
editors, Public Key Cryptography - PKC 2010, volume 6056 of Lecture Notes in Com-
puter Science, pages 420–443. Springer, 2010.

13

1. Fully Homomorphic Encryption without Squashing

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homo-
morphic encryption over the integers. In Advances in Cryptology - EUROCRYPT’10,
volume 6110 of Lecture Notes in Computer Science, pages 24–43. Springer, 2010. Full
version available on-line from http://eprint.iacr.org/2009/616.

[Wik11] Wikipedia. Chimera. http://en.wikipedia.org/wiki/Chimera, Accessed on August
2011.

A Instantiations of Chimeric FHE

A.1 The Homomorphic Capacity of SWHE Schemes

Our instantiations are mildly sensitive to the tradeoff between the parameters of the SWHE scheme
and its homomorphic capacity. Recall that when used with plaintext space Zp, the SWHE schemes
that we consider have secret key ~s ∈ {0, 1}N and decryption formula5 for post-processed ciphertexts
(c, {u′i}, {u′′i }):

m = c+
N∑
i=1

si · u′i +
⌈
2−κ ·

N∑
i=1

si · u′′i
⌋

mod p, (4)

with κ = dlog(N + 1)e, u′i ∈ Zp and u′′i ∈ {0, 1, . . . , 2κ}. Below we say that a scheme has threshold-
type decryption if it has this decryption formula.

We are interested in the tradeoff between the number N of secret-key bits and the degree
of the polynomials that the scheme can evaluate homomorphically. For our instantiations, we
only need the number of key-bits to depend polynomially on the degree. Specifically, we need a
polynomial bound K, such that the scheme with plaintext space Zp with security parameter λ can
be made to support α-degree polynomials with up to 2β terms using secret keys of no more than
N = K(λ, log p, α, β) bits.

Below we say that a SWHE scheme is “homomorphic for low-degree polynomials” if it has a
polynomial bound on the key-size as above. It can be verified that all the known lattice-based
SWHE schemes meet this condition.

A.2 Elgamal-based Instantiation

In the Introduction, we specified (in a fair amount of detail) an instantiation of chimeric leveled
FHE that uses Elgamal as the MHE scheme. Here, we provide a supporting lemmas and theorems
to show that Elgamal is chimerically compatible with known SWHE schemes, as needed for the
chimeric combination to actually work.
Theorem 4. Let p = 2q + 1 be a safe prime such that DDH holds in QR(p), and let SWHE be
an encryption scheme with message space Zp, which is homomorphic for low-degree polynomials
and has threshold-type decryption. Then SWHE is chimerically compatible with Elgamal encryption
modulo p over plaintext space QR(p).

Proof. Denote the security parameter by λ and let α = poly(λ) be another parameter (to be set
later) governing the degree of polynomials that can be homomorphically evaluated by the scheme.

5This formula differs from Equation (2) in that we add rather than subtract the sums. This change was done to
simplify notations in some of the arguments below, and it entails only a slight modification of the scheme.

14

1. Fully Homomorphic Encryption without Squashing

The scheme SWHE can then be set to support polynomials of degree up to α having at most 2α

terms, using a secret key ~s ∈ {0, 1}N of size N = K(λ, log p, α) for a polynomial K, with decryption
formula Equation (4). Since p must be super polynomial in λ (for DDH to hold), then in particular
2N2 < p and we can use Theorem 1.

We thus conclude that the for any A ⊆ Zp of cardinality 2N2 + 1, given a SWHE ciphertext
(c, {u′i}, {u′′i }) we can compute efficiently a LA-restricted depth-3 circuit C of LA-degree at most
2N2 and at most 2N2 +N + 1 product gates, such that C(~s) = SWHE.Dec~s (c, {u′i}, {u′′i }). We will
thus use D = 2N2 and B = 2N2 +N + 1 as the bounds that are needed for Definition 2.

Next we need to establish that one can choose A so that, for any sk ∈ SWHE.KeyGen and any
polynomial Lj ∈ LA, Lj(sk) is in the plaintext space of our multiplicatively homomorphic scheme.
In Lemma 5 below, we show that there are q − 1 = (p− 3)/4 values a such that a, a+ 1 ∈ QR(p).
Since N is polynomial and 2N2+1� q, we can populate A with N2+1 such values efficiently. The
value aj + xi for aj ∈ A and secret key bit xi is always in QR(p), which is the Elgamal plaintext
space.

In this construction we trivially get the property that the MHE scheme (i.e., Elgamal) can
evaluate the D multiplications needed by the circuits C, since the multiplicative homomorphic
capacity of Elgamal is infinite.

It remains to show that the homomorphic capacity of the SWHE scheme is sufficient to evaluate
Elgamal decryption followed by one operation (i.e., the last bullet in Definition 1). It suffices to
show that Elgamal decryption can be computed using a polynomial of degree α with at most 2α

monomials, so our degree parameter α. To prepare for decryption, we post-process each Elgamal
ciphertext as follows: Given a ciphertext (y = gr, z = m ·g−er) ∈ Z2

p, we compute yi = y2
i−1 mod p

for i = 0, 1, . . . , dlog qe − 1, and the post-processed ciphertext is 〈z, y0, . . . , yτ−1〉 with τ = dlog qe.
Given an Elgamal secret key e ∈ Zq with binary representation eτ−1 . . . e1e0 (where τ = dlog qe,
decryption of the post-processed ciphertext becomes

MHE.Dec(e; z, y0, . . . , yτ−1) = z ·
τ−1∏
i=0

(ye·2
i
) = z ·

τ−1∏
i=0

(ei · yi + 1) (5)

Being overly conservative and treating z, y0, . . . , yτ−1 as variables; then the degree of the polynomial
above is 2τ + 1, and it has 2τ monomials. Hence the degree parameter α as α = 4 dlog qe + 2, we
get a scheme whose homomorphic capacity is sufficient for Elgamal decryption followed by one
operation.

If remains to see that this choice of parameters is consistent. Note that the only constraints
that we use in this proof are that p = λω(1) (so that DDH is hard), (p − 1)/2 = q > 2N2 + 1 =
poly(λ, log q, α) (in order to be able to use Theorem 1) and α > 4 dlog qe + 2 (to get sufficient
homomorphic capacity). Clearly, if p is exponential in λ (so α is polynomial in λ) then all of these
constraints are satisfied.

Lemma 5. Let p be a prime, and let S = {(X,Y) : X = Y + 1;X,Y ∈ QR(p)}. Then, |S| =
(p− 3)/4 if p = 3 mod 4, and |S| = (p− 5)/4 if p = 1 mod 4.

Proof. Let T = {(u, v) : u 6= 0, v 6= 0, u2 − v2 = 1 mod p}. Since X and Y each have exactly
two nonzero square roots if they are quadratic residues, we have that |T | = 4 · |S|. It remains to
establish the cardinality of T .

For each pair (u, v) ∈ T , let auv = u + v. We claim that distinct pairs in T cannot have the
same value of auv. In particular, each auv completely determines both u and v as follows. We

15

1. Fully Homomorphic Encryption without Squashing

have u2 − v2 = 1 → (u − v)(u + v) = 1 → u − v = 1/auv, and therefore u = (auv + a−1uv)/2, and
v = (auv − a−1uv)/2. We therefore have |U | = |T |, where U = {a 6= 0 : a+ a−1 6= 0, a− a−1 6= 0}.

We have that a ∈ U , unless a = 0, a2 = −1 mod p, or a = ±1. If p = 1 mod 4, then −1 ∈ QR(p),
and therefore there are 5 prohibited values of a – i.e., |U | = p−5. If p = 3 mod 4, then −1 /∈ QR(p),
and therefore |U | = p− 3.

A.3 Leveled FHE Based on Worst-Case Hardness

We next describe an instantiation where both the SWHE and the MHE schemes are lattice-based
encryption schemes with security based (quantumly) on the hardness of worst-case problems over
ideal lattices, in particular ideal-SIVP. This scheme could be Gentry’s SWHE scheme [Gen09b,
Gen10] one of its variants [SS10, SV10, GH11], or one of the more recent proposals based on the
ring-LWE problem [BV11, Pei11]. All these schemes are homomorphic for low-degree polynomials
and have threshold-type decryption, in the sense of Section A.1.

The main idea of this construction is to use an additively homomorphic encryption (AHE)
scheme (e.g., one using lattices) as our MHE scheme, by working with discrete logarithms. For
a multiplicative group G with order q and generator g, we can view an additively homomorphic
scheme AHE with plaintext space Zq as a multiplicative homomorphic scheme MHE with plaintext
space G: In the MHE scheme, a ciphertext c is decrypted as MHE.Decrypt(c) ← gAHE.Decrypt(c).
The additive homomorphism mod q thus becomes a multiplicative homomorphism in G. We can
therefore use MHE as a component in chimeric leveled FHE, assuming it is compatible with a
suitable SWHE scheme. One caveat is that MHE’s Encrypt algorithm is not obvious. Presumably,
to encrypt an element x ∈ G, we encrypt its discrete log using AHE’s Encrypt algorithm, but this
requires computing discrete logs in G. Fortunately, in our instantiation we can choose a group G
of polynomial size, so computing discrete log in G can be done efficiently.

The main difficulty is to set the parameters so that the component schemes each have enough
homomorphic capacity to do their jobs.

This sort of compatibility was easy for the Elgamal-based instantiation, since the parameters
of the Elgamal scheme do not grow with the multiplicative homomorphic capacity required of the
Elgamal scheme; Elgamal’s multiplicative homomorphic capacity is infinite, regardless of parame-
ters. On the other hand, the additive homomorphic capacity of a lattice-based scheme is limited, as
system parameters must grow (albeit slowly) to allow more additions. What makes it possible to
set the parameters is the fact that such schemes can handle a super-polynomial number of additions.

Below let us fix some SWHE construction which is homomorphic for low-degree polynomials and
has threshold-type decryption (e.g., Gentry’s scheme [Gen09b, Gen10]). For our construction we
will use a polynomial-size plaintext space, namely Zp for some p = poly(λ). In more detail, we will
use two instances of the same scheme, a “large instance”, denoted Lrg, as the SWHE of our Chimeric
construction and a “small instance”, denoted Sml for the MHE of our Chimeric construction. The
plaintext space for Lrg is set as Zp for a small prime p = poly(λ), and the plaintext space for Sml
is set as Zq for q = p− 1.

We will use the small instance as a multiplicative homomorphic encryption scheme with plaintext
space Z∗p. Below let g be a generator of Z∗p. Encryption of a plaintext x ∈ Z∗p under this MHE
scheme consists of first computing the discrete logarithm of x to the base g, i.e., e ∈ Zq such
that ge = x (mod p), then encrypting e under Sml. Similarly, MHE decryption of a ciphertext
c consists of using the “native decryption” of Sml to recover the “native plaintext” e ∈ Zq, then
exponentiating x = ge mod p.

16

1. Fully Homomorphic Encryption without Squashing

The homomorphic capacity of Lrg must be large enough to evaluate the decryption of Sml
followed by exponentiation mod p and then a quadratic polynomial. The parameters of Sml can be
chosen much smaller, since it only needs to support addition of polynomially many terms and not
even a single multiplication.6

A.3.1 Decryption under Sml

The small instance has n bits of secret key, where n is some parameter to be determined later
(selected to support large enough homomorphic capacity to evaluate linear polynomials with poly-
nomially many terms.) Since native decryption of Sml is of the form of Equation (4), decryption
under the MHE scheme has the following formula

MHE.Decsk(c) = gc · g
∑n
i=1 u

′
isi · gd2−κ

∑n
i=1 u

′′
i sic mod p (6)

where (c, {u′i•u
′′
i }) is the post-processed ciphertext (with u′i ∈ Zq and u′′i ∈ Z2κ , and κ = dlog(n+ 1)e).

Below we show how this formula can be evaluated as a rather low-degree arithmetic circuit.

The complicated part. To evaluate the “complicated part”, d2−κ
∑n

i=1 u
′′
i sic, as an arithmetic

circuit mod p (with input the bits si), we will construct a mod-p circuit that outputs the binary
representation of the sum. We have n binary numbers, each with κ bits, and we need to add
them over the integers and then ignore the lower κ bits. Certainly, each bit of the result can be
expressed mod-p as a multilinear polynomial of degree only n · κ over the n · κ bits of the addends.
It is challenging, however, to show that these low-degree representations can actually be computed
efficiently.

In any case, we can compute the sum using polynomials of degree n · κc for small c, easily as
follows: Consider a single column ~x ∈ {0, 1}n of the sum. Each bit in the binary representation of
the Hamming weight of ~x can be expressed as a mod-p multilinear symmetric polynomial of degree
n over ~x. After using degree n to obtain the binary representation of the Hamming weight of
each column, it only remains to add the κ κ-bit Hamming weights together (each Hamming weight
shifted appropriately depending on the significance of its associated column) using degree only κc.
Adding numbers κ κ-bit numbers is in NC1, and in particular can be accomplished with low degree
using the “3-for-2” trick (see [KR]), repeatedly replacing each three addends by two addends that
correspond to the XOR and CARRY (and hence have the same sum), each replacement only costing
constant degree, and finally summing the final two addends directly. Over Zp, the 3-for-2 trick is
done using the formulas

XOR(x, y, z) = 4xyz − 2(xy + xz + yz) + x+ y + z

CARRY (x, y, z) = xy + xz + yz − 2xyz

The simple part and exponentiation. Although it is possible to compute the simple part
similarly to the complicated part, it is easier to just push this computation into the exponentiation
step. Specifically, we now have a κ-bit number v0 that we obtained as the result of the “complicated
part”, and we also have the dlog qe-bit numbers vi = u′isi for i = 1, . . . , n (all represented in

6The “small” scheme could also be instantiated from other additively homomorphic lattice-based schemes, e.g.,
one of Regev’s schemes [Reg04, Reg09], or the GPV scheme [GPV08], etc.

17

1. Fully Homomorphic Encryption without Squashing

binary), and we want to compute gc · g
∑n
i=0 vi · modp. Denote the binary representation of each vi

by (vit . . . vi1vi0), namely vi =
∑

j vij2
j . Then we compute

gc+(
∑n
i=0 vi) = gc+(

∑
i,j vij2

j) = gc ·
∏
i,j

(g2
j
)vij = gc ·

∏
i,j

(
vi,j · g2

j
+ (1− vij) · 1

)

=

κ∏
j=0

(
1 + v0,j · (g2

j − 1)
)

︸ ︷︷ ︸
“complicated part′′

· gc ·
n∏
i=1

dlog qe∏
j=0

(
1 + vi,j · (g2

j − 1)
)

︸ ︷︷ ︸
“simple part′′

The terms gc and (g2
j − 1) are known constants in Zp, hence we have a representation of the

decryption formula as an arithmetic circuit mod p.
To bound the degree of the complicated part, notice that v0 has κ bits, each a polynomial of

degree at most n ·poly(κ), hence the entire term has degree bounded by n ·poly(κ). For the simple
part, all the vi’s together have n dlog qe bits (each is just a variable), so the degree of that term is
bounded by just n dlog qe. Hence the total degree of the decryption formula is Õ(n), assuming q is

quasi-polynomial in n. One can also verify that the number of terms is 2Õ(n). (Known lattice-based
SWHE schemes have n = Õ(λ), in which case Sml’s decryption has degree Õ(λ).)

A.3.2 The SWHE scheme Lrg.

The large instance has N bits of secret key, where N is some parameter to be determined later,
selected to support large enough homomorphic capacity to be compatible with Sml. As explained
in Section 2, the decryption of Lrg can be expressed as a restricted depth-3 circuit of degree at
most 2N2 and with at most 2N2 + N + 1 product gates. Note that the number of summands in
the top addition is at most 2N2 +N + 1 < 3N2.

A.3.3 Setting the parameters.

Lemma 6. Let Lrg and Sml be as above. We can choose the parameters of Lrg and Sml so that Lrg
is chimerically compatible with the MHE derived from Sml.

Proof. Denoting the security parameter by λ, below we choose the plaintext spaces and parameters
α, β, where Lrg can support polynomials of degree up to α with 2α terms, Sml can support linear
polynomials with up to 2β terms, so as to get chimerically compatible schemes. Note that making
the plaintext spaces of the two schemes compatible is simple, all we need to do is choose a prime p
and set q = p− 1, and let the plaintext spaces of Lrg, Sml be Zp and Zq, respectively. In terms of
size constraints on the parameters, we have the following:

• p > 2N2, so that we can use Theorem 1.

• p = poly(λ), so that we can compute discrete logs modulo p efficiently.

• β ≥ log(2N2) = 2 logN + 1, since the restricted depth-3 circuits for the decryption of Lrg all
have degree at most 2N2, hence we need an MHE scheme that supports 2N2 products, which
means that Sml should support linear functions with 2N2 terms.

18

1. Fully Homomorphic Encryption without Squashing

• α is at least twice the degree of Sml’s decryption, so that we can compute a multiplication
within Lrg after evaluating Sml’s decryption function.

Up front, we are promised polynomial bounds KSml,KLrg such that the key-size of Sml is bounded
by n ≤ KSml(λ, log q, β) and the key-size of Lrg is bounded by N ≤ KLrg(λ, log p, α).

Assuming N = poly(λ) (we establish this later), we can meet the first three constraints by
choosing a prime p ∈ [2N2 + 1, 4N2] (such a prime must exist and can be found efficiently) and
β = log p. Then KSml(λ, log q, β) = o(λcSml+ε) for any ε > 0 and some constant cSml. We argued that
before that when Sml has n-bit keys, decryption can be computed with degree Õ(n ·(logc2 n+log q))
for some constant c2. Therefore, still assuming that N = poly(λ), all of the constraints can be
satisfied with α = θ(λcSml+ε) for any ε > 0. But then of course N can be poly(λ) since it is bounded
by KLrg(λ, log p, α).

Using Gentry’s scheme and proof [Gen09b, Gen10] we get:
Corollary 1. There exists a leveled FHE, whose security is reducible via quantum reduction to the
worst-case hardness of S(I)VP in ideal lattices, ideal-SIVP. �

B Proof of Lemma 1

Proof. (Lemma 1) Every multilinear symmetric polynomial M(~x) is a linear combination of the
elementary symmetric polynomials: M(~x) =

∑n
i=0 `i ·ei(~x). Given the evaluation M(~x) over binary

vectors ~x = 1i0n−i, we can compute the `i’s as follows. We obtain the constant term `0 · e0(~x) = `0
by evaluating M at 0n. We obtain `k recursively via

M(1k0n−k) =

n∑
i=0

`i · ei(1k0n−k) = `k +

k−1∑
i=0

`i · ei(1k0n−k)

⇒ `k = M(1k0n−k)−
k−1∑
i=0

`i · ei(1k0n−k) = M(1k0n−k)−
k−1∑
i=0

`i ·
(
k

i

)
At this point, it suffices to prove the lemma just for the elementary symmetric polynomials. This
is because we have shown that we can efficiently obtain a representation of M(~x) as a linear
combination of the elementary symmetric polynomials, and we can clearly use the known `j values
to “merge” together the depth-3 representations of the elementary symmetric polynomials that
satisfy the constraints of Lemma 1 into a depth-3 representation of M that satisfies the constraints.

For each i, the value ei(~x) is the coefficient of zn−i in the polynomial P (z). We can compute the
coefficients of P (z) via interpolation from the values P (a), a ∈ A. Therefore, each value ei(~x) can
be computed by a LA-restricted depth-3 arithmetic circuit as follows: using n + 1 product gates,
compute the values P (a), a ∈ A, and then (as the final sum gate), interpolate the coefficient of
zn−i from the P (a) values.

19

1. Fully Homomorphic Encryption without Squashing

Fully Homomorphic Encryption without Bootstrapping

Zvika Brakerski
Weizmann Institute of Science

Craig Gentry∗

IBM T.J. Watson Research Center

Vinod Vaikuntanathan†

University of Toronto

Abstract

We present a radically new approach to fully homomorphic encryption (FHE) that dramatically im-
proves performance and bases security on weaker assumptions. A central conceptual contribution in our
work is a new way of constructing leveled fully homomorphic encryption schemes (capable of evaluating
arbitrary polynomial-size circuits), without Gentry’s bootstrapping procedure.

Specifically, we offer a choice of FHE schemes based on the learning with error (LWE) or ring-LWE
(RLWE) problems that have 2λ security against known attacks. For RLWE, we have:

• A leveled FHE scheme that can evaluate L-level arithmetic circuits with Õ(λ · L3) per-gate com-
putation – i.e., computation quasi-linear in the security parameter. Security is based on RLWE
for an approximation factor exponential in L. This construction does not use the bootstrapping
procedure.

• A leveled FHE scheme that uses bootstrapping as an optimization, where the per-gate computation
(which includes the bootstrapping procedure) is Õ(λ2), independent of L. Security is based on the
hardness of RLWE for quasi-polynomial factors (as opposed to the sub-exponential factors needed
in previous schemes).

We obtain similar results for LWE, but with worse performance. We introduce a number of further
optimizations to our schemes. As an example, for circuits of large width – e.g., where a constant fraction
of levels have width at least λ – we can reduce the per-gate computation of the bootstrapped version to
Õ(λ), independent of L, by batching the bootstrapping operation. Previous FHE schemes all required
Ω̃(λ3.5) computation per gate.

At the core of our construction is a much more effective approach for managing the noise level of
lattice-based ciphertexts as homomorphic operations are performed, using some new techniques recently
introduced by Brakerski and Vaikuntanathan (FOCS 2011).

∗Sponsored by the Air Force Research Laboratory (AFRL). Disclaimer: This material is based on research sponsored by DARPA
under agreement number FA8750-11-C-0096 and FA8750-11-2-0225. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government. Approved for Public Release, Distribution Unlimited.
†This material is based on research sponsored by DARPA under Agreement number FA8750-11-2-0225. All disclaimers as

above apply.

2. Fully Homomorphic Encryption without Bootstrapping

1 Introduction
Ancient History. Fully homomorphic encryption (FHE) [19, 8] allows a worker to receive encrypted data
and perform arbitrarily-complex dynamically-chosen computations on that data while it remains encrypted,
despite not having the secret decryption key. Until recently, all FHE schemes [8, 6, 20, 10, 5, 4] followed
the same blueprint, namely the one laid out in Gentry’s original construction [8, 7].

The first step in Gentry’s blueprint is to construct a somewhat homomorphic encryption (SWHE) scheme,
namely an encryption scheme capable of evaluating “low-degree” polynomials homomorphically. Starting
with Gentry’s original construction based on ideal lattices [8], there are by now a number of such schemes
in the literature [6, 20, 10, 5, 4, 13], all of which are based on lattices (either directly or implicitly). The
ciphertexts in all these schemes are “noisy”, with a noise that grows slightly during homomorphic addition,
and explosively during homomorphic multiplication, and hence, the limitation of low-degree polynomials.

To obtain FHE, Gentry provided a remarkable bootstrapping theorem which states that given a SWHE
scheme that can evaluate its own decryption function (plus an additional operation), one can transform it
into a “leveled”1 FHE scheme. Bootstrapping “refreshes” a ciphertext by running the decryption function
on it homomorphically, using an encrypted secret key (given in the public key), resulting in a reduced noise.

As if by a strange law of nature, SWHE schemes tend to be incapable of evaluating their own decryption
circuits (plus some) without significant modifications. (We discuss recent exceptions [9, 3] below.) Thus,
the final step is to squash the decryption circuit of the SWHE scheme, namely transform the scheme into one
with the same homomorphic capacity but a decryption circuit that is simple enough to allow bootstrapping.
Gentry [8] showed how to do this by adding a “hint” – namely, a large set with a secret sparse subset that
sums to the original secret key – to the public key and relying on a “sparse subset sum” assumption.

1.1 Efficiency of Fully Homomorphic Encryption
The efficiency of fully homomorphic encryption has been a (perhaps, the) big question following its inven-
tion. In this paper, we are concerned with the per-gate computation overhead of the FHE scheme, defined
as the ratio between the time it takes to compute a circuit homomorphically to the time it takes to compute
it in the clear.2 Unfortunately, FHE schemes that follow Gentry’s blueprint (some of which have actually
been implemented [10, 5]) have fairly poor performance – their per-gate computation overhead is p(λ), a
large polynomial in the security parameter. In fact, we would like to argue that this penalty in performance
is somewhat inherent for schemes that follow this blueprint.

First, the complexity of (known approaches to) bootstrapping is inherently at least the complexity of
decryption times the bit-length of the individual ciphertexts that are used to encrypt the bits of the secret
key. The reason is that bootstrapping involves evaluating the decryption circuit homomorphically – that is,
in the decryption circuit, each secret-key bit is replaced by a (large) ciphertext that encrypts that bit – and
both the complexity of decryption and the ciphertext lengths must each be Ω(λ).

Second, the undesirable properties of known SWHE schemes conspire to ensure that the real cost of
bootstrapping for FHE schemes that follow this blueprint is actually much worse than quadratic. Known
FHE schemes start with a SWHE scheme that can evaluate polynomials of degree D (multiplicative depth
logD) securely only if the underlying lattice problem is hard to 2D-approximate in 2λ time. For this to
be hard, the lattice must have dimension Ω(D · λ).3 Moreover, the coefficients of the vectors used in the

1In a “leveled” FHE scheme, the size of the public key is linear in the depth of the circuits that the scheme can evaluate. One
can obtain a “pure” FHE scheme (with a constant-size public key) from a leveled FHE scheme by assuming “circular security” –
namely, that it is safe to encrypt the leveled FHE secret key under its own public key. We will omit the term “leveled” in this work.

2Other measures of efficiency, such ciphertext/key size and encryption/decryption time, are also important. In fact, the schemes
we present in this paper are very efficient in these aspects (as are the schemes in [9, 3]).

3This is because we have lattice algorithms in n dimensions that compute 2n/λ-approximations of short vectors in time 2Õ(λ).

1

2. Fully Homomorphic Encryption without Bootstrapping

scheme have bit length Ω(D) to allow the ciphertext noise room to expand to 2D. Therefore, the size of
“fresh” ciphertexts (e.g., those that encrypt the bits of the secret key) is Ω̃(D2 ·λ). Since the SWHE scheme
must be “bootstrappable” – i.e., capable of evaluating its own decryption function – D must exceed the
degree of the decryption function. Typically, the degree of the decryption function is Ω(λ). Thus, overall,
“fresh” ciphertexts have size Ω̃(λ3). So, the real cost of bootstrapping – even if we optimistically assume
that the “stale” ciphertext that needs to be refreshed can be decrypted in only Θ(λ)-time – is Ω̃(λ4).

The analysis above ignores a nice optimization by Stehlé and Steinfeld [22], which so far has not been
useful in practice, that uses Chernoff bounds to asymptotically reduce the decryption degree down toO(

√
λ).

With this optimization, the per-gate computation of FHE schemes that follow the blueprint is Ω̃(λ3).4

Recent Deviations from Gentry’s Blueprint, and the Hope for Better Efficiency. Recently, Gentry and
Halevi [9], and Brakerski and Vaikuntanathan [3], independently found very different ways to construct FHE
without using the squashing step, and thus without the sparse subset sum assumption. These schemes are the
first major deviations from Gentry’s blueprint for FHE. Brakerski and Vaikuntanathan [3] manage to base
security entirely on LWE (for sub-exponential approximation factors), avoiding reliance on ideal lattices.

From an efficiency perspective, however, these results are not a clear win over previous schemes. Both of
the schemes still rely on the problematic aspects of Gentry’s blueprint – namely, bootstrapping and an SWHE
scheme with the undesirable properties discussed above. Thus, their per-gate computation is still Ω̃(λ4) (in
fact, that is an optimistic evaluation of their performance). Nevertheless, the techniques introduced in these
recent constructions are very interesting and useful to us. In particular, we use the tools and techniques
introduced by Brakerski and Vaikuntanathan [3] in an essential way to achieve remarkable efficiency gains.

An important, somewhat orthogonal question is the strength of assumptions underlying FHE schemes.
All the schemes so far rely on the hardness of short vector problems on lattices with a subexponential
approximation factor. Can we base FHE on polynomial hardness assumptions?

1.2 Our Results and Techniques
We leverage Brakerski and Vaikuntanathan’s techniques [3] to achieve asymptotically very efficient FHE
schemes. Also, we base security on lattice problems with quasi-polynomial approximation factors. (Previ-
ous schemes all used sub-exponential factors.) In particular, we have the following theorem (informal):

• Assuming Ring LWE for an approximation factor exponential in L, we have a leveled FHE scheme
that can evaluate L-level arithmetic circuits without using bootstrapping. The scheme has Õ(λ · L3)
per-gate computation (namely, quasi-linear in the security parameter).

• Alternatively, assuming Ring LWE is hard for quasi-polynomial factors, we have a leveled FHE
scheme that uses bootstrapping as an optimization, where the per-gate computation (which includes
the bootstrapping procedure) is Õ(λ2), independent of L.

We can alternatively base security on LWE, albeit with worse performance. We now sketch our main idea
for boosting efficiency.

In the BV scheme [3], like ours, a ciphertext vector c ∈ Rn (where R is a ring, and n is the “dimension”
of the vector) that encrypts a message m satisfies the decryption formula m =

[
[〈c, s〉]q

]
2
, where s ∈ Rn is

the secret key vector, q is an odd modulus, and [·]q denotes reduction into the range (−q/2, q/2). This is an
abstract scheme that can be instantiated with either LWE or Ring LWE – in the LWE instantiation, R is the
ring of integers mod q and n is a large dimension, whereas in the Ring LWE instantiation, R is the ring of
polynomials over integers mod q and an irreducible f(x), and the dimension n = 1.

4We note that bootstrapping lazily – i.e., applying the refresh procedure only at a 1/k fraction of the circuit levels for k > 1 –
cannot reduce the per-gate computation further by more than a logarithmic factor for schemes that follow this blueprint, since these
SWHE schemes can evaluate only log multiplicative depth before it becomes absolutely necessary to refresh – i.e., k = O(log λ).

2

2. Fully Homomorphic Encryption without Bootstrapping

We will call [〈c, s〉]q the noise associated to ciphertext c under key s. Decryption succeeds as long as
the magnitude of the noise stays smaller than q/2. Homomorphic addition and multiplication increase the
noise in the ciphertext. Addition of two ciphertexts with noise at most B results in a ciphertext with noise at
most 2B, whereas multiplication results in a noise as large as B2. 5 We will describe a noise-management
technique that keeps the noise in check by reducing it after homomorphic operations, without bootstrapping.

The key technical tool we use for noise management is the “modulus switching” technique developed by
Brakerski and Vaikuntanathan [3]. Jumping ahead, we note that while they use modulus switching in “one
shot” to obtain a small ciphertext (to which they then apply Gentry’s bootstrapping procedure), we will use
it (iteratively, gradually) to keep the noise level essentially constant, while stingily sacrificing modulus size
and gradually sacrificing the remaining homomorphic capacity of the scheme.

Modulus Switching. The essence of the modulus-switching technique is captured in the following lemma.
In words, the lemma says that an evaluator, who does not know the secret key s but instead only knows a
bound on its length, can transform a ciphertext c modulo q into a different ciphertext modulo p while
preserving correctness – namely, [〈c′, s〉]p = [〈c, s〉]q mod 2. The transformation from c to c′ involves
simply scaling by (p/q) and rounding appropriately! Most interestingly, if s is short and p is sufficiently
smaller than q, the “noise” in the ciphertext actually decreases – namely, |[〈c′, s〉]p| < |[〈c, s〉]q|.

Lemma 1. Let p and q be two odd moduli, and let c be an integer vector. Define c′ to be the integer vector
closest to (p/q) · c such that c′ = c mod 2. Then, for any s with |[〈c, s〉]q| < q/2− (q/p) · `1(s), we have

[
〈
c′, s

〉
]p = [〈c, s〉]q mod 2 and |[

〈
c′, s

〉
]p| < (p/q) · |[〈c, s〉]q|+ `1(s)

where `1(s) is the `1-norm of s.

Proof. For some integer k, we have [〈c, s〉]q = 〈c, s〉−kq. For the same k, let ep = 〈c′, s〉−kp ∈ Z. Since
c′ = c and p = q modulo 2, we have ep = [〈c, s〉]q mod 2. Therefore, to prove the lemma, it suffices to
prove that ep = [〈c′, s〉]p and that it has small enough norm. We have ep = (p/q)[〈c, s〉]q+〈c′ − (p/q)c, s〉,
and therefore |ep| ≤ (p/q)[〈c, s〉]q + `1(s) < p/2. The latter inequality implies ep = [〈c′, s〉]p.

Amazingly, this trick permits the evaluator to reduce the magnitude of the noise without knowing the
secret key, and without bootstrapping. In other words, modulus switching gives us a very powerful and
lightweight way to manage the noise in FHE schemes! In [3], the modulus switching technique is bundled
into a “dimension reduction” procedure, and we believe it deserves a separate name and close scrutiny. It is
also worth noting that our use of modulus switching does not require an “evaluation key”, in contrast to [3].

Our New Noise Management Technique. At first, it may look like modulus switching is not a very
effective noise management tool. If p is smaller than q, then of course modulus switching may reduce
the magnitude of the noise, but it reduces the modulus size by essentially the same amount. In short, the
ratio of the noise to the “noise ceiling” (the modulus size) does not decrease at all. Isn’t this ratio what
dictates the remaining homomorphic capacity of the scheme, and how can potentially worsening (certainly
not improving) this ratio do anything useful?

In fact, it’s not just the ratio of the noise to the “noise ceiling” that’s important. The absolute magnitude
of the noise is also important, especially in multiplications. Suppose that q ≈ xk, and that you have two
mod-q SWHE ciphertexts with noise of magnitude x. If you multiply them, the noise becomes x2. After
4 levels of multiplication, the noise is x16. If you do another multiplication at this point, you reduce the
ratio of the noise ceiling (i.e. q) to the noise level by a huge factor of x16 – i.e., you reduce this gap very

5The noise after multiplication is in fact a bit larger than B2 due to the additional noise from the BV “re-linearization” process.
For the purposes of this exposition, it is best to ignore this minor detail.

3

2. Fully Homomorphic Encryption without Bootstrapping

fast. Thus, the actual magnitude of the noise impacts how fast this gap is reduced. After only log k levels of
multiplication, the noise level reaches the ceiling.

Now, consider the following alternative approach. Choose a ladder of gradually decreasing moduli
{qi ≈ q/xi} for i < k. After you multiply the two mod-q ciphertexts, switch the ciphertext to the smaller
modulus q1 = q/x. As the lemma above shows, the noise level of the new ciphertext (now with respect to
the modulus q1) goes from x2 back down to x. (Let’s suppose for now that `1(s) is small in comparison to x
so that we can ignore it.) Now, when we multiply two ciphertexts (wrt modulus q1) that have noise level x,
the noise again becomes x2, but then we switch to modulus q2 to reduce the noise back to x. In short, each
level of multiplication only reduces the ratio (noise ceiling)/(noise level) by a factor of x (not something like
x16). With this new approach, we can perform about k (not just log k) levels of multiplication before we
reach the noise ceiling. We have just increased (without bootstrapping) the number of multiplicative levels
that we can evaluate by an exponential factor!

This exponential improvement is enough to achieve leveled FHE without bootstrapping. For any poly-
nomial k, we can evaluate circuits of depth k. The performance of the scheme degrades with k – e.g., we
need to set q = q0 to have bit length proportional to k – but it degrades only polynomially with k.

Our main observation – the key to obtaining FHE without bootstrapping – is so simple that it is easy
to miss and bears repeating: We get noise reduction automatically via modulus switching, and by carefully
calibrating our ladder of moduli {qi}, one modulus for each circuit level, to be decreasing gradually, we
can keep the noise level very small and essentially constant from one level to the next while only gradually
sacrificing the size of our modulus until the ladder is used up. With this approach, we can efficiently evaluate
arbitrary polynomial-size arithmetic circuits without resorting to bootstrapping.

Performance-wise, this scheme trounces previous (bootstrapping-based) FHE schemes (at least asymp-
totically; the concrete performance remains to be seen). Instantiated with ring-LWE, it can evaluate L-level
arithmetic circuits with per-gate computation Õ(λ · L3) – i.e., computation quasi-linear in the security pa-
rameter. Since the ratio of the largest modulus (namely, q ≈ xL) to the noise (namely, x) is exponential in
L, the scheme relies on the hardness of approximating short vectors to within an exponential in L factor.

Bootstrapping for Better Efficiency and Better Assumptions. The per-gate computation of our FHE-
without-bootstrapping scheme depends polynomially on the number of levels in the circuit that is being
evaluated. While this approach is efficient (in the sense of “polynomial time”) for polynomial-size circuits,
the per-gate computation may become undesirably high for very deep circuits. So, we re-introduce boot-
strapping as an optimization6 that makes the per-gate computation independent of the circuit depth, and that
(if one is willing to assume circular security) allows homomorphic operations to be performed indefinitely
without needing to specify in advance a bound on the number of circuit levels. The main idea is that to
compute arbitrary polynomial-depth circuits, it is enough to compute the decryption circuit of the scheme
homomorphically. Since the decryption circuit has depth ≈ log λ, the largest modulus we need has only
Õ(λ) bits, and therefore we can base security on the hardness of lattice problems with quasi-polynomial
factors. Since the decryption circuit has size Õ(λ) for the RLWE-based instantiation, the per-gate computa-
tion becomes Õ(λ2) (independent of L). See Section 5 for details.

Other Optimizations. We also consider batching as an optimization. The idea behind batching is to pack
multiple plaintexts into each ciphertext so that a function can be homomorphically evaluated on multiple
inputs with approximately the same efficiency as homomorphically evaluating it on one input.

6We are aware of the seeming irony of trumpeting “FHE without bootstrapping” and then proposing bootstrapping “as an opti-
mization”. First, FHE without bootstrapping is exciting theoretically, independent of performance. Second, whether bootstrapping
actually improves performance depends crucially on the number of levels in the circuit one is evaluating. For example. for circuits
of depth sub-polynomial in the security parameter, this “optimization” will not improve performance asymptotically.

4

2. Fully Homomorphic Encryption without Bootstrapping

An especially interesting case is batching the decryption function so that multiple ciphertexts – e.g., all
of the ciphertexts associated to gates at some level in the circuit – can be bootstrapped simultaneously very
efficiently. For circuits of large width (say, width λ), batched bootstrapping reduces the per-gate computation
in the RLWE-based instantiation to Õ(λ), independent of L. We give the details in Section 5.

1.3 Other Related Work
We note that prior to Gentry’s construction, there were already a few interesting homomorphic encryp-
tions schemes that could be called “somewhat homomorphic”, including Boneh-Goh-Nissim [2] (evaluates
quadratic formulas using bilinear maps), (Aguilar Melchor)-Gaborit-Herranz [15] (evaluates constant degree
polynomials using lattices) and Ishai-Paskin [12] (evaluates branching programs).

2 Preliminaries
Basic Notation. In our construction, we will use a ring R. In our concrete instantiations, we prefer to use
either R = Z (the integers) or the polynomial ring R = Z[x]/(xd + 1), where d is a power of 2.

We write elements ofR in lowercase – e.g., r ∈ R. We write vectors in bold – e.g., v ∈ Rn. The notation
v[i] refers to the i-th coefficient of v. We write the dot product of u,v ∈ Rn as 〈u,v〉 =

∑n
i=1 u[i] · v[i] ∈

R. When R is a polynomial ring, ‖r‖ for r ∈ R refers to the Euclidean norm of r’s coefficient vector. We
say γR = max{‖a · b‖/‖a‖‖b‖ : a, b ∈ R} is the expansion factor of R. For R = Z[x]/(xd + 1), the value
of γR is at most

√
d by Cauchy-Schwarz.

For integer q, we use Rq to denote R/qR. Sometimes we will use abuse notation and use R2 to denote
the set of R-elements with binary coefficients – e.g., when R = Z, R2 may denote {0, 1}, and when R is a
polynomial ring, R2 may denote those polynomials that have 0/1 coefficients. When it is obvious that q is
not a power of two, we will use dlog qe to denote 1 + blog qc. For a ∈ R, we use the notation [a]q to refer
to a mod q, with coefficients reduced into the range (−q/2, q/2].

Leveled Fully Homomorphic Encryption. Most of this paper will focus on the construction of a leveled
fully homomorphic scheme, in the sense that the parameters of the scheme depend (polynomially) on the
depth of the circuits that the scheme is capable of evaluating.

Definition 1 (Leveled Fully Homomorphic Encryption [7]). We say that a family of homomorphic encryption
schemes {E(L) : L ∈ Z+} is leveled fully homomorphic if, for all L ∈ Z+, they all use the same decryption
circuit, E(L) compactly evaluates all circuits of depth at most L (that use some specified complete set of
gates), and the computational complexity of E(L)’s algorithms is polynomial (the same polynomial for all
L) in the security parameter, L, and (in the case of the evaluation algorithm) the size of the circuit.

2.1 The Learning with Errors (LWE) Problem
The learning with errors (LWE) problem was introduced by Regev [17]. It is defined as follows.

Definition 2 (LWE). For security parameter λ, let n = n(λ) be an integer dimension, let q = q(λ) ≥ 2 be an
integer, and let χ = χ(λ) be a distribution over Z. The LWEn,q,χ problem is to distinguish the following two
distributions: In the first distribution, one samples (ai, bi) uniformly from Zn+1

q . In the second distribution,
one first draws s ← Znq uniformly and then samples (ai, bi) ∈ Zn+1

q by sampling ai ← Znq uniformly,
ei ← χ, and setting bi = 〈a, s〉+ ei. The LWEn,q,χ assumption is that the LWEn,q,χ problem is infeasible.

Regev [17] proved that for certain moduli q and Gaussian error distributions χ, the LWEn,q,χ assumption
is true as long as certain worst-case lattice problems are hard to solve using a quantum algorithm. We state
this result using the terminology of B-bounded distributions, which is a distribution over the integers where
the magnitude of a sample is bounded with high probability. A definition follows.

5

2. Fully Homomorphic Encryption without Bootstrapping

Definition 3 (B-bounded distributions). A distribution ensemble {χn}n∈N, supported over the integers, is
called B-bounded if

Pr
e←χn

[|e| > B] = negl(n) .

We can now state Regev’s worst-case to average-case reduction for LWE.

Theorem 1 (Regev [17]). For any integer dimension n, prime integer q = q(n), andB = B(n) ≥ 2n, there
is an efficiently samplable B-bounded distribution χ such that if there exists an efficient (possibly quan-
tum) algorithm that solves LWEn,q,χ, then there is an efficient quantum algorithm for solving Õ(qn1.5/B)-
approximate worst-case SIVP and gapSVP.

Peikert [16] de-quantized Regev’s results to some extent – that is, he showed the LWEn,q,χ assumption
is true as long as certain worst-case lattice problems are hard to solve using a classical algorithm. (See [16]
for a precise statement of these results.)

Applebaum et al. [1] showed that if LWE is hard for the above distribution of s, then it is also hard when
s’s coefficients are sampled according to the noise distribution χ.

2.2 The Ring Learning with Errors (RLWE) Problem
The ring learning with errors (RLWE) problem was introduced by Lyubaskevsky, Peikert and Regev [14].
We will use an simplified special-case version of the problem that is easier to work with [18, 4].

Definition 4 (RLWE). For security parameter λ, let f(x) = xd + 1 where d = d(λ) is a power of 2. Let
q = q(λ) ≥ 2 be an integer. LetR = Z[x]/(f(x)) and letRq = R/qR. Let χ = χ(λ) be a distribution over
R. The RLWEd,q,χ problem is to distinguish the following two distributions: In the first distribution, one
samples (ai, bi) uniformly from R2

q . In the second distribution, one first draws s ← Rquniformly and then
samples (ai, bi) ∈ R2

q by sampling ai ← Rq uniformly, ei ← χ, and setting bi = ai · s+ ei. The RLWEd,q,χ
assumption is that the RLWEd,q,χ problem is infeasible.

The RLWE problem is useful, because the well-established shortest vector problem (SVP) over ideal
lattices can be reduced to it, specifically:

Theorem 2 (Lyubashevsky-Peikert-Regev [14]). For any d that is a power of 2, ring R = Z[x]/(xd + 1),
prime integer q = q(d) = 1 mod d, and B = ω(

√
d log d), there is an efficiently samplable distribution χ

that outputs elements of R of length at most B with overwhelming probability, such that if there exists an
efficient algorithm that solves RLWEd,q,χ, then there is an efficient quantum algorithm for solving dω(1) ·
(q/B)-approximate worst-case SVP for ideal lattices over R.

Typically, to use RLWE with a cryptosystem, one chooses the noise distribution χ according to a Gaus-
sian distribution, where vectors sampled according to this distribution have length only poly(d) with over-
whelming probability. This Gaussian distribution may need to be “ellipsoidal” for certain reductions to go
through [14]. It has been shown for RLWE that one can equivalently assume that s is alternatively sampled
from the noise distribution χ [14].

2.3 The General Learning with Errors (GLWE) Problem
The learning with errors (LWE) problem and the ring learning with errors problem RLWE are syntactically
identical, aside from using different rings (Z versus a polynomial ring) and different vector dimensions over
those rings (n = poly(λ) for LWE, but n is constant – namely, 1 – in the RLWE case). To simplify our
presentation, we define a “General Learning with Errors (GLWE)” Problem, and describe a single “GLWE-
based” FHE scheme, rather than presenting essentially the same scheme twice, once for each of our two
concrete instantiations.

6

2. Fully Homomorphic Encryption without Bootstrapping

Definition 5 (GLWE). For security parameter λ, let n = n(λ) be an integer dimension, let f(x) = xd + 1
where d = d(λ) is a power of 2, let q = q(λ) ≥ 2 be a prime integer, letR = Z[x]/(f(x)) andRq = R/qR,
and let χ = χ(λ) be a distribution over R. The GLWEn,f,q,χ problem is to distinguish the following two
distributions: In the first distribution, one samples (ai, bi) uniformly from Rn+1

q . In the second distribution,
one first draws s ← Rnq uniformly and then samples (ai, bi) ∈ Rn+1

q by sampling ai ← Rnq uniformly,
ei ← χ, and setting bi = 〈ai, s〉 + ei. The GLWEn,f,q,χ assumption is that the GLWEn,f,q,χ problem is
infeasible.

LWE is simply GLWE instantiated with d = 1. RLWE is GLWE instantiated with n = 1. Interestingly, as
far as we know, instances of GLWE between these extremes have not been explored. One would suspect
that GLWE is hard for any (n, d) such that n · d = Ω(λ log(q/B)), where B is a bound (with overwhelming
probability) on the length of elements output by χ. For fixed n ·d, perhaps GLWE gradually becomes harder
as n increases (if it is true that general lattice problems are harder than ideal lattice problems), whereas
increasing d is probably often preferable for efficiency.

If q is much larger than B, the associated GLWE problem is believed to be easier (i.e., there is less
security). Previous FHE schemes required q/B to be sub-exponential in n or d to give room for the noise
to grow as homomorphic operations (especially multiplication) are performed. In our FHE scheme without
bootstrapping, q/B will be exponential in the number of circuit levels to be evaluated. However, since
the decryption circuit can be evaluated in logarithmic depth, the bootstrapped version of our scheme will
only need q/B to be quasi-polynomial, and we thus base security on lattice problems for quasi-polynomial
approximation factors.

The GLWE assumption implies that the distribution {(ai, 〈ai, s〉+t ·ei)} is computational indistinguish-
able from uniform for any t relatively prime to q. This fact will be convenient for encryption, where, for
example, a message m may be encrypted as (a, 〈a, s〉+ 2e+m), and this fact can be used to argue that the
second component of this message is indistinguishable from random.

3 (Leveled) FHE without Bootstrapping: Our Construction
The plan of this section is to present our leveled FHE-without-bootstrapping construction in modular steps.
First, we describe a plain GLWE-based encryption scheme with no homomorphic operations. Next, we
describe variants of the “relinearization” and “dimension reduction” techniques of [3]. Finally, in Section
3.4, we lay out our construction of FHE without bootstrapping.

3.1 Basic Encryption Scheme
We begin by presenting a basic GLWE-based encryption scheme with no homomorphic operations. Let λ be
the security parameter, representing 2λ security against known attacks. (λ = 100 is a reasonable value.)

Let R = R(λ) be a ring. For example, one may use R = Z if one wants a scheme based on (standard)
LWE, or one may useR = Z[x]/f(x) where (e.g.) f(x) = xd+1 and d = d(λ) is a power of 2 if one wants
a scheme based on RLWE. Let the “dimension” n = n(λ), an odd modulus q = q(λ), a “noise” distribution
χ = χ(λ) over R, and an integer N = N(λ) be additional parameters of the system. These parameters
come from the GLWE assumption, except for N , which is set to be larger than (2n + 1) log q. Note that
n = 1 in the RLWE instantiation. For simplicity, assume for now that the plaintext space is R2 = R/2R,
though larger plaintext spaces are certainly possible.

We go ahead and stipulate here – even though it only becomes important when we introduce homomor-
phic operations – that the noise distribution χ is set to be as small as possible. Specifically, to base security
on LWE or GLWE, one must use (typically Gaussian) noise distributions with deviation at least some sub-
linear function of d or n, and we will let χ be a noise distribution that barely satisfies that requirement. To

7

2. Fully Homomorphic Encryption without Bootstrapping

achieve 2λ security against known lattice attacks, one must have n ·d = Ω(λ · log(q/B)) whereB is a bound
on the length of the noise. Since n or d depends logarithmically on q, and since the distribution χ (and hence
B) depends sub-linearly on n or d, the distribution χ (and hence B) depends sub-logarithmically on q. This
dependence is weak, and one should think of the noise distribution as being essentially independent of q.

Here is a basic GLWE-based encryption scheme with no homomorphic operations:

Basic GLWE-Based Encryption Scheme:

• E.Setup(1λ, 1µ, b): Use the bit b ∈ {0, 1} to determine whether we are setting parameters for a LWE-
based scheme (where d = 1) or a RLWE-based scheme (where n = 1). Choose a µ-bit modulus q and
choose the other parameters (d = d(λ, µ, b), n = n(λ, µ, b), N = d(2n + 1) log qe, χ = χ(λ, µ, b))
appropriately to ensure that the scheme is based on a GLWE instance that achieves 2λ security against
known attacks. Let R = Z[x]/(xd + 1) and let params = (q, d, n,N, χ).

• E.SecretKeyGen(params): Draw s′ ← χn. Set sk = s← (1, s′[1], . . . , s′[n]) ∈ Rn+1
q .

• E.PublicKeyGen(params, sk): Takes as input a secret key sk = s = (1, s′) with s[0] = 1 and
s′ ∈ Rnq and the params. Generate matrix A′ ← RN×nq uniformly and a vector e ← χN and set
b← A′s′+ 2e. Set A to be the (n+ 1)-column matrix consisting of b followed by the n columns of
−A′. (Observe: A · s = 2e.) Set the public key pk = A.

• E.Enc(params, pk,m): To encrypt a message m ∈ R2, set m ← (m, 0, . . . , 0) ∈ Rn+1
q , sample

r← RN2 and output the ciphertext c←m + AT r ∈ Rn+1
q .

• E.Dec(params, sk, c): Output m← [[〈c, s〉]q]2.

Correctness is easy to see, and it is straightforward to base security on special cases (depending on the
parameters) of the GLWE assumption (and one can find such proofs of special cases in prior work).

3.2 Key Switching (Dimension Reduction)
We start by reminding the reader that in the basic GLWE-based encryption scheme above, the decryption
equation for a ciphertext c that encrypts m under key s can be written as m = [[Lc(s)]q]2 where Lc(x) is a
ciphertext-dependent linear equation over the coefficients of x given by Lc(x) = 〈c,x〉.

Suppose now that we have two ciphertexts c1 and c2, encrypting m1 and m2 respectively under the
same secret key s. The way homomorphic multiplication is accomplished in [3] is to consider the quadratic
equation Qc1,c2(x)← Lc1(x) ·Lc2(x). Assuming the noises of the initial ciphertexts are small enough, we
obtain m1 · m2 = [Qc1,c2(s)]q]2, as desired. If one wishes, one can view Qc1,c2(x) as a linear equation
Llongc1,c2(x⊗x) over the coefficients of x⊗x – that is, the tensoring of x with itself – where x⊗x’s dimension
is roughly the square of x’s. Using this interpretation, the ciphertext represented by the coefficients of the
linear equation Llong is decryptable by the long secret key s1 ⊗ s1 via the usual dot product. Of course, we
cannot continue increasing the dimension like this indefinitely and preserve efficiency.

Thus, Brakerski and Vaikuntanathan convert the long ciphertext represented by the linear equation Llong

and decryptable by the long tensored secret key s1 ⊗ s1 into a shorter ciphertext c2 that is decryptable by a
different secret key s2. (The secret keys need to be different to avoid a “circular security” issue). Encryptions
of s1 ⊗ s1 under s2 are provided in the public key as a “hint” to facilitate this conversion.

We observe that Brakerski and Vaikuntanathan’s relinearization / dimension reduction procedures are
actually quite a bit more general. They can be used to not only reduce the dimension of the ciphertext, but
more generally, can be used to transform a ciphertext c1 that is decryptable under one secret key vector s1 to

8

2. Fully Homomorphic Encryption without Bootstrapping

a different ciphertext c2 that encrypts the same message, but is now decryptable under a second secret key
vector s2. The vectors c2, s2 may not necessarily be of lower degree or dimension than c1, s1.

Below, we review the concrete details of Brakerski and Vaikuntanathan’s key switching procedures. The
procedures will use some subroutines that, given two vectors c and s, “expand” these vectors to get longer
(higher-dimensional) vectors c′ and s′ such that 〈c′, s′〉 = 〈c, s〉 mod q. We describe these subroutines first.

• BitDecomp(x ∈ Rnq , q) decomposes x into its bit representation. Namely, write x =
∑blog qc

j=0 2j · uj ,
where all of the vectors uj are in Rn2 , and output (u0,u1, . . . ,ublog qc) ∈ R

n·dlog qe
2 .

• Powersof2(x ∈ Rnq , q) outputs the vector (x, 2 · x, . . . , 2blog qc · x) ∈ Rn·dlog qeq .

If one knows a priori that x has coefficients in [0, B] for B � q, then BitDecomp can be optimized in
the obvious way to output a shorter decomposition in Rn·dlogBe2 . Observe that:

Lemma 2. For vectors c, s of equal length, we have 〈BitDecomp(c, q),Powersof2(s, q)〉 = 〈c, s〉 mod q.

Proof.

〈BitDecomp(c, q),Powersof2(s, q)〉 =

blog qc∑
j=0

〈
uj , 2

j · s
〉

=

blog qc∑
j=0

〈
2j · uj , s

〉
=

〈blog qc∑
j=0

2j · uj , s

〉
= 〈c, s〉 .

We remark that this obviously generalizes to decompositions wrt bases other than the powers of 2.
Now, key switching consists of two procedures: first, a procedure SwitchKeyGen(s1, s2, n1, n2, q),

which takes as input the two secret key vectors as input, the respective dimensions of these vectors, and
the modulus q, and outputs some auxiliary information τs1→s2 that enables the switching; and second, a
procedure SwitchKey(τs1→s2 , c1, n1, n2, q), that takes this auxiliary information and a ciphertext encrypted
under s1 and outputs a new ciphertext c2 that encrypts the same message under the secret key s2. (Below,
we often suppress the additional arguments n1, n2, q.)

SwitchKeyGen(s1 ∈ Rn1
q , s2 ∈ Rn2

q):

1. Run A← E.PublicKeyGen(s2, N) for N = n1 · dlog qe.

2. Set B← A + Powersof2(s1) (Add Powersof2(s1) ∈ RNq to A’s first column.) Output τs1→s2 = B.

SwitchKey(τs1→s2 , c1): Output c2 = BitDecomp(c1)
T ·B ∈ Rn2

q .

Note that, in SwitchKeyGen, the matrix A basically consists of encryptions of 0 under the key s2. Then,
pieces of the key s1 are added to these encryptions of 0. Thus, in some sense, the matrix B consists of
encryptions of pieces of s1 (in a certain format) under the key s2. We now establish that the key switching
procedures are meaningful, in the sense that they preserve the correctness of decryption under the new key.

Lemma 3. [Correctness] Let s1, s2, q, n1, n2,A,B = τs1→s2 be as in SwitchKeyGen(s1, s2), and let
A · s2 = 2e2 ∈ RNq . Let c1 ∈ Rn1

q and c2 ← SwitchKey(τs1→s2 , c1). Then,

〈c2, s2〉 = 2 〈BitDecomp(c1), e2〉+ 〈c1, s1〉 mod q

9

2. Fully Homomorphic Encryption without Bootstrapping

Proof.

〈c2, s2〉 = BitDecomp(c1)
T ·B · s2

= BitDecomp(c1)
T · (2e2 + Powersof2(s1))

= 2 〈BitDecomp(c1), e2〉+ 〈BitDecomp(c1),Powersof2(s1)〉
= 2 〈BitDecomp(c1), e2〉+ 〈c1, s1〉

Note that the dot product of BitDecomp(c1) and e2 is small, since BitDecomp(c1) is in RN2 . Overall, we
have that c2 is a valid encryption of m under key s2, with noise that is larger by a small additive factor.

3.3 Modulus Switching
Suppose c is a valid encryption of m under s modulo q (i.e., m = [[〈c, s〉]q]2), and that s is a short vector.
Suppose also that c′ is basically a simple scaling of c – in particular, c′ is the R-vector closest to (p/q) · c
such that c′ = c mod 2. Then, it turns out (subject to some qualifications) that c′ is a valid encryption of
m under s modulo p using the usual decryption equation – that is, m = [[〈c′, s〉]p]2! In other words, we
can change the inner modulus in the decryption equation – e.g., to a smaller number – while preserving the
correctness of decryption under the same secret key! The essence of this modulus switching idea, a variant
of Brakerski and Vaikuntanathan’s modulus reduction technique, is formally captured in Lemma 4 below.

Definition 6 (Scale). For integer vector x and integers q > p > m, we define x′ ← Scale(x, q, p, r) to be
the R-vector closest to (p/q) · x that satisfies x′ = x mod r.

Definition 7 (`(R)
1 norm). The (usual) norm `1(s) over the reals equals

∑
i ‖s[i]‖. We extend this to our

ring R as follows: `(R)
1 (s) for s ∈ Rn is defined as

∑
i ‖s[i]‖.

Lemma 4. Let d be the degree of the ring (e.g., d = 1 when R = Z). Let q > p > r be positive
integers satisfying q = p = 1 mod r. Let c ∈ Rn and c′ ← Scale(c, q, p, r). Then, for any s ∈ Rn with
‖[〈c, s〉]q‖ < q/2− (q/p) · (r/2) ·

√
d · γ(R) · `(R)

1 (s), we have

[
〈
c′, s

〉
]p = [〈c, s〉]q mod r and ‖[

〈
c′, s

〉
]p‖ < (p/q) · ‖[〈c, s〉]q‖+ (r/2) ·

√
d · γ(R) · `(R)

1 (s)

Proof. (Lemma 4) We have

[〈c, s〉]q = 〈c, s〉 − kq

for some k ∈ R. For the same k, let

ep =
〈
c′, s

〉
− kp ∈ R

Note that ep = [〈c′, s〉]p mod p. We claim that ‖ep‖ is so small that ep = [〈c′, s〉]p. We have:

‖ep‖ = ‖ − kp+ 〈(p/q) · c, s〉+
〈
c′ − (p/q) · c, s

〉
‖

≤ ‖ − kp+ 〈(p/q) · c, s〉 ‖+ ‖
〈
c′ − (p/q) · c, s

〉
‖

≤ (p/q) · ‖[〈c, s〉]q‖+ γ(R) ·
n∑
j=1

‖c′[j]− (p/q) · c[j]‖ · ‖s[j]‖

≤ (p/q) · ‖[〈c, s〉]q‖+ γ(R) · (r/2) ·
√
d · `(R)

1 (s)

< p/2

Furthermore, modulo r, we have [〈c′, s〉]p = ep = 〈c′, s〉 − kp = 〈c, s〉 − kq = [〈c, s〉]q.

10

2. Fully Homomorphic Encryption without Bootstrapping

The lemma implies that an evaluator, who does not know the secret key but instead only knows a bound
on its length, can potentially transform a ciphertext c that encrypts m under key s for modulus q – i.e., m =
[[〈c, s〉]q]r – into a ciphertext c that encrypts m under the same key s for modulus p – i.e., m = [[〈c, s〉]p]r.
Specifically, the following corollary follows immediately from Lemma 4.

Corollary 1. Let p and q be two odd moduli. Suppose c is an encryption of bitm under key s for modulus q –
i.e., m = [[〈c, s〉]q]r. Moreover, suppose that s is a fairly short key and the “noise” eq ← [〈c, s〉]q has small
magnitude – precisely, assume that ‖eq‖ < q/2−(q/p)·(r/2)·

√
d·γ(R)·`(R)

1 (s). Then c′ ← Scale(c, q, p, r)
is an encryption of of bit m under key s for modulus p – i.e., m = [[〈c, s〉]p]r. The noise ep = [〈c′, s〉]p of
the new ciphertext has magnitude at most (p/q) · ‖[〈c, s〉]q‖+ γ(R) · (r/2) ·

√
d · `(R)

1 (s).

Amazingly, assuming p is smaller than q and s has coefficients that are small in relation to q, this trick
permits the evaluator to reduce the magnitude of the noise without knowing the secret key! (Of course, this
is also what Gentry’s bootstrapping transformation accomplishes, but in a much more complicated way.)

3.4 (Leveled) FHE Based on GLWE without Bootstrapping
We now present our FHE scheme. Given the machinery that we have described in the previous subsections,
the scheme itself is remarkably simple.

In our scheme, we will use a parameter L indicating the number of levels of arithmetic circuit that we
want our FHE scheme to be capable of evaluating. Note that this is an exponential improvement over prior
schemes, that would typically use a parameter d indicating the degree of the polynomials to be evaluated.

(Note: the linear polynomial Llong, used below, is defined in Section 3.2.)

Our FHE Scheme without Bootstrapping:

• FHE.Setup(1λ, 1L, b): Takes as input the security parameter, a number of levels L, and a bit b. Use
the bit b ∈ {0, 1} to determine whether we are setting parameters for a LWE-based scheme (where
d = 1) or a RLWE-based scheme (where n = 1). Let µ = µ(λ, L, b) = θ(log λ + logL) be a
parameter that we will specify in detail later. For j = L (input level of circuit) to 0 (output level), run
paramsj ← E.Setup(1λ, 1(j+1)·µ, b) to obtain a ladder of decreasing moduli from qL ((L + 1) · µ
bits) down to q0 (µ bits). For j = L− 1 to 0, replace the value of dj in paramsj with d = dL and the
distribution χj with χ = χL. (That is, the ring dimension and noise distribution do not depend on the
circuit level, but the vector dimension nj still might.)

• FHE.KeyGen({paramsj}): For j = L down to 0, do the following:

1. Run sj ← E.SecretKeyGen(paramsj) and Aj ← E.PublicKeyGen(paramsj , sj).

2. Set s′j ← sj ⊗ sj ∈ R
(nj+1

2
)

qj . That is, s′j is a tensoring of sj with itself whose coefficients are
each the product of two coefficients of sj in Rqj .

3. Set s′′j ← BitDecomp(s′j , qj).
4. Run τs′′j+1→sj ← SwitchKeyGen(s′′j , sj−1). (Omit this step when j = L.)

The secret key sk consists of the sj’s and the public key pk consists of the Aj’s and τs′′j+1→sj ’s.

• FHE.Enc(params, pk,m): Take a message in R2. Run E.Enc(AL,m).

• FHE.Dec(params, sk, c): Suppose the ciphertext is under key sj . Run E.Dec(sj , c). (The ciphertext
could be augmented with an index indicating which level it belongs to.)

11

2. Fully Homomorphic Encryption without Bootstrapping

• FHE.Add(pk, c1, c2): Takes two ciphertexts encrypted under the same sj . (If they are not initially,
use FHE.Refresh (below) to make it so.) Set c3 ← c1 + c2 mod qj . Interpret c3 as a ciphertext under
s′j (s′j’s coefficients include all of sj’s since s′j = sj ⊗ sj and sj’s first coefficient is 1) and output:

c4 ← FHE.Refresh(c3, τs′′j→sj−1
, qj , qj−1)

• FHE.Mult(pk, c1, c2): Takes two ciphertexts encrypted under the same sj . If they are not initially,
use FHE.Refresh (below) to make it so.) First, multiply: the new ciphertext, under the secret key
s′j = sj ⊗ sj , is the coefficient vector c3 of the linear equation Llongc1,c2(x⊗ x). Then, output:

c4 ← FHE.Refresh(c3, τs′′j→sj−1
, qj , qj−1)

• FHE.Refresh(c, τs′′j→sj−1
, qj , qj−1): Takes a ciphertext encrypted under s′j , the auxiliary information

τs′′j→sj−1
to facilitate key switching, and the current and next moduli qj and qj−1. Do the following:

1. Expand: Set c1 ← Powersof2(c, qj). (Observe:
〈
c1, s

′′
j

〉
=
〈
c, s′j

〉
mod qj by Lemma 2.)

2. Switch Moduli: Set c2 ← Scale(c1, qj , qj−1, 2), a ciphertext under the key s′′j for modulus qj−1.

3. Switch Keys: Output c3 ← SwitchKey(τs′′j→sj−1
, c2, qj−1), a ciphertext under the key sj−1 for

modulus qj−1.

Remark 1. We mention the obvious fact that, since addition increases the noise much more slowly than
multiplication, one does not necessarily need to refresh after additions, even high fan-in ones.

The key step of our new FHE scheme is the Refresh procedure. If the modulus qj−1 is chosen to be
smaller than qj by a sufficient multiplicative factor, then Corollary 1 implies that the noise of the ciphertext
output by Refresh is smaller than that of the input ciphertext – that is, the ciphertext will indeed be a
“refreshed” encryption of the same value. We elaborate on this analysis in the next section.

One can reasonably argue that this scheme is not “FHE without bootstrapping” since τs′′j→sj−1
can be

viewed as an encrypted secret key, and the SwitchKey step can viewed as a homomorphic evaluation of the
decryption function. We prefer not to view the SwitchKey step this way. While there is some high-level
resemblance, the low-level details are very different, a difference that becomes tangible in the much better
asymptotic performance. To the extent that it performs decryption, SwitchKey does so very efficiently using
an efficient (not bit-wise) representation of the secret key that allows this step to be computed in quasi-linear
time for the RLWE instantiation, below the quadratic lower bound for bootstrapping. Certainly SwitchKey
does not use the usual ponderous approach of representing the decryption function as a boolean circuit to
be traversed homomorphically. Another difference is that the SwitchKey step does not actually reduce the
noise level (as bootstrapping does); rather, the noise is reduced by the Scale step.

4 Correctness, Setting the Parameters, Performance, and Security
Here, we will show how to set the parameters of the scheme so that the scheme is correct. Mostly, this
involves analyzing each of the steps within FHE.Add and FHE.Mult – namely, the addition or multiplication
itself, and then the Powersof2, Scale and SwitchKey steps that make up FHE.Refresh – to establish that the
output of each step is a decryptable ciphertext with bounded noise. This analysis will lead to concrete
suggestions for how to set the ladder of moduli and to asymptotic bounds on the performance of the scheme.

Let us begin by considering how much noise FHE.Enc introduces initially.

12

2. Fully Homomorphic Encryption without Bootstrapping

4.1 The Initial Noise from FHE.Enc

Recall that FHE.Enc simply invokes E.Enc for suitable parameters (paramsL) that depend on λ and L. In
turn, the noise of ciphertexts output by E.Enc depends on the noise of the initial “ciphertexts” (the encryp-
tions of 0) implicit in the matrix A output by E.PublicKeyGen, whose noise distribution is dictated by the
distribution χ.

Lemma 5. Let nL and qL be the parameters associated to FHE.Enc. Let d be the dimension of the ring
R, and let γR be the expansion factor associated to R. (Both of these quantities are 1 when R = Z.)
Let Bχ be a bound such that R-elements sampled from the the noise distribution χ have length at most
Bχ with overwhelming probability. The length of the noise in ciphertexts output by FHE.Enc is at most
1 + 2 · γR ·

√
d · ((2nL + 1) log qL) ·Bχ.

Proof. Recall that s ← E.SecretKeyGen and A ← E.PublicKeyGen(s, N) for N = (2nL + 1) log qL,
where A · s = 2e for e ← χ. Recall that encryption works as follows: c ← m + AT r mod q where
r ∈ RN2 . We have that the noise of this ciphertext is [〈c, s〉]q = [m+ 2〈r, e〉]q, whose magnitude is at most
1 + 2 · γR ·

∑N
j=1 ‖r[j]‖ · ‖e[j]‖ ≤ 1 + 2 · γR ·

√
d ·N ·Bχ.

Notice that we are using very loose (i.e., conservative) upper bounds for the noise. These bounds
could be tightened up with a more careful analysis. The correctness of decryption for ciphertexts output
by FHE.Enc, assuming the noise bound above is less than q/2, follows directly from the correctness of the
basic encryption and decryption algorithms E.Enc and E.Dec.

4.2 Correctness and Performance of FHE.Add and FHE.Mult (before FHE.Refresh)
Consider FHE.Mult. One begins FHE.Mult(pk, c1, c2) with two ciphertexts under key sj for modulus qj
that have noises ei = [Lci(sj)]qj , where Lci(x) is simply the dot product 〈ci,x〉. To multiply together two
ciphertexts, one multiplies together these two linear equations to obtain a quadratic equation Qc1,c2(x) ←
Lc1(x) ·Lc2(x), and then interprets this quadratic equation as a linear equation Llongc1,c2(x⊗ x) = Qc1,c2(x)
over the tensored vector x ⊗ x. The coefficients of this long linear equation compose the new ciphertext
vector c3. Clearly, [〈c3, sj ⊗ sj〉]qj = [Llongc1,c2(sj ⊗ sj)]qj = [e1 · e2]qj . Thus, if the noises of c1 and c2 have
length at most B, then the noise of c3 has length at most γR ·B2, where γR is the expansion factor of R. If
this length is less than qj/2, then decryption works correctly. In particular, if mi = [〈ci, sj〉]qj]2 = [ei]2 for
i ∈ {1, 2}, then over R2 we have [〈c3, sj ⊗ sj〉]qj]2 = [[e1 · e2]qj]2 = [e1 · e2]2 = [e1]2 · [e2]2 = m1 ·m2.
That is, correctness is preserved as long as this noise does not wrap modulo qj .

The correctness of FHE.Add and FHE.Mult (before FHE.Refresh) is formally captured in the following
lemmas.

Lemma 6. Let c1 and c2 be two ciphertexts under key sj for modulus qj , where ‖[〈ci, sj〉]qj‖ ≤ B and
mi = [[〈ci, sj〉]qj]2. Let s′j = sj ⊗ sj , where the “non-quadratic coefficients” of s′j (namely, the ‘1’ and
the coefficients of sj) are placed first. Let c′ = c1 + c2, and pad c′ with zeros to get a vector c3 such that
〈c3, s′j〉 = 〈c′, sj〉. The noise [〈c3, s′j〉]qj has length at most 2B. If 2B < qj/2, c3 is an encryption of
m1 +m2 under key s′j for modulus qj – i.e., m1 ·m2 = [[〈c3, s′j〉]qj]2.

Lemma 7. Let c1 and c2 be two ciphertexts under key sj for modulus qj , where ‖[〈ci, sj〉]qj‖ ≤ B and
mi = [[〈ci, sj〉]qj]2. Let the linear equation Llongc1,c2(x ⊗ x) be as defined above, let c3 be the coefficient
vector of this linear equation, and let s′j = sj ⊗ sj . The noise [〈c3, s′j〉]qj has length at most γR · B2. If
γR ·B2 < qj/2, c3 is an encryption of m1 ·m2 under key s′j for modulus qj – i.e., m1 ·m2 = [[〈c3, s′j〉]qj]2.

13

2. Fully Homomorphic Encryption without Bootstrapping

The computation needed to compute the tensored ciphertext c3 is Õ(dn2j log qj). For the RLWE instan-
tiation, since nj = 1 and since (as we will see) log qj depends logarithmically on the security parameter and
linearly on L, the computation here is only quasi-linear in the security parameter. For the LWE instantiation,
the computation is quasi-quadratic.

4.3 Correctness and Performance of FHE.Refresh
FHE.Refresh consists of three steps: Expand, Switch Moduli, and Switch Keys. We address each of these
steps in turn.

Correctness and Performance of the Expand Step. The Expand step of FHE.Refresh takes as input a long
ciphertext c under the long tensored key s′j = sj ⊗ sj for modulus qj . It simply applies the Powersof2
transformation to c to obtain c1. By Lemma 2, we know that〈

Powersof2(c, qj),BitDecomp(s′j , qj)
〉

=
〈
c, s′j

〉
mod qj

i.e., we know that if s′j decrypts c correctly, then s′′j decrypts c1 correctly. The noise has not been affected
at all.

If implemented naively, the computation in the Expand step is Õ(dn2j log2 qj). The somewhat high
computation is due to the fact that the expanded ciphertext is a (

(nj+1
2

)
· dlog qje)-dimensional vector over

Rq.
However, recall that sj is drawn using the distribution χ – i.e., it has small coefficients of size basically

independent of qj . Consequently, s′j also has small coefficients, and we can use this a priori knowledge
in combination with an optimized version of BitDecomp to output a shorter bit decomposition of s′j – in
particular, a (

(nj+1
2

)
· dlog q′je)-dimensional vector over Rq where q′j � qj is a bound (with overwhelming

probability) on the coefficients of elements output by χ. Similarly, we can use an abbreviated version of
Powersof2(c, qj). In this case, the computation is Õ(dn2j log qj).

Correctness and Performance of the Switch-Moduli Step. The Switch Moduli step takes as input a cipher-
text c1 under the secret bit-vector s′′j for the modulus qj , and outputs the ciphertext c2 ← Scale(c1, qj , qj−1, 2),
which we claim to be a ciphertext under key s′′j for modulus qj−1. Note that s′′j is a short secret key, since it

is a bit vector in Rtj2 for tj ≤
(nj+1

2

)
· dlog qje. By Corollary 1, and using the fact that `1(s′′j) ≤

√
d · tj , the

following is true: if the noise of c1 has length at most B < qj/2 − (qj/qj−1) · d · γR · tj , then correctness
is preserved and the noise of c2 is bounded by (qj−1/qj) ·B + d · γR · tj . Of course, the key feature of this
step for our purposes is that switching moduli may reduce the length of the moduli when qj−1 < qj .

We capture the correctness of the Switch-Moduli step in the following lemma.

Lemma 8. Let c1 be a ciphertext under the key s′′j = BitDecomp(sj ⊗ sj , qj) such that ej ← [〈c1, s′′j 〉]qj
has length at most B and m = [ej]2. Let c2 ← Scale(c1, qj , qj−1, 2), and let ej−1 = [〈c2, s′′j 〉]qj−1 . Then,
ej−1 (the new noise) has length at most (qj−1/qj) ·B + d · γR ·

(nj+1
2

)
· dlog qje, and (assuming this noise

length is less than qj−1/2) we have m = [ej−1]2.

The computation in the Switch-Moduli step is Õ(dn2j log qj), using the optimized versions of BitDecomp
and Powersof2 mentioned above.

Correctness and Performance of the Switch-Key Step. Finally, in the Switch Keys step, we take as input a
ciphertext c2 under key s′′j for modulus qj−1 and set c3 ← SwitchKey(τs′′j→sj−1

, c2, qj−1), a ciphertext un-
der the key sj−1 for modulus qj−1. In Lemma 3, we proved the correctness of key switching and established
that the noise grows only by the additive factor 2 〈BitDecomp(c2, qj−1), e〉, where BitDecomp(c2, qj−1) is

14

2. Fully Homomorphic Encryption without Bootstrapping

a (short) bit-vector and e is a (short and fresh) noise vector. In particular, if the noise originally had length
B, then after the Switch Keys step is has length at most B+ 2 ·γR ·

∑uj
i=1 ‖BitDecomp(c2, qj−1)[i]‖ ·Bχ ≤

B + 2 · γR · uj ·
√
d ·Bχ, where uj ≤

(nj+1
2

)
· dlog qje · dlog qj−1e is the dimension of BitDecomp(c2).

We capture the correctness of the Switch-Key step in the following lemma.

Lemma 9. Let c2 be a ciphertext under the key s′′j = BitDecomp(sj ⊗ sj , qj) for modulus qj−1 such that
e1 ← [〈c2, s′′j 〉]qj−1 has length at most B and m = [e1]2. Let c3 ← SwitchKey(τs′′j→sj−1

, c2, qj−1), and let

e2 = [〈c3, sj−1〉]qj−1 . Then, e2 (the new noise) has length at most B + 2 · γR ·
(nj+1

2

)
· dlog qje2 ·

√
d ·Bχ

and (assuming this noise length is less than qj−1/2) we have m = [e2]2.

In terms of computation, the Switch-Key step involves multiplying the transpose of uj-dimensional
vector BitDecomp(c2) with a uj × (nj−1 + 1) matrix B. Assuming nj ≥ nj−1 and qj ≥ qj−1, and using
the optimized versions of BitDecomp and Powersof2 mentioned above to reduce uj , this computation is
Õ(dn3j log2 qj). Still this is quasi-linear in the RLWE instantiation.

4.4 Putting the Pieces Together: Parameters, Correctness, Performance
So far we have established that the scheme is correct, assuming that the noise does not wrap modulo qj or
qj−1. Now we need to show that we can set the parameters of the scheme to ensure that such wrapping never
occurs.

Our strategy for setting the parameters is to pick a “universal” bound B on the noise length, and then
prove, for all j, that a valid ciphertext under key sj for modulus qj has noise length at mostB. This boundB
is quite small: polynomial in λ and log qL, where qL is the largest modulus in our ladder. It is clear that such
a boundB holds for fresh ciphertexts output by FHE.Enc. (Recall the discussion from Section 3.1 where we
explained that we use a noise distribution χ that is essentially independent of the modulus.) The remainder
of the proof is by induction – i.e., we will show that if the bound holds for two ciphertexts c1, c2 at level
j, our lemmas above imply that the bound also holds for the ciphertext c′ ← FHE.Mult(pk, c1, c2) at level
j − 1. (FHE.Mult increases the noise strictly more in the worst-case than FHE.Add for any reasonable
choice of parameters.)

Specifically, after the first step of FHE.Mult (without the Refresh step), the noise has length at most
γR · B2. Then, we apply the Scale function, after which the noise length is at most (qj−1/qj) · γR · B2 +
ηScale,j , where ηScale,j is some additive term. Finally, we apply the SwitchKey function, which introduces
another additive term ηSwitchKey,j . Overall, after the entire FHE.Mult step, the noise length is at most
(qj−1/qj) · γR ·B2 + ηScale,j + ηSwitchKey,j . We want to choose our parameters so that this bound is at most
B. Suppose we set our ladder of moduli and the bound B such that the following two properties hold:

• Property 1: B ≥ 2 · (ηScale,j + ηSwitchKey,j) for all j.

• Property 2: qj/qj−1 ≥ 2 ·B · γR for all j.

Then we have

(qj−1/qj) · γR ·B2 + ηScale,j + ηSwitchKey,j ≤
1

2 ·B · γR
· γR ·B2 +

1

2
·B ≤ B

It only remains to set our ladder of moduli and B so that Properties 1 and 2 hold.
Unfortunately, there is some circularity in Properties 1 and 2: qL depends on B, which depends on qL,

albeit only polylogarithmically. However, it is easy to see that this circularity is not fatal. As a non-optimized
example to illustrate this, set B = λa ·Lb for very large constants a and b, and set qj ≈ 2(j+1)·ω(log λ+logL).

15

2. Fully Homomorphic Encryption without Bootstrapping

If a and b are large enough, B dominates ηScale,L + ηSwitchKey,L, which is polynomial in λ and log qL, and
hence polynomial in λ and L (Property 1 is satisfied). Since qj/qj−1 is super-polynomial in both λ and L, it
dominates 2 ·B · γR (Property 2 is satisfied). In fact, it works fine to set qj as a modulus having (j + 1) · µ
bits for some µ = θ(log λ+ logL) with small hidden constant.

Overall, we have that qL, the largest modulus used in the system, is θ(L · (log λ+logL)) bits, and d ·nL
must be approximately that number times λ for 2λ security.

Theorem 3. For some µ = θ(log λ + logL), FHE is a correct L-leveled FHE scheme – specifically, it
correctly evaluates circuits of depth L with Add and Mult gates over R2. The per-gate computation is
Õ(d · n3L · log2 qj) = Õ(d · n3L · L2). For the LWE case (where d = 1), the per-gate computation is
Õ(λ3 · L5). For the RLWE case (where n = 1), the per-gate computation is Õ(λ · L3).

The bottom line is that we have a RLWE-based leveled FHE scheme with per-gate computation that is
only quasi-linear in the security parameter, albeit with somewhat high dependence on the number of levels
in the circuit.

Let us pause at this point to reconsider the performance of previous FHE schemes in comparison to our
new scheme. Specifically, as we discussed in the Introduction, in previous SWHE schemes, the ciphertext
size is at least Õ(λ ·d2), where d is the degree of the circuit being evaluated. One may view our new scheme
as a very powerful SWHE scheme in which this dependence on degree has been replaced with a similar
dependence on depth. (Recall the degree of a circuit may be exponential in its depth.) Since polynomial-
size circuits have polynomial depth, which is certainly not true of degree, our scheme can efficiently evaluate
arbitrary circuits without resorting to bootstrapping.

4.5 Security
The security of FHE follows by a standard hybrid argument from the security of E, the basic scheme de-
scribed in Section 3.1. We omit the details.

5 Optimizations
Despite the fact that our new FHE scheme has per-gate computation only quasi-linear in the security param-
eter, we present several significant ways of optimizing it. We focus primarily on the RLWE-based scheme,
since it is much more efficient.

Our first optimization is batching. Batching allows us to reduce the per-gate computation from quasi-
linear in the security parameter to polylogarithmic. In more detail, we show that evaluating a function f
homomorphically on ` = Ω(λ) blocks of encrypted data requires only polylogarithmically (in terms of the
security parameter λ) more computation than evaluating f on the unencrypted data. (The overhead is still
polynomial in the depth L of the circuit computing f .) Batching works essentially by packing multiple
plaintexts into each ciphertext.

Next, we reintroduce bootstrapping as an optimization rather than a necessity (Section 5.2). Bootstrap-
ping allows us to achieve per-gate computation quasi-quadratic in the security parameter, independent of
the number levels in the circuit being evaluated.

In Section 5.3, we show that batching the bootstrapping function is a powerful combination. With this
optimization, circuits whose levels mostly have width at least λ can be evaluated homomorphically with
only Õ(λ) per-gate computation, independent of the number of levels.

Finally, Section 5.5 presents a few other miscellaneous optimizations.

5.1 Batching
Suppose we want to evaluate the same function f on ` blocks of encrypted data. (Or, similarly, suppose we
want to evaluate the same encrypted function f on ` blocks of plaintext data.) Can we do this using less than

16

2. Fully Homomorphic Encryption without Bootstrapping

` times the computation needed to evaluate f on one block of data? Can we batch?
For example, consider a keyword search function that returns ‘1’ if the keyword is present in the data

and ‘0’ if it is not. The keyword search function is mostly composed of a large number of equality tests that
compare the target word w to all of the different subsequences of data; this is followed up by an OR of the
equality test results. All of these equality tests involve running the same w-dependent function on different
blocks of data. If we could batch these equality tests, it could significantly reduce the computation needed
to perform keyword search homomorphically.

If we use bootstrapping as an optimization (see Section 5.2), then obviously we will be running the
decryption function homomorphically on multiple blocks of data – namely, the multiple ciphertexts that
need to be refreshed. Can we batch the bootstrapping function? If we could, then we might be able to
drastically reduce the average per-gate cost of bootstrapping.

Smart and Vercauteren [21] were the first to rigorously analyze batching in the context of FHE. In
particular, they observed that ideal-lattice-based (and RLWE-based) ciphertexts can have many plaintext
slots, associated to the factorization of the plaintext space into algebraic ideals.

When we apply batching to our new RLWE-based FHE scheme, the results are pretty amazing. Evaluat-
ing f homomorphically on ` = Ω(λ) blocks of encrypted data requires only polylogarithmically (in terms
of the security parameter λ) more computation than evaluating f on the unencrypted data. (The overhead is
still polynomial in the depth L of the circuit computing f .) As we will see later, for circuits whose levels
mostly have width at least λ, batching the bootstrapping function (i.e., batching homomorphic evaluation
of the decryption function) allows us to reduce the per-gate computation of our bootstrapped scheme from
Õ(λ2) to Õ(λ) (independent of L).

To make the exposition a bit simpler, in our RLWE-based instantiation where R = Z[x]/(xd + 1), we
will not use R2 as our plaintext space, but instead use a plaintext space Rp that is isomorphic to the direct
productRp1×· · ·×Rpd of many plaintext spaces (think Chinese remaindering), so that evaluating a function
once over Rp implicitly evaluates the function many times in parallel over the respective smaller plaintext
spaces. The pi’s will be ideals in our ring R = Z[x]/(xd + 1). (One could still use R2 as in [21], but the
number theory there is a bit more involved.)

5.1.1 Some Number Theory

Let us take a very brief tour of algebraic number theory. Suppose p is a prime number satisfying p =
1 mod 2d, and let a be a primitive 2d-th root of unity modulo p. Then, xd + 1 factors completely into linear
polynomials modulo p – in particular, xd + 1 =

∏d
i=1(x − ai) mod p where ai = a2i−1 mod p. In some

sense, the converse of the above statement is also true, and this is the essence of reciprocity – namely, in the
ring R = Z[x]/(xd + 1) the prime integer p is not actually prime, but rather it splits completely into prime
ideals inR – i.e., p =

∏d
i=1 pi. The ideal pi equals (p, x−ai) – namely, the set of allR-elements that can be

expressed as r1 · p+ r2 · (x− ai) for some r1, r2 ∈ R. Each ideal pi has norm p – that is, roughly speaking,
a 1/p fraction of R-elements are in pi, or, more formally, the p cosets 0 + pi, . . . , (p− 1) + pi partition R.
These ideals are relative prime, and so they behave like relative prime integers. In particular, the Chinese
Remainder Theorem applies: Rp ∼= Rp1 × · · · ×Rpd .

Although the prime ideals {pi} are relatively prime, they are close siblings, and it is easy, in some
sense, to switch from one to another. One fact that we will use (when we finally apply batching to boot-
strapping) is that, for any i, j there is an automorphism σi→j over R that maps elements of pi to elements
of pj . Specifically, σi→j works by mapping an R-element r = r(x) = rd−1x

d−1 + · · · + r1x + r0 to
r(xeij) = rd−1x

eij(d−1) mod 2d + · · · + r1x
eij + r0 where eij is some odd number in [1, 2d]. Notice that

this automorphism just permutes the coefficients of r and fixes the free coefficient. Notationally, we will use
σi→j(v) to refer to the vector that results from applying σi→j coefficient-wise to v.

17

2. Fully Homomorphic Encryption without Bootstrapping

5.1.2 How Batching Works

Deploying batching inside our scheme FHE is quite straightforward. First, we pick a prime p = 1 mod 2d
of size polynomial in the security parameter. (One should exist under the GRH.)

The next step is simply to recognize that our scheme FHE works just fine when we replace the original
plaintext space R2 with Rp. There is nothing especially magical about the number 2. In the basic scheme E
described in Section 3.1, E.PublicKeyGen(params, sk) is modified in the obvious way so that A · s = p · e
rather than 2 · e. (This modification induces a similar modification in SwitchKeyGen.) Decryption becomes
m = [[〈c, s〉]q]p. Homomorphic operations use mod-p gates rather than boolean gates, and it is easy (if
desired) to emulate boolean gates with mod-p gates – e.g., we can compute XOR(a, b) for a, b ∈ {0, 1}2
using mod-p gates for any p as a + b − 2ab. For modulus switching, we use Scale(c1, qj , qj−1, p) rather
than Scale(c1, qj , qj−1, 2). The larger rounding error from this new scaling procedure increases the noise
slightly, but this additive noise is still polynomial in the security parameter and the number of levels, and
thus is still consistent with our setting of parameters. In short, FHE can easily be adapted to work with a
plaintext space Rp for p of polynomial size.

The final step is simply to recognize that, by the Chinese Remainder Theorem, evaluating an arithmetic
circuit over Rp on input x ∈ Rnp implicitly evaluates, for each i, the same arithmetic circuit over Rpi on
input x projected down to Rnpi . The evaluations modulo the various prime ideals do not “mix” or interact
with each other.

Theorem 4. Let p = 1 mod 2d be a prime of size polynomial in λ. The RLWE-based instantiation of FHE
using the ringR = Z[x]/(xd+1) can be adapted to use the plaintext spaceRp = ⊗di=1Rpi while preserving
correctness and the same asymptotic performance. For any boolean circuit f of depth L, the scheme can
homomorphically evaluate f on ` sets of inputs with per-gate computation Õ(λ · L3/min{d, `}).

When ` ≥ λ, the per-gate computation is only polylogarithmic in the security parameter (still cubic in L).

5.2 Bootstrapping as an Optimization
Bootstrapping is no longer strictly necessary to achieve leveled FHE. However, in some settings, it may have
some advantages:

• Performance: The per-gate computation is independent of the depth of the circuit being evaluated.

• Flexibility: Assuming circular security, a bootstrapped scheme can perform homomorphic evaluations
indefinitely without needing to specify in advance, during Setup, a bound on the number of circuit
levels.

• Memory: Bootstrapping permits short ciphertexts – e.g., encrypted using AES – to be de-compressed
to longer ciphertexts that permit homomorphic operations. Bootstrapping allows us to save memory
by storing data encrypted in the compressed form – e.g., under AES.

Here, we revisit bootstrapping, viewing it as an optimization rather than a necessity. We also reconsider
the scheme FHE that we described in Section 3, viewing the scheme not as an end in itself, but rather as a very
powerful SWHE whose performance degrades polynomially in the depth of the circuit being evaluated, as
opposed to previous SWHE schemes whose performance degrades polynomially in the degree. In particular,
we analyze how efficiently it can evaluate its decryption function, as needed to bootstrap. Not surprisingly,
our faster SWHE scheme can also bootstrap faster. The decryption function has only logarithmic depth
and can be evaluated homomorphically in time quasi-quadratic in the security parameter (for the RLWE
instantiation), giving a bootstrapped scheme with quasi-quadratic per-gate computation overall.

18

2. Fully Homomorphic Encryption without Bootstrapping

5.2.1 Decryption as a Circuit of Quasi-Linear Size and Logarithmic Depth

Recall that the decryption function ism = [[〈c, s〉]q]2. Suppose that we are given the “bits” (elements inR2)
of s as input, and we want to compute [[〈c, s〉]q]2 using an arithmetic circuit that has Add and Mult gates
over R2. (When we bootstrap, of course we are given the bits of s in encrypted form.) Note that we will
run the decryption function homomorphically on level-0 ciphertexts – i.e., when q is small, only polynomial
in the security parameter. What is the complexity of this circuit? Most importantly for our purposes, what
is its depth and size? The answer is that we can perform decryption with Õ(λ) computation and O(log λ)
depth. Thus, in the RLWE instantiation, we can evaluate the decryption function homomorphically using our
new scheme with quasi-quadratic computation. (For the LWE instantiation, the bootstrapping computation
is quasi-quartic.)

First, let us consider the LWE case, where c and s are n-dimensional integer vectors. Obviously, each
product c[i] · s[i] can be written as the sum of at most log q “shifts” of s[i]. These horizontal shifts of
s[i] use at most 2 log q columns. Thus, 〈c, s〉 can be written as the sum of n · log q numbers, where each
number has 2 log q digits. As discussed in [8], we can use the three-for-two trick, which takes as input
three numbers in binary (of arbitrary length) and outputs (using constant depth) two binary numbers with
the same sum. Thus, with O(log(n · log q)) = O(log n + log log q) depth and O(n log2 q) computation,
we obtain two numbers with the desired sum, each having O(log n + log q) bits. We can sum the final
two numbers with O(log log n + log log q) depth and O(log n + log q) computation. So far, we have used
depth O(log n + log log q) and O(n log2 q) computation to compute 〈c, s〉. Reducing this value modulo q
is an operation akin to division, for which there are circuits of size polylog(q) and depth log log q. Finally,
reducing modulo 2 just involves dropping the most significant bits. Overall, since we are interested only in
the case where log q = O(log λ), we have that decryption requires Õ(λ) computation and depth O(log λ).

For the RLWE case, we can use the R2 plaintext space to emulate the simpler plaintext space Z2. Using
Z2, the analysis is basically the same as above, except that we mention that the DFT is used to multiply
elements in R.

In practice, it would be useful to tighten up this analysis by reducing the polylogarithmic factors in
the computation and the constants in the depth. Most likely this could be done by evaluating decryption
using symmetric polynomials [8, 9] or with a variant of the “grade-school addition” approach used in the
Gentry-Halevi implementation [10].

5.2.2 Bootstrapping Lazily

Bootstrapping is rather expensive computationally. In particular, the cost of bootstrapping a ciphertext is
greater than the cost of a homomorphic operation by approximately a factor of λ. This suggests the question:
can we lower per-gate computation of a bootstrapped scheme by bootstrapping lazily – i.e., applying the
refresh procedure only at a 1/L fraction of the circuit levels for some well-chosen L [11]? Here we show
that the answer is yes. By bootstrapping lazily for L = θ(log λ), we can lower the per-gate computation by
a logarithmic factor.

Let us present this result somewhat abstractly. Suppose that the per-gate computation for a L-level no-
bootstrapping FHE scheme is f(λ, L) = λa1 · La2 . (We ignore logarithmic factors in f , since they will
not affect the analysis, but one can imagine that they add a very small ε to the exponent.) Suppose that
bootstrapping a ciphertext requires a c-depth circuit. Since we want to be capable of evaluation depth L
after evaluating the c levels need to bootstrap a ciphertext, the bootstrapping procedure needs to begin with
ciphertexts that can be used in a (c+L)-depth circuit. Consequently, let us say that the computation needed
a bootstrap a ciphertext is g(λ, c + L) where g(λ, x) = λb1 · xb2 . The overall per-gate computation is
approximately f(λ, L) + g(λ, c+ L)/L, a quantity that we seek to minimize.

19

2. Fully Homomorphic Encryption without Bootstrapping

We have the following lemma.

Lemma 10. Let f(λ, L) = λa1 · La2 and g(λ, L) = λb1 · Lb2 for constants b1 > a1 and b2 > a2 ≥ 1.
Let h(λ, L) = f(λ, L) + g(λ, c + L)/L for c = θ(log λ). Then, for fixed λ, h(λ, L) has a minimum for
L ∈ [(c− 1)/(b2 − 1), c/(b2 − 1)] – i.e., at some L = θ(log λ).

Proof. Clearly h(λ, L) = +∞ at L = 0, then it decreases toward a minimum, and finally it eventually
increases again as L goes toward infinity. Thus, h(λ, L) has a minimum at some positive value of L. Since
f(λ, L) is monotonically increasing (i.e., the derivative is positive), the minimum must occur where the
derivative of g(λ, c+ L)/L is negative. We have

d

dL
g(λ, c+ L)/L = g′(λ, c+ L)/L− g(λ, c+ L)/L2

= b2 · λb1 · (c+ L)b2−1/L− λb1 · (c+ L)b2/L2

= (λb1 · (c+ L)b2−1/L2) · (b2 · L− c− L) ,

which becomes positive when L ≥ c/(b2−1) – i.e., the derivative is negative only when L = O(log λ). For
L < (c−1)/(b2−1), we have that the above derivative is less than−λb1 ·(c+L)b2−1/L2, which dominates
the positive derivative of f . Therefore, for large enough value of λ, the value h(λ, L) has its minimum at
some L ∈ [(c− 1)/(b2 − 1), c/(b2 − 1)].

This lemma basically says that, since homomorphic decryption takes θ(log λ) levels and its cost is super-
linear and dominates that of normal homomorphic operations (FHE.Add and FHE.Mult), it makes sense to
bootstrap lazily – in particular, once every θ(log λ) levels. (If one bootstrapped even more lazily than this,
the super-linear cost of bootstrapping begins to ensure that the (amortized) per-gate cost of bootstrapping
alone is increasing.) It is easy to see that, since the per-gate computation is dominated by bootstrapping,
bootstrapping lazily every θ(log λ) levels reduces the per-gate computation by a factor of θ(log λ).

5.3 Batching the Bootstrapping Operation
Suppose that we are evaluating a circuit homomorphically, that we are currently at a level in the circuit that
has at least d gates (where d is the dimension of our ring), and that we want to bootstrap (refresh) all of
the ciphertexts corresponding to the respective wires at that level. That is, we want to homomorphically
evaluate the decryption function at least d times in parallel. This seems like an ideal place to apply batching.

However, there are some nontrivial problems. In Section 5.1, our focus was rather limited. For example,
we did not consider whether homomorphic operations could continue after the batched computation. Indeed,
at first glance, it would appear that homomorphic operations cannot continue, since, after batching, the
encrypted data is partitioned into non-interacting relatively-prime plaintext slots, whereas the whole point of
homomorphic encryption is that the encrypted data can interact (within a common plaintext slot). Similarly,
we did not consider homomorphic operations before the batched computation. Somehow, we need the input
to the batched computation to come pre-partitioned into the different plaintext slots.

What we need are Pack and Unpack functions that allow the batching procedure to interface with “nor-
mal” homomorphic operations. One may think of the Pack and Unpack functions as an on-ramp to and an
exit-ramp from the “fast lane” of batching. Let us say that normal homomorphic operations will always use
the plaintext slot Rp1 . Roughly, the Pack function should take a bunch of ciphertexts c1, . . . , cd that encrypt
messagesm1, . . . ,md ∈ Zp under key s1 for modulus q and plaintext slotRp1 , and then aggregate them into
a single ciphertext c under some possibly different key s2 for modulus q and plaintext slot Rp = ⊗di=1Rpi ,
so that correctness holds with respect to all of the different plaintext slots – i.e. mi = [[〈c, s2〉]q]pi for
all i. The Pack function thus allows normal homomorphic operations to feed into the batch operation.

20

2. Fully Homomorphic Encryption without Bootstrapping

The Unpack function should accept the output of a batched computation, namely a ciphertext c′ such that
mi = [[〈c′, s′1〉]q]pi for all i, and then de-aggregate this ciphertext by outputting ciphertexts c′1, . . . , c

′
d under

some possibly different common secret key s′2 such that mi = [[〈c′i, s′2〉]q]p1 for all i. Now that all of the
ciphertexts are under a common key and plaintext slot, normal homomorphic operations can resume. With
such Pack and Unpack functions, we could indeed batch the bootstrapping operation. For circuits of large
width (say, at least d) we could reduce the per-gate bootstrapping computation by a factor of d, making it
only quasi-linear in λ. Assuming the Pack and Unpack functions have complexity at most quasi-quadratic
in d (per-gate this is only quasi-linear, since Pack and Unpack operate on d gates), the overall per-gate
computation of a batched-bootstrapped scheme becomes only quasi-linear.

Here, we describe suitable Pack and Unpack functions. These functions will make heavy use of the
automorphisms σi→j over R that map elements of pi to elements of pj . (See Section 5.1.1.) We note that
Smart and Vercauteren [21] used these automorphisms to construct something similar to our Pack function
(though for unpacking they resorted to bootstrapping). We also note that Lyubashevsky, Peikert and Regev
[14] used these automorphisms to permute the ideal factors qi of the modulus q, which was an essential tool
toward their proof of the pseudorandomness of RLWE.

Toward Pack and Unpack procedures, our main idea is the following. If m is encoded in the free term
as a number in {0, . . . , p− 1} and if m = [[〈c, s〉]q]pi , then m = [[〈σi→j(c), σi→j(s)〉]q]pj . That is, we can
switch the plaintext slot but leave the decrypted message unchanged by applying the same automorphism
to the ciphertext and the secret key. (These facts follow from the fact that σi→j is a homomorphism, that
it maps elements of pi to elements of pj , and that it fixes free terms.) Of course, then we have a problem:
the ciphertext is now under a different key, whereas we may want the ciphertext to be under the same key
as other ciphertexts. To get the ciphertexts to be back under the same key, we simply use the SwitchKey
algorithm to switch all of the ciphertexts to a new common key.

Some technical remarks before we describe Pack and Unpack more formally: We mention again that
E.PublicKeyGen is modified in the obvious way so that A·s = p·e rather than 2·e, and that this modification
induces a similar modification in SwitchKeyGen. Also, let u ∈ R be a short element such that u ∈ 1 + p1
and u ∈ pj for all j 6= 1. It is obvious that such a u with coefficients in (−p/2, p/2] can be computed
efficiently by first picking any element u′ such that u′ ∈ 1 + p1 and u′ ∈ pj for all j 6= 1, and then reducing
the coefficients of u′ modulo p.

PackSetup(s1, s2): Takes as input two secret keys s1, s2. For all i ∈ [1, d], it runs τσ1→i(s1)→s2 ←
SwitchKeyGen(σ1→i(s1), s2).

Pack({ci}di=1, {τσ1→i(s1)→s2}di=1): Takes as input ciphertexts c1, . . . , cd such that mi = [[〈ci, s1〉]q]p1 and
0 = [[〈ci, s1〉]q]pj for all j 6= 1, and also some auxiliary information output by PackSetup. For all i, it does
the following:

• Computes c∗i ← σ1→i(ci). (Observe: mi = [[〈c∗i , σ1→i(s1)〉]q]pi while 0 = [[〈c∗i , σ1→i(s1)〉]q]pj for
all j 6= i.)

• Runs c†i ← SwitchKey(τσ1→i(s1)→s2 , c
∗
i) (Observe: Assuming the noise does not wrap, we have that

mi = [[〈c†i , s2〉]q]pi and 0 = [[〈c†i , s2〉]q]pj for all j 6= i.)

Finally, it outputs c ←
∑d

i=1 c
†
i . (Observe: Assuming the noise does not wrap, we have that mi =

[[〈c, s2〉]q]pi for all i.)

UnpackSetup(s1, s2): Takes as input two secret keys s1, s2. For all i ∈ [1, d], it runs τσi→1(s1)→s2 ←
SwitchKeyGen(σi→1(s1), s2).

21

2. Fully Homomorphic Encryption without Bootstrapping

Unpack(c, {τσi→1(s1)→s2}di=1): Takes as input a ciphertext c such that mi = [[〈c, s1〉]q]pi for all i, and also
some auxiliary information output by UnpackSetup. For all i, it does the following:

• Computes ci ← u ·σi→1(c). (Observe: Assuming the noise does not wrap,mi = [[〈ci, σi→1(s1)〉]q]p1
and 0 = [[〈ci, σi→1(s1)〉]q]pj for all j 6= 1.)

• Outputs c∗i ← SwitchKey(τσi→1(s1)→s2 , ci). (Observe: Assuming the noise does not wrap, mi =
[[〈c∗i , s2〉]q]p1 and 0 = [[〈c∗i , s2〉]q]pj for all j 6= 1.)

Splicing the Pack and Unpack procedures into our scheme FHE is tedious but pretty straightforward.
Although these procedures introduce many more encrypted secret keys, this does not cause a circular security
problem as long as the chain of encrypted secret keys is acyclic; then the standard hybrid argument applies.
After applying Pack or Unpack, one may apply modulus reduction to reduce the noise back down to normal.

5.4 More Fun with Funky Plaintext Spaces
In some cases, it might be nice to have a plaintext space isomorphic to Zp for some large prime p – e.g.,
one exponential in the security parameter. So far, we have been using Rp as our plaintext space, and (due
to the rounding step in modulus switching) the size of the noise after modulus switching is proportional to
p. When p is exponential, our previous approach for handling the noise (which keeps the magnitude of the
noise polynomial in λ) obviously breaks down.

To get a plaintext space isomorphic to Zp that works for exponential p, we need a new approach. Instead
of using an integer modulus, we will use an ideal modulus I (an ideal ofR) whose norm is some large prime
p, but such that we have a basis BI of I that is very short – e.g. ‖BI‖ = O(poly(d) · p1/d). Using an ideal
plaintext space forces us to modify the modulus switching technique nontrivially.

Originally, when our plaintext space was R2, each of the moduli in our “ladder” was odd – that is, they
were all congruent to each other modulo 2 and relatively prime to 2. Similarly, we will have to choose each
of the moduli in our new ladder so that they are all congruent to each other modulo I . (This just seems
necessary to get the scaling to work, as the reader will see shortly.) This presents a difficulty, since we
wanted the norm of I to be large – e.g., exponential in the security parameter. If we choose our moduli qj to
be integers, then we have that the integer qj+1 − qj ∈ I – in particular, qj+1 − qj is a multiple of I’s norm,
implying that the qj’s are exponential in the security parameter. Having such large qj’s does not work well
in our scheme, since the underlying lattice problems becomes easy when qj/B is exponential in d where
B is a bound of the noise distribution of fresh ciphertexts, and since we need B to remain quite small for
our new noise management approach to work effectively. So, instead, our ladder of moduli will also consist
of ideals – in particular, principle ideals (qj) generated by an element of qj ∈ R. Specifically, it is easy to
generate a ladder of qj’s that are all congruent to 1 moduli I by sampling appropriately-sized elements qj
of the coset 1 + I (using our short basis of I), and testing whether the principal ideal (qj) generated by the
element has appropriate norm.

Now, let us reconsider modulus switching in light of the fact that our moduli are now principal ideals.
We need an analogue of Lemma 4 that works for ideal moduli.

Let us build up some notation and concepts that we will need in our new lemma. Let Pq be the half-open
parallelepiped associated to the rotation basis of q ∈ R. The rotation basis Bq of q is the d-dimensional
basis formed by the coefficient vectors of the polynomials xiq(x) mod f(x) for i ∈ [0, d−1]. The associated
parallelepiped is Pq = {

∑
zi · bi : bi ∈ Bq, zi ∈ [−1/2, 1/2)}. We need two concepts associated to this

parallelepiped. First, we will still use the notation [a]q, but where q is now an R-element rather than integer.
This notation refers to a reduced modulo the rotation basis of a – i.e., the element [a]q such that [a]q−a ∈ qR
and [a]q ∈ Pq. Next, we need notions of the inner radius rq,in and outer radius rq,out of Pq – that is, the

22

2. Fully Homomorphic Encryption without Bootstrapping

largest radius of a ball that is circumscribed by Pq, and the smallest radius of a ball that circumscribes Pq. It
is possible to choose q so that the ratio rq,out/rq,in is poly(d). For example, this is true when q is an integer.
For a suitable value of f(x) that determines our ring, such as f(x) = xd + 1, the expected value of ratio
will be poly(d) even if q is sampled uniformly (e.g., according to discrete Gaussian distribution centered at
0). More generally, we will refer to rB,out as the outer radius associated to the parallelepiped determined by
basis B. Also, in the field Q(x)/f(x) overlying this ring, it will be true with overwhelming probability, if q
is sampled uniformly, that ‖q−1‖ = 1/‖q‖ up to a poly(d) factor. For convenience, let α(d) be a polynomial
such that ‖q−1‖ = 1/‖q‖ up to a α(d) factor and moreover rq,out/rq,in is at most α(d) with overwhelming
probability. For such an α, we say q is α-good. Finally, in the lemma, γR denotes the expansion factor of R
– i.e., max{‖a · b‖/‖a‖‖b‖ : a,b ∈ R}.
Lemma 11. Let q1 and q2, ‖q1‖ < ‖q2‖, be two α-good elements of R. Let BI be a short basis (with outer
radius rBI ,out) of an ideal I ofR such that q1−q2 ∈ I . Let c be an integer vector and c′ ← Scale(c, q2, q1, I)
– that is, c′ is an R-element at most 2rBI ,out distant from (q1/q2) · c such that c′ − c ∈ I . Then, for any s
with

‖[〈c, s〉]q2‖ <
(
rq2,in/α(d)2 − (‖q2‖/‖q1‖)γR · 2rBI ,out · `

(R)
1 (s)

)
/(α(d) · γ2R)

we have

[
〈
c′, s

〉
]q1 = [〈c, s〉]q2 mod I and ‖[

〈
c′, s

〉
]q1‖ < α(d) · γ2R · (‖q1‖/‖q2‖) · ‖[〈c, s〉]q2‖+ γR · 2rBI ,out · `

(R)
1 (s)

where `(R)
1 (s) is defined as

∑
i ‖s[i]‖.

Proof. We have

[〈c, s〉]q2 = 〈c, s〉 − kq2
for some k ∈ R. For the same k, let

eq1 =
〈
c′, s

〉
− kq1 ∈ R

Note that eq1 = [〈c′, s〉]q1 mod q1. We claim that ‖eq1‖ is so small that eq1 = [〈c′, s〉]q1 . We have:

‖eq1‖ = ‖ − kq1 + 〈(q1/q2) · c, s〉+
〈
c′ − (q1/q2) · c, s

〉
‖

≤ ‖ − kq1 + 〈(q1/q2) · c, s〉 ‖+ ‖
〈
c′ − (q1/q2) · c, s

〉
‖

≤ γR · ‖q1/q2‖ · ‖[〈c, s〉]q2‖+ γR · 2rBI ,out · `
(R)
1 (s)

≤ γ2R · ‖q1‖ · ‖q2−1‖ · ‖[〈c, s〉]q2‖+ γR · 2rBI ,out · `
(R)
1 (s)

≤ α(d) · γ2R · (‖q1‖/‖q2‖) · ‖[〈c, s〉]q2‖+ γR · 2rBI ,out · `
(R)
1 (s)

By the final expression above, we see that the magnitude of eq1 may actually be less than the magnitude
of eq2 if ‖q1‖/‖q2‖ is small enough. Let us continue with the inequalities, substituting in the bound for
‖[〈c, s〉]q2‖:

‖eq1‖ ≤ α(d) · γ2R · (‖q1‖/‖q2‖) ·
(
rq2,in/α(d)2 − (‖q2‖/‖q1‖)γR · 2rBI ,out · `

(R)
1 (s)

)
/(α(d) · γ2R)

+γR · 2rBI ,out · `
(R)
1 (s)

≤ (‖q1‖/‖q2‖) ·
(
rq2,in/α(d)2 − (‖q2‖/‖q1‖)γR · 2rBI ,out · `

(R)
1 (s)

)
+ γR · 2rBI ,out · `

(R)
1 (s)

≤
(
rq1,in − γR · 2rBI ,out · `

(R)
1 (s)

)
+ γR · 2rBI ,out · `

(R)
1 (s)

= rq1,in

23

2. Fully Homomorphic Encryption without Bootstrapping

Since ‖eq1‖ < rq1,in, eq1 is inside the parallelepiped Pq1 and it is indeed true that eq1 = [〈c′, s〉]q1 . Further-
more, we have [〈c′, s〉]q1 = eq1 = 〈c′, s〉 − kq1 = 〈c, s〉 − kq2 = [〈c, s〉]q2 mod I .

The bottom line is that we can apply the modulus switching technique to moduli that are ideals, and this
allows us to use, if desired, plaintext spaces that are very large (exponential in the security parameter) and
that have properties that are often desirable (such as being isomorphic to a large prime field).

5.5 Other Optimizations
If one is willing to assume circular security, the keys {sj} may all be the same, thereby permitting a public
key of size independent of L.

While it is not necessary, squashing may still be a useful optimization in practice, as it can be used to
lower the depth of the decryption function, thereby reducing the size of the largest modulus needed in the
scheme, which may improve efficiency.

For the LWE-based scheme, one can use key switching to gradually reduce the dimension nj of the
ciphertext (and secret key) vectors as qj decreases – that is, as one traverses to higher levels in the circuit.
As qj decreases, the associated LWE problem becomes (we believe) progressively harder (for a fixed noise
distribution χ). This allows one to gradually reduce the dimension nj without sacrificing security, and
reduce ciphertext length faster (as one goes higher in the circuit) than one could simply by decreasing qj
alone.

6 Summary and Future Directions
Our RLWE-based FHE scheme without bootstrapping requires only Õ(λ ·L3) per-gate computation where L
is the depth of the circuit being evaluated, while the bootstrapped version has only Õ(λ2) per-gate computa-
tion. For circuits of width Ω(λ), we can use batching to reduce the per-gate computation of the bootstrapped
version by another factor of λ.

While these schemes should perform significantly better than previous FHE schemes, we caution that the
polylogarithmic factors in the per-gate computation are large. One future direction toward a truly practical
scheme is to tighten up these polylogarithmic factors considerably.

Acknowledgments. We thank Carlos Aguilar Melchor, Boaz Barak, Shai Halevi, Chris Peikert, Nigel
Smart, and Jiang Zhang for helpful discussions and insights.

References
[1] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and

circular-secure encryption based on hard learning problems. In CRYPTO, volume 5677 of Lecture
Notes in Computer Science, pages 595–618. Springer, 2009.

[2] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In Proceed-
ings of Theory of Cryptography Conference 2005, volume 3378 of LNCS, pages 325–342, 2005.

[3] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
lwe. Manuscript, to appear in FOCS 2011, available at http://eprint.iacr.org/2011/344.

[4] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security
for key dependent messages. Manuscript, to appear in CRYPTO 2011.

[5] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully-homomorphic
encryption over the integers with shorter public-keys. Manuscript, to appear in Crypto 2011.

24

2. Fully Homomorphic Encryption without Bootstrapping

[6] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic en-
cryption over the integers. In Advances in Cryptology - EUROCRYPT’10, volume 6110 of Lec-
ture Notes in Computer Science, pages 24–43. Springer, 2010. Full version available on-line from
http://eprint.iacr.org/2009/616.

[7] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

[8] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
STOC, pages 169–178. ACM, 2009.

[9] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using depth-3 arith-
metic circuits. Manuscript, to appear in FOCS 2011, available at http://eprint.iacr.org/2011/279.

[10] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In
EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 129–148. Springer, 2011.

[11] Shai Halevi, 2011. Personal communication.

[12] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In Salil P. Vadhan,
editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages 575–594. Springer, 2007.

[13] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption be practi-
cal? Manuscript at http://eprint.iacr.org/2011/405, 2011.

[14] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 1–23, 2010.

[15] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additively homomorphic encryption
with -operand multiplications. In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Com-
puter Science, pages 138–154. Springer, 2010.

[16] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended ab-
stract. In STOC, pages 333–342. ACM, 2009.

[17] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N.
Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM, 2005.

[18] Oded Regev. The learning with errors problem (invited survey). In IEEE Conference on Computational
Complexity, pages 191–204. IEEE Computer Society, 2010.

[19] Ron Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks and privacy homomorphisms.
In Foundations of Secure Computation, pages 169–180, 1978.

[20] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In Public Key Cryptography - PKC’10, volume 6056 of Lecture Notes in Computer
Science, pages 420–443. Springer, 2010.

[21] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Manuscript at
http://eprint.iacr.org/2011/133, 2011.

25

2. Fully Homomorphic Encryption without Bootstrapping

[22] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In ASIACRYPT, volume
6477 of Lecture Notes in Computer Science, pages 377–394. Springer, 2010.

26

2. Fully Homomorphic Encryption without Bootstrapping

Targeted Malleability:

Homomorphic Encryption for Restricted Computations

Dan Boneh∗ Gil Segev† Brent Waters‡

Abstract

We put forward the notion of targeted malleability: given a homomorphic encryption scheme,
in various scenarios we would like to restrict the homomorphic computations one can perform
on encrypted data. We introduce a precise framework, generalizing the foundational notion
of non-malleability introduced by Dolev, Dwork, and Naor (SICOMP ’00), ensuring that the
malleability of a scheme is targeted only at a specific set of “allowable” functions.

In this setting we are mainly interested in the efficiency of such schemes as a function of the
number of repeated homomorphic operations. Whereas constructing a scheme whose ciphertext
grows linearly with the number of such operations is straightforward, obtaining more realistic
(or merely non-trivial) length guarantees is significantly more challenging.

We present two constructions that transform any homomorphic encryption scheme into one
that offers targeted malleability. Our constructions rely on standard cryptographic tools and
on succinct non-interactive arguments, which are currently known to exist in the standard
model based on variants of the knowledge-of-exponent assumption. The two constructions offer
somewhat different efficiency guarantees, each of which may be preferable depending on the
underlying building blocks.

Keywords: Homomorphic encryption, Non-malleable encryption.

∗Stanford University. Supported by NSF, DARPA, and AFOSR.
†Microsoft Research, Mountain View, CA 94043, USA.
‡University of Texas at Austin. Supported by NSF CNS-0716199, CNS-0915361, and CNS-0952692, DARPA

PROCEED, Air Force Office of Scientific Research (AFO SR) MURI, DHS Grant 2006-CS-001-000001-02, and the
Sloan Foundation.

3. Targeted Malleability

1 Introduction

Fully homomorphic encryption [RAD78, Gen09, SV10, vDGH+10] is a remarkable development in
cryptography enabling anyone to compute arbitrary functions on encrypted data. In many settings,
however, the data owner may wish to restrict the class of homomorphic computations to a certain
set F of allowable functions. In this paper we put forward the notion of “targeted malleability”:
given an encryption scheme that supports homomorphic operations with respect to some set of
functions F , we would like to ensure that the malleability of the scheme is targeted only at the
set F . That is, it should not be possible to apply any homomorphic operation other than the ones
in F .

Enforcing targeted malleability can be simply done by requiring the entity performing the ho-
momorphic operation to embed a proof in the ciphertext showing that the ciphertext was computed
using an allowable function. The decryptor then verifies the proof before decrypting the ciphertext,
and outputs ⊥ if the proof is invalid. Unfortunately, as the homomorphic operation is repeated the
number of proofs grows making the ciphertext grow at least linearly with the number of repeated
homomorphic operations. It is not difficult to see that targeted malleability with a linear-size
ciphertext is trivial to construct: Use any non-malleable encryption scheme, and embed in the
ciphertext a description of all the functions being computed. The decryptor decrypts the original
ciphertext and applies the embedded functions to it (verifying, of course, that these functions are
in the allowable set).

Minimizing ciphertext expansion. Targeted malleability is much harder to construct once
we require that ciphertext growth is at most sub-linear in the number of repeated homomorphic
operations. Our goal is to construct systems where even after t applications of the homomorphic
operation the ciphertext length does not increase much. In our main construction we are able to
completely shift the dependence on t from the ciphertext to the public key: the ciphertext size is
essentially independent of t. This is a natural goal since public keys are typically much more static
than ciphertexts which are frequently generated and transmitted.

Motivation. While targeted malleability is an interesting concept in its own right, it has many
applications in cryptography and beyond. We give a few illustrative examples:

• A spam filter implemented in a mail server adds a spam tag to encrypted emails whose content
satisfies a certain spam predicate. The filter should be allowed to run the spam predicate,
but should not modify the email contents. In this case, the set of allowable functions F would
be the set of allowable spam predicates and nothing else. As email passes from one server to
the next each server homomorphically computes its spam predicate on the encrypted output
of the previous server. Each spam filter in the chain can run its chosen spam predicate and
nothing else.

• More generally, in a distributed system users initiate encrypted requests to various servers.
To service a request a server may need to contact another server and that server may need to
contact another, resulting in a chain of messages from server to server until the transaction is
fulfiled. Each server along the way has an allowed set of operations it can apply to a recieved
message and it should be unable to apply any operation outside this approved set.

• In a voting system based on homomorphic encryption (e.g. [CGS97]) voters take turns incre-
menting an encrypted vote tally using a homomorphic operation. They are only allowed to
increase the encrypted tally by 1 (indicating a vote for the candidate) or by 0 (indicating a

1

3. Targeted Malleability

no vote for the candidate). In elections where each voter votes for one of ℓ candidates, voters
modify the encrypted tallies by adding an ℓ-bit vector, where exactly one entry is 1 and the
rest are all 0’s. They should be unable to modify the counters in any other way.

In all these examples there is a need to repeatedly apply a restricted homomorphic operation
on encrypted data. Limiting ciphertext expansion is highly desirable.

1.1 Our Contributions

We begin by introducing a precise framework for modeling targeted malleability. Our notion of se-
curity generalizes the foundational one of non-malleability due to Dolev, Dwork, and Naor [DDN00],
and is also inspired by the refinements of Bellare and Sahai [BS99], and Pass, Shelat, and Vaikun-
tanathan [PSV07]. Given a public-key encryption scheme that is homomorphic with respect to a
set of functions F we would like to capture the following intuitive notion of security1: For any
efficient adversary that is given an encryption c of a message m and outputs an encryption c′ of a
message m′, it should hold that either (1) m′ is independent of m, (2) c′ = c (and thus m′ = m), or
(3) c′ is obtained by repeatedly applying the homomorphic evaluation algorithm on c using func-
tions f1, . . . , fℓ ∈ F . The first two properties are the standard ones for non-malleable encryption,
and the third property captures our new notion of targeted malleability: we would like to target
the malleability of the scheme only at the class F (we note that by setting F = ∅ we recover the
standard definition of non-malleability)2. We consider this notion of security with respect to both
chosen-plaintext attacks (CPA) and a-priori chosen-ciphertext attacks (CCA1)3.

We emphasize that we do not make the assumption that the set of functions F is closed under
composition. In particular, our approach is sufficiently general to allow targeting the malleability of
a scheme at any subset F ′ ⊆ F of the homomorphic operations that are supported by the scheme.
This is significant, for example, when dealing with fully homomorphic schemes, where any set of
functions is in fact a subset of the supported homomorphic operations (see Section 1.3 for more
details).

Next, we present two general transformations that transform any homomorphic encryption
scheme into one that enjoys targeted malleability for a limited number of repeated homomorphic
operations. The resulting schemes are secure even in the setting of a-priori chosen-ciphertext
attacks (CCA1). The two constructions offer rather different trade-offs in terms of efficiency. In
this overview we focus on our first construction, as it already captures the main ideas underlying
our methodology.

1.2 Overview of Our Approach

Our approach is based on bridging between two seemingly conflicting goals: on one hand, we would
like to turn the underlying homomorphic scheme into a somewhat non-malleable one, whereas on
the other hand we would like to preserve its homomorphic properties. We demonstrate that the
Naor-Yung “double encryption” paradigm for non-malleability [NY90, DDN00, Sah99, Lin06] can
be utilized to obtain an interesting balance between these two goals. The structure of ciphertexts
in our construction follows the latter paradigm: a ciphertext is a 3-tuple (c0, c1, π) containing two

1For simplicity we focus here on univariate functions and refer the reader to Section 3 for the more general case
of multivariate functions

2We assume in this informal discussion that the adversary outputs a valid ciphertext, but our notion of security
in fact considers the more general case – see Section 3.

3See Section 6 for a discussion on a-posteriori chosen-ciphertext attacks (CCA2) in the setting of homomorphic
encryption, following the work of Prabhakaran and Rosulek [PR08].

2

3. Targeted Malleability

encryptions of the same message using the underlying encryption scheme under two different keys
along with a proof π that the ciphertext is well formed. For ciphertexts that are produced by
the encryption algorithm, π is a non-interactive zero-knowledge proof, and for ciphertexts that are
produced by the homomorphic evaluation algorithm, π is a succinct non-interactive argument that
need not be zero-knowledge.

Specifically, the public key of the scheme consists of two public keys, pk0 and pk1, of the
underlying homomorphic scheme, a common reference string for a non-interactive zero-knowledge
proof system, and t common reference strings for succinct non-interactive argument systems (where
t is a predetermined upper bound on the number of repeated homomorphic operations that can
be applied to a ciphertext produced by the encryption algorithm). The secret key consists of the
corresponding secret keys sk0 and sk1. For encrypting a message we encrypt it under each of pk0
and pk1, and provide a non-interactive zero-knowledge proof that the resulting two ciphertexts are
indeed encryptions of the same message. Thus, a ciphertext that is produced by the encryption
algorithm has the form (c0, c1, πZK).

The homomorphic evaluation algorithm preserves the “double encryption” invariant. Specifi-
cally, given a ciphertext (c0, c1, πZK) that was produced by the encryption algorithm and a function
f ∈ F , the homomorphic evaluation algorithm first applies the homomorphic evaluation algo-

rithm of the underlying encryption scheme to each of c0 and c1. That is, it computes c
(1)
0 =

HomEvalpk0(c0, f) and c
(1)
1 = HomEvalpk1(c1, f). Then, it computes a succinct non-interactive argu-

ment π(1) to the fact that there exist a function f ∈ F and a ciphertext (c0, c1, πZK), such that πZK

is accepted by the verifier of the non-interactive zero-knowledge proof system, and that c
(1)
0 and

c
(1)
1 are generated from c0 and c1 using f as specified. We denote the language of the corresponding

argument system by L(1), and the resulting ciphertext is of the form c(1) =
(
1, c

(1)
0 , c

(1)
1 , π(1)

)
. We

point out that the usage of succinct arguments enables us to prevent the length of ciphertexts from
increasing significantly.

More generally, given a ciphertext of the form c(i) =
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, the homomorphic eval-

uation algorithm follows the same methodology for producing a ciphertext of the same form

c(i+1) =
(
i+ 1, c

(i+1)
0 , c

(i+1)
1 , π(i+1)

)
using a succinct non-interactive argument system for a lan-

guage L(i+1) stating that there exist a function f ∈ F and a ciphertext c(i) that is well-formed with
respect to L(i), which were used for generating the current ciphertext c(i+1).

On the proof of security. Given an adversary that breaks the targeted malleability of our
construction, we construct an adversary that breaks the security of (at least one of) the underlying
building blocks. As in [NY90, DDN00, Sah99, Lin06], we show that this boils down to having a
simulator that is able to decrypt a ciphertext while having access to only one of the secret keys
sk0 and sk1. This, in turn, enables the simulator to attack the public key pkb for which skb is
not known, where b ∈ {0, 1}. For satisfying our notion of security, however, such a simulator will
not only have to decrypt a ciphertext, but to also recover a “certification chain” demonstrating
that the ciphertext was produced by repeatedly applying the homomorphic evaluation algorithm.

That is, given a well-formed ciphertext c(i) =
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, the simulator needs to generate a

“certification chain” for c(i) of the form
(
c(0), f (0), . . . , c(i−1), f (i−1), c(i)

)
, where:

1. c(0) is an output of the encryption algorithm, which can be decrypted while knowing only one
of sk0 and sk1.

2. For every j ∈ {1, . . . , i} it holds that c(j) is obtained by applying the homomorphic evaluation

3

3. Targeted Malleability

algorithm on c(j−1) and f (j−1).

For this purpose, we require that the argument systems used in the construction exhibit the follow-
ing “knowledge extraction” property: for every efficient malicious prover P∗ there exists an efficient
“knowledge extractor” ExtP∗ , such that whenever P∗ outputs a statement x and an argument π
that are accepted by the verifier, ExtP∗ when given the random coins of P∗ can in fact produce a
witness w to the validity of x with all but a negligible probability.

By repeatedly applying such extractors the simulator is able to produce a certification chain.
Then, given that the initial ciphertext c(0) is well-formed (i.e., the same messages is encrypted
under pk0 and pk1), it can be decrypted using only one of the corresponding secret keys.

An alternative trade-off. In our first construction, the length of the ciphertext is essentially
independent of t, and the public key consists of t + 1 common reference strings. In our second
construction the number of common reference strings in the public key is only log t, and a cipher-
text now consists of log t ciphertexts of the underlying homomorphic scheme and log t succinct
arguments. Such a trade-off may be preferable over the one offered by our first construction, for
example, when using argument systems that are tailored to the NP languages under considera-
tions, or when it is not possible to use the same common reference string for all argument systems
(depending, of course, on the length of the longest common reference strings).

The main idea underlying this construction is that the arguments computed by the homomorphic
evaluation algorithm form a tree structure instead of a path structure. Specifically, instead of using
t argument systems, we use only d = log t argument systems where the i-th one is used for arguing
the well-formedness of a ciphertext after 2i repeated homomorphic operations.

Succinct extractable arguments. As explained above, our construction hinges on the exis-
tence of succinct non-interactive argument systems that exhibit a knowledge extractor capable of
extracting a witness from any successful prover. Gentry and Wichs [GW11] recently showed that
no sub-linear non-interactive argument system can be proven secure by a black-box reduction to a
falsifiable assumption. Fortunately, while we need succinct arguments, their lengths need not be
sub-linear. It suffices for our purposes that arguments are shorter by only a multiplicative constant
factor (say, 1/4) than the length of the witness, and therefore the negative result of Gentry and
Wichs does not apply to our settings. Nevertheless, all known argument systems that satisfy our
needs are either set in the random oracle model or are based on non-falsifiable assumptions in the
sense of Naor [Nao03].

The first such system was constructed by Micali [Mic00] using the PCP theorem. Computational
soundness is proved in the random oracle model [BR93] and the length of the proofs is essentially
independent of the length of the witness. Valiant [Val08] observed that the system is extractable
as needed for our proof of security. Unfortunately, we inherently cannot use an argument system
set in the random oracle model. To see why, consider a fresh ciphertext c which is an encryption
of message m. After the first homomorphic operation we obtain a new ciphertext c′ containing a
proof π showing that c′ is an encryption of f(m) for some allowable function f ∈ F . Verifying π
requires access to the random oracle. Now, consider the second homomorphic operation resulting
in c′′. The proof embedded in c′′ must now prove, among other things, that there exists a valid
proof π showing that c′ is a well-formed ciphertext. But since π’s verifier queries the random
oracle, this statement is in NPO where O is a random oracle. Since PCPs do not relativize, it
seems that Micali’s system cannot be used for our purpose. In fact, there are no known succinct
argument systems for proving statements in NPO. This issue was also pointed out by Chiesa

4

3. Targeted Malleability

and Tromer [CT10] in a completely different context, who suggested to overcome this difficulty by
providing each prover with a smartcard implementing a specific oracle functionality.

Instead, we use a recent succinct non-interactive argument system due to Groth [Gro10] (see
also the refinement by Lipmaa [Lip11]). Soundness is based on a variant of the “knowledge of
exponent assumption,” a somewhat non-standard assumption (essentially stating that the required
extractor exists by assumption, backed up with evidence in the generic group model) . This class of
assumptions was introduced by Damg̊ard [Dam91] and extended by Bellare and Palacio [BP04b].
Interestingly, Bellare and Palacio [BP04a] succeeded in falsifying one such assumption using the De-
cision Diffie-Hellman problem. We note that while Groth’s argument system is even zero-knowledge,
we primarily use the soundness property of the system (see the discussion in Section 6 on exploiting
its zero-knowledge property).

1.3 Related Work

The problem of providing certain non-malleability properties for homomorphic encryption schemes
was studied by Prabhakaran and Rosulek [PR08]. As a positive result, they presented a variant
of the Cramer-Shoup encryption scheme [CS98] that provably supports linear operations and no
other operations. There are two main differences between our work and the work of Prabhakaran
and Rosulek: (1) their framework only considers sets of allowable functions that are closed un-
der composition, and (2) their framework does not prevent ciphertext expansion during repeated
applications of the homomorphic operation, whereas this is a key goal for our work.

In our work we do not make the assumption that the set of allowable functions F is closed
under composition. As already discussed, one of the advantages of avoiding this assumption (other
than the obvious advantage of capturing a wider class of homomorphic schemes) is that we are in
fact able to target the malleability of a scheme at any subset F ′ ⊆ F of its supported homomorphic
operations (which may be determined by the specific application in which the scheme is used), and
this is especially significant when dealing with fully homomorphic schemes. Another advantage is
the ability to limit the number of repeated homomorphic operations.

We note that when assuming that the set of functions F is closed under composition, there
is in fact a trivial solution: For encrypting a message m compute (Encpk(m), id) using any non-
malleable encryption scheme, where id is the identity function. Then, the homomorphic evaluation
algorithm on input a ciphertext (c, f1) and a function f2 ∈ F simply outputs (c, f2 ◦ f1) (where ◦
denotes composition of functions). In this light, Prabhakaran and Rosulek focused on formalizing a
meaningful notion of security for a-posteriori chosen-ciphertext attacks (CCA2), following previous
relaxations of such attacks [ADR02, CKN03, Gro04, PR07]. This is orthogonal to our setting in
which the issue of avoiding a blow-up in the length of the ciphertext makes the problem challenging
already for chosen-plaintext attacks.

Finally, we note that targeted malleability shares a somewhat similar theme with the problem of
outsourcing a computation in a verifiable manner from a computationally-weak client to a powerful
server (see, for example, [GKR08, GGP10, CKV10, AIK10] and the references therein). In both
settings the main goal from the security aspect is to guarantee that a “correct” or an “allowable”
computation is performed. From the efficiency aspect, however, the two settings significantly
differ: whereas for targeted malleability our main focus is to prevent a blow-up in the length of
the ciphertext resulting from repeated applications of a computation, for verifiable computation the
main focus is to minimize the client’s computational effort within a single computation.

5

3. Targeted Malleability

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we present the basic tools that
are used in our constructions. In Section 3 we formalize the notion of targeted malleability. In
Sections 4 and 5 we present our constructions. Finally, in Section 6 we discuss possible extensions
of our work and several open problems.

2 Preliminaries

In this section we present the basic tools that are used in our constructions: public-key encryp-
tion and homomorphic encryption, succinct non-interactive arguments, and non-interactive zero-
knowledge proofs.

2.1 Public-Key Encryption

A public-key encryption scheme is a triplet Π = (KeyGen,Enc,Dec) of probabilistic polynomial-
time algorithms, where KeyGen is the key-generation algorithm, Enc is the encryption algorithm,
and Dec is the decryption algorithm. The key-generation algorithm KeyGen receives as input the
security parameter, and outputs a public key pk and a secret key sk. The encryption algorithm
Enc receives as input a public key pk and a message m, and outputs a ciphertext c. The decryption
algorithm Dec receives as input a ciphertext c and a secret key sk, and outputs a message m or the
symbol ⊥.

Functionality. In terms of functionality, in this paper we require the property of almost-all-keys
perfect decryption [DNR04], defined as follows:

Definition 2.1. A public-key encryption scheme Π = (KeyGen,Enc,Dec) has almost-all-keys per-
fect decryption if there exists a negligible function ν(k) such that for all sufficiently large k with
probability 1− ν(k) over the choice of (sk, pk)← KeyGen(1k), for any message m it holds that

Pr [Decsk(Encpk(m)) = m] = 1 ,

where the probability is taken over the internal randomness of Enc and Dec.

We note that Dwork, Naor, and Reingold [DNR04] proposed a general transformation turning
any encryption scheme into one that has almost-all-keys perfect decryption. When starting with
a scheme that has a very low error probability, their transformation only changes the random
bits used by the encryption algorithm, and in our setting this is important as it preserves the
homomorphic operations. When starting with a scheme that has a significant error probability, we
note that the error probability can be reduced exponentially by encrypting messages under several
independently chosen public keys, and decrypting according to the majority. This again preserves
the homomorphic operations.

Security. In terms of security, we consider the most basic notion of semantic-security against
chosen-plaintext attacks, asking that any efficient adversary has only a negligible advantage in
distinguishing between encryptions of different messages. This is formalized as follows:

Definition 2.2. A public-key encryption scheme Π = (KeyGen,Enc,Dec) is semantically secure
against chosen-plaintext attacks if for any probabilistic polynomial-time adversary A = (A1, A2) it
holds that

AdvCPAΠ,A(k)
def
=

∣∣∣Pr [ExptCPAΠ,A,0(k) = 1
]
− Pr

[
ExptCPAΠ,A,1(k) = 1

]∣∣∣
6

3. Targeted Malleability

is negligible in k, where ExptCPAΠ,A,b(k) is defined as follows:

1. (sk, pk)← KeyGen(1k).

2. (m0,m1, state)← A1(1
k, pk) such that |m0| = |m1|.

3. c∗ ← Encpk(mb).

4. b′ ← A2(c
∗, state)

5. Output b′.

Homomorphic encryption. A public-key encryption scheme Π = (KeyGen,Enc,Dec) is homo-
morphic with respect to a set of efficiently computable functions F if there exists a homomorphic
evaluation algorithm HomEval that receives as input a public key pk, an encryption of a message m,
and a function f ∈ F , and outputs an encryption of the message f(m). Formally, with overwhelming
probability over the choice of (sk, pk)← KeyGen(1k) (as in Definition 2.1), for any ciphertext c such
that Decsk(c) ̸= ⊥ and for any function f ∈ F it holds that Decsk (HomEvalpk(c, f)) = f (Decsk(c))
with probability 1 over the internal randomness of HomEval and Dec.

The main property that is typically required from a homomorphic encryption scheme is compact-
ness, asking that the length of the ciphertext does not trivially grow with the number of repeated
homomorphic operations. In our setting, given an upper bound t on the number of repeated ho-
momorphic operations that can be applied to a ciphertext produced by the encryption algorithm,
we are interested in minimizing the dependency of the length of the ciphertext on t.

An additional property, that we do not consider in this paper, is of function privacy. Informally,
this property asks that the homomorphic evaluation algorithm does not reveal which function from
the set F it receives as input. We refer the reader to [GHV10] for a formal definition. We note
that in our setting, where function privacy is not taken into account, we can assume without loss
of generality that the homomorphic evaluation algorithm is deterministic.

2.2 Non-Interactive Extractable Arguments

A non-interactive argument system for a language L =
∪

k∈N L(k) with a witness relation R =∪
k∈NR(k) consists of a triplet of algorithms (CRSGen,P,V), where CRSGen is an algorithm gener-

ating a common reference string crs, and P and V are the prover and verifier algorithms, respectively.
The prover takes as input a triplet (x,w, crs), where (x,w) ∈ R, and outputs an argument π. The
verifier takes as input a triplet (x, π, crs) and either accepts or rejects. In this paper we consider
a setting where all three algorithms run in polynomial time, CRSGen and P may be probabilistic,
and V is deterministic.

We require three properties from such a system. The first property is perfect completeness: for
every (x,w, crs) such that (x,w) ∈ R, the prover always generates an argument that is accepted by
the verifier. The second property is knowledge extraction: for every efficient malicious prover P∗

there exists an efficient “knowledge extractor” ExtP∗ , such that whenever P∗ outputs (x, π) that is
accepted by the verifier, ExtP∗ when given the random coins of P∗ can in fact produce a witness w
such that (x,w) ∈ R with all but a negligible probability. We note that this implies, in particular,
soundness against efficient provers.

The perfect completeness and knowledge extraction properties are in fact trivial to satisfy: the
prover can output the witness w as an argument, and the verifier checks that (x,w) ∈ R (unlike for
CS proofs [Mic00, Val08] we do not impose any non-trivial efficiency requirement on the verifier).
The third property that we require from the argument system is that of having rather succinct

7

3. Targeted Malleability

arguments: there should exist a constant 0 < γ < 1 such that the arguments are of length at most
γ|w|.

Definition 2.3. Let 0 < γ < 1 be a constant. A γ-succinct non-interactive extractable argument
system for a language L =

∪
k∈N L(k) with a witness relation RL =

∪
k∈NRL(k) is a triplet of

probabilistic polynomial-time algorithms (CRSGen,P,V) with the following properties:

1. Perfect completeness: For every k ∈ N and (x,w) ∈ RL(k) it holds that

Pr

[
V(1k, x, π, crs) = 1

∣∣∣∣ crs← CRSGen(1k)

π ← P(1k, x, w, crs)

]
= 1

where the probability is taken over the internal randomness of CRSGen, P and V.

2. Adaptive knowledge extraction: For every probabilistic polynomial-time algorithm P∗

there exist a probabilistic polynomial-time algorithm ExtP∗ and a negligible function ν(·) such
that

Pr

(x,w) /∈ RL(k) and V(1k, x, π, crs) = 1

∣∣∣∣∣∣
crs← CRSGen(1k), r ← {0, 1}∗

(x, π)← P∗(1k, crs; r)
w ← ExtP∗(1k, crs, r)

 ≤ ν(k)

for all sufficiently large k, where the probability is taken over the internal randomness of
CRSGen, P∗, V, and ExtP∗.

3. γ-Succinct arguments: For every k ∈ N, (x,w) ∈ RL(k) and crs ∈ {0, 1}∗, it holds that

P(1k, x, w, crs) produces a distribution over strings of length at most γ|w|.

Instantiation. An argument system satisfying Definition 2.3 (with a deterministic verifier) was
recently constructed by Groth [Gro10] in the common-reference string model based on a certain
“knowledge of exponent” assumption. His scheme is even zero-knowledge, and the length of the
resulting arguments is essentially independent of the length of the witness. The length of the
common-reference string, however, is at least quadratic in the length of the witness4, and this will
limit our constructions to support only a constant number of repeated homomorphic operations.
Any argument system satisfying Definition 2.3 with a common-reference string of length linear in
the length of the witness will allow our first construction to support any logarithmic number of
repeated homomorphic operations, and our second construction to support any polynomial number
of such operations.

The running time of the knowledge extractor. The proofs of security of our constructions
involve nested invocations of the knowledge extractors that are provided by Definition 2.3. When
supporting only a constant number of repeated homomorphic operations the simulation will always
run in polynomial time. When supporting a super-constant number of repeated homomorphic op-
erations, we need to require that the knowledge extractor ExtP∗ corresponding to a malicious prover
P∗ runs in time that is linear in the running time of P∗. This (together with a common-reference
string of linear length) will allow our first construction to support any logarithmic number of re-
peated homomorphic operations, and our second construction to support any polynomial number
of such operations.

4For proving the satisfiability of a circuit of size s, the common-reference string in [Gro10] consists of O(s2) group
elements, taken from a group where (in particular) the discrete logarithm problem is assumed to be hard. Lipmaa
[Lip11] was able to slightly reduce the number of group elements, but even in his construction it is still super-linear.

8

3. Targeted Malleability

2.3 Non-Interactive Simulation-Sound Adaptive Zero-Knowledge Proofs

We define the notion of a non-interactive simulation-sound adaptive zero-knowledge proof system
[BFM88, FLS90, BSM+91, Sah99].

Definition 2.4. A non-interactive simulation-sound adaptive zero-knowledge proof system for
a language L =

∪
k∈N L(k) with a witness relation RL =

∪
k∈NRL(k) is a tuple of probabilistic

polynomial-time algorithms Π = (CRSGen,P,V, S1,S2) with the following properties:

1. Perfect completeness: For every k ∈ N and (x,w) ∈ RL(k) it holds that

Pr

[
V(1k, x, π, crs) = 1

∣∣∣∣ crs← CRSGen(1k)

π ← P(1k, x, w, crs)

]
= 1

where the probability is taken over the internal randomness of CRSGen, P and V.

2. Adaptive soundness: For every algorithm P∗ there exists a negligible function ν(·) such
that

Pr

[
x /∈ L(k) and V(1k, x, π, crs) = 1

∣∣∣∣ crs← CRSGen(1k)
(x, π)← P∗(1k, crs)

]
≤ ν(k)

for all sufficiently large k, where the probability is taken over the internal randomness of
CRSGen, P∗, and V.

3. Adaptive zero knowledge: For every probabilistic polynomial-time algorithm A there exists
a negligible function ν(·) such that

AdvZKΠ,A(k)
def
=

∣∣∣Pr [ExptZKΠ,A(k) = 1
]
− Pr

[
ExptZKΠ,A,S1,S2(k) = 1

]∣∣∣ ≤ ν(k)

for all sufficiently large k, where the experiment ExptZKΠ,A(k) is defined as:

(a) crs← CRSGen(1k)

(b) b← AP(1k,·,·,crs)(1k, crs)

(c) Output b

and the experiment ExptZKΠ,A,S1,S2(k) is defined as:

(a) (crs, τ)← S1(1
k)

(b) b← AS′2(1
k,·,·,τ)(1k, crs), where S′2(1

k, x, w, τ) = S2(1
k, x, τ)

(c) output b

4. Simulation soundness: For every probabilistic polynomial-time algorithm A there exists a
negligible function ν(·) such that

AdvSSΠ,A(k)
def
= Pr

[
ExptSSΠ,A(k) = 1

]
≤ ν(k)

for all sufficiently large k, where the experiment ExptSSΠ,A(k) is defined as:

(a) (crs, τ)← S1(1
k)

(b) (x, π)← AS2(1k,·,τ)(1k, crs)

(c) Denote by Q the set of S2’s answers to A’s oracle queries

(d) Output 1 if and only if x /∈ L(k), π /∈ Q, and V(1k, x, π, crs) = 1

9

3. Targeted Malleability

3 Defining Targeted Malleability

In this section we introduce a framework for targeted malleability by formalizing non-malleability
with respect to a specific set of functions. We begin by discussing the case of univariate functions,
and then show that our approach naturally generalizes to the case of multivariate functions. Given
an encryption scheme that is homomorphic with respect to a set of functions F we would like to
capture the following notion of security: For any efficient adversary that is given an encryption c
of a message m and outputs an encryption c′ of a message m′, it should hold that either (1) m′ is
independent of m, (2) c′ = c (and thus m′ = m), or (3) c′ is obtained by repeatedly applying the
homomorphic evaluation algorithm on c using functions f1, . . . , fℓ ∈ F . The first two properties
are the standard ones for non-malleability [DDN00], and the third property captures targeted
malleability.

Following [DDN00, BS99, PSV07] we formalize a simulation-based notion of security that com-
pares a real-world adversary to a simulator that is not given any ciphertexts as input. Specifically,
we consider two experiments: a real-world experiment, and a simulated experiment, and require
that for any efficient real-world adversary there exists an efficient simulator such that the outputs
of the two experiments are computationally indistinguishable5. We consider both chosen-plaintext
attacks (CPA) and a-priori chosen-ciphertext attacks (CCA1). We assume that the set of functions
F is recognizable in polynomial time, and it may or may not be closed under composition.

Chosen-plaintext attacks (CPA). In the real-world experiment we consider adversaries that
are described by two algorithms A = (A1, A2). The algorithm A1 takes as input the public key of
the scheme, and outputs a description of a distributionM over messages, a state information state1
to be included in the output of the experiment, and a state information state2 to be given as input
to the algorithm A2. We note that state1 and state2 may include pk andM. Then, the algorithm
A2 takes as input the state information state2 and a sequence of ciphertexts that are encryptions
of messages m1, . . . ,mr sampled from M. The algorithm A2 outputs a sequence of ciphertexts
c1, . . . , cq, and the output of the experiment is defined as (state1,m1, . . . ,mr, d1, . . . , dq), where for
every j ∈ {1, . . . , q} the value dj is one of two things: if cj is equal to the i-th input ciphertext for
some i then dj is a special symbol copyi; otherwise dj is the decryption of cj .

In the simulated experiment the simulator is also described by two algorithms S = (S1, S2).
The algorithm S1 takes as input the public key, and outputs a description of a distributionM over
messages, a state information state1 to be included in the output of the experiment, and a state
information state2 to be given as input to the algorithm S2 (as in the real world). Then, a sequence
of messages is sampled from M, but here the algorithm S2 does not receive the encryptions of
these messages, but only state2. The algorithm S2 should output q values, where each value can
take one of three possible types. The first type is the special symbol copyi, and in this case we
define dj = copyi. This captures the ability of real-world adversary to copy one of the ciphertexts.
The second type is an index i ∈ {1, . . . , r} and a sequence of functions f1, . . . , fℓ ∈ F , where ℓ is at
most some predetermined upper bound t on the number of repeated homomorphic operations. In
this case we define dj = f(mi) where f = f1 ◦ · · · ◦ fℓ. This captures the ability of the real-world
adversary to choose one of its input ciphertexts and apply the homomorphic evaluation algorithm
for at most t times. The third type is a ciphertext cj , and in this case dj is defined as its decryption.
As the simulator does not receive any ciphertexts as input, this captures the ability of the adversary
to produce a ciphertext that is independent of its input ciphertexts. The output of the experiment

5As commented by Pass et al. [PSV07], note that a distinguisher between the two experiments corresponds to
using a relation for capturing non-malleability as in [DDN00, BS99].

10

3. Targeted Malleability

is defined as (state1,m1, . . . ,mr, d1, . . . , dq).

Definition 3.1. Let t = t(k) be a polynomial. A public-key encryption scheme Π = (KeyGen,Enc,
Dec,HomEval) is t-bounded non-malleable against chosen-plaintext attacks with respect to a set of
functions F if for any polynomials r = r(k) and q = q(k) and for any probabilistic polynomial-time
algorithm A = (A1, A2) there exists a probabilistic polynomial-time algorithm S = (S1, S2) such that
the distributions

{
RealCPAΠ,A,t,r,q(k)

}
k∈N and

{
SimCPA

Π,S,t,r,q(k)
}
k∈N (see Figure 1) are computationally

indistinguishable.

RealCPAΠ,A,t,r,q(k):

1. (sk, pk)← KeyGen(1k)

2. (M, state1, state2)← A1(1
k, pk)

3. (m1, . . . ,mr)←M

4. c∗i ← Encpk(mi) for every i ∈ {1, . . . , r}

5. (c1, . . . , cq)← A2(1
k, c∗1, . . . , c

∗
r , state2)

6. For every j ∈ {1, . . . , q} let

dj =

{
copyi if cj = c∗i
Decsk(cj) otherwise

7. Output (state1,m1, . . . ,mr, d1, . . . , dq)

SimCPA
Π,S,t,r,q(k):

1. (sk, pk)← KeyGen(1k)

2. (M, state1, state2)← S1(1
k, pk)

3. (m1, . . . ,mr)←M

4. (c1, . . . , cq)← S2(1
k, state2)

5. For every j ∈ {1, . . . , q} let

dj =

copyi if cj = copyi

f(mi)

if cj = (i, f1, . . . , fℓ)

where i ∈ {1, . . . , r},
ℓ ≤ t, f1, . . . , fℓ ∈ F ,
and f = f1 ◦ · · · ◦ fℓ

Decsk(cj) otherwise

6. Output (state1,m1, . . . ,mr, d1, . . . , dq)

Figure 1: The distributions RealCPAΠ,A,t,r,q(k) and SimCPA
Π,S,t,r,q(k).

Dealing with multivariate functions. Our approach naturally generalizes to the case of mul-
tivariate functions as follows. Fix a set F of functions that are defined on d-tuples of plaintexts for
some integer d, and let A be an efficient adversary that is given a sequence of ciphertexts c∗1, . . . , c

∗
r

and outputs a sequence of ciphertexts c1, . . . , cq, as in Definition 3.1. Intuitively, for each output
ciphertext cj it should hold that either (1) Decsk(cj) is independent of c∗1, . . . , c

∗
r, (2) cj = c∗i for

some i ∈ {1, . . . , r}, or (3) cj is obtained by repeatedly applying the homomorphic evaluation algo-
rithm using functions from the set F and a sequence of ciphertexts where each ciphertext is either
taken from c∗1, . . . , c

∗
r or is independent of c∗1, . . . , c

∗
r.

Formally, the distribution RealCPAΠ,A,t,r,q(k) is not modified, and the distribution SimCPA
Π,S,t,r,q(k) is

modified by only changing the output cj = (i, f1, . . . , fℓ) of S2 to a d-ary tree of depth at most
t: each internal node contains a description of a function from the set F , and each leaf contains
either an index i ∈ {1, . . . , r} or a plaintext m. The corresponding value dj is then computed by
evaluating the tree bottom-up where each index i is replaced by the plaintext mi that was sampled
fromM.

Dealing with randomized functions. The above definitions assume that F is a set of determin-
istic functions. More generally, one can also consider randomized functions. There are two natural

11

3. Targeted Malleability

approaches for extending our framework to this setting. The first approach is to view each function
f ∈ F and string r ∈ {0, 1}∗ (of an appropriate length) as defining a function fr(m) = f(m; r),
and to apply the above definitions to the set F ′ = {fr}f∈F ,r∈{0,1}∗ of deterministic functions. The

second approach is to modify the distribution SimCPA
Π,S,t,r,q(k) as follows: instead of setting dj to the

value f(mi), we sample dj from the distribution induced by the random variable f(mi). Each of
these two approaches may be preferable depending on the context in which the encryption scheme
is used, and for simplifying the presentation in this paper we assume that F is a set of deterministic
functions.

A-priori chosen-ciphertexts attacks (CCA1). Definition 3.1 generalizes to a-priori chosen-
ciphertext attacks by providing the algorithm A1 oracle access to the decryption oracle before
choosing the distribution M. At the same time, however, the simulator still needs to specify
the distribution M without having such access (this is also known as non-assisted simulation).
Specifically, we define {RealCCA1Π,A,t,r,q(k)}k∈N and {SimCCA1

Π,S,t,r,q(k)}k∈N as follows: RealCCA1Π,A,t,r,q(k) is

obtained from RealCPAΠ,A,t,r,q(k) by providing A1 with oracle access to Decsk(·), and SimCCA1
Π,S,t,r,q(k) is

identical to SimCPA
Π,S,t,r,q(k).

Definition 3.2. Let t = t(k) be a polynomial. A public-key encryption scheme Π = (KeyGen,Enc,
Dec,HomEval) is t-bounded non-malleable against a-priori chosen-ciphertext attacks with respect
to a set of functions F if for any polynomials r = r(k) and q = q(k) and for any probabilistic
polynomial-time algorithm A = (A1, A2) there exists a probabilistic polynomial-time algorithm S =
(S1, S2) such that the distributions {RealCCA1Π,A,t,r,q(k)}k∈N and {SimCCA1

Π,S,t,r,q(k)}k∈N are computationally
indistinguishable.

4 The Path-Based Construction

In this section we present our first construction. The construction is based on any public-key
encryption scheme that is homomorphic with respect to some set F of functions, a non-interactive
zero-knowledge proof system, and γ-succinct non-interactive argument systems for γ = 1/4. The
scheme is parameterized by an upper bound t on the number of repeated homomorphic operations
that can be applied to a ciphertext produced by the encryption algorithm. The scheme enjoys the
feature that the dependency on t is essentially eliminated from the length of the ciphertext, and
shifted to the public key. The public key consists of t + 1 common reference strings: one for the
zero-knowledge proof system, and t for the succinct argument systems. We note that in various
cases (such as argument systems in the common random string model) it may be possible to use
only one common-reference string for all t argument systems, and then the length of the public key
decreases quite significantly.

In Section 4.1 we formally specify the building blocks of the scheme, and in Section 4.2 we
provide a description of the scheme. In Section 4.3 we prove the security of the scheme against
chosen-plaintexts attacks (CPA), and in Section 4.4 we show tat the proof in fact extends to deal
with a-priori chosen-ciphertext attacks (CCA1).

4.1 The Building Blocks

Our construction relies on the following building blocks:

1. A homomorphic public-key encryption scheme Π = (KeyGen,Enc,Dec,HomEval) with respect
to an efficiently recognizable set of efficiently computable functions F . We assume that the

12

3. Targeted Malleability

scheme has almost-all-keys perfect decryption (see Definition 2.1). In addition, as discussed
in Section 2.1, as we do not consider function privacy we assume without loss of generality
that HomEval is deterministic.

For any security parameter k ∈ N we denote by ℓpk = ℓpk(k), ℓm = ℓm(k), ℓr = ℓr(k), and
ℓc = ℓc(k) the bit-lengths of the public key, plaintext, randomness of Enc, and ciphertext6,
respectively, for the scheme Π. In addition, we denote by VF the deterministic polynomial-
time algorithm for testing membership in the set F , and denote by ℓF = ℓF (k) the bit-length
of the description of each function f ∈ F .

2. A non-interactive deterministic-verifier simulation-sound adaptive zero-knowledge proof sys-

tem (see Section 2.3) Π(0) =
(
CRSGen(0),P(0),V(0)

)
for the NP-language L(0) =

∪
k∈N L(0)(k)

defined as follows.

L(0)(k) =

(
pk0, pk1, c

(0)
0 , c

(0)
1

)
∈ {0, 1}2ℓpk+2ℓc :

∃(m, r0, r1) ∈ {0, 1}ℓm+2ℓr s.t.

c
(0)
0 = Encpk0(m; r0)

and c
(0)
1 = Encpk1(m; r1)

For any security parameter k ∈ N we denote by ℓcrs(0) = ℓcrs(0)(k) and ℓπ(0) = ℓπ(0)(k) the bit-
lengths of the common-reference strings produced by CRSGen(0) and of the proofs produced
by P(0), respectively. Without loss of generality we assume that ℓπ(0) ≥ max {ℓc, ℓF} (as
otherwise proofs can always be padded).

3. For every i ∈ {1, . . . , t} a 1/4-succinct non-interactive deterministic-verifier extractable ar-

gument system (see Section 2.2) Π(i) =
(
CRSGen(i),P(i),V(i)

)
for the NP-language L(i) =∪

k∈N L(i)(k) defined as follows.

L(i)(k) =

(
pk0, pk1, c

(i)
0 , c

(i)
1 , crs(i−1), . . . , crs(0)

)
∈ {0, 1}2ℓpk+2ℓc+

∑i−1
j=0 ℓcrs(j) :

∃
(
c
(i−1)
0 , c

(i−1)
1 , π(i−1), f

)
∈ {0, 1}2ℓc+ℓ

π(i−1)+ℓF s.t.

• VF (f) = 1

• c
(i)
0 = HomEvalpk0

(
c
(i−1)
0 , f

)
• c

(i)
1 = HomEvalpk1

(
c
(i−1)
1 , f

)
• V(i−1)

((
pk0, pk1, c

(i−1)
0 , c

(i−1)
1 , crs(i−2), . . . , crs(0)

)
, π(i−1), crs(i−1)

)
= 1

For any security parameter k ∈ N we denote by ℓcrs(i) = ℓcrs(i)(k) and ℓπ(i) = ℓπ(i)(k) the
bit-lengths of the common-reference strings produced by CRSGen(i) and of the arguments
produced by P(i), respectively.

4.2 The Scheme

The scheme Π′ = (KeyGen′,Enc′,Dec′,HomEval′) is parameterized by an upper bound t on the
number of repeated homomorphic operations that can be applied to a ciphertext produced by the
encryption algorithm. The scheme is defined as follows:

6For simplicity we assume a fixed upper bound ℓc on the length of ciphertexts, but this is not essential to
our construction. More generally, one can allow the length of ciphertexts to increase as a result of applying the
homomorphic operation.

13

3. Targeted Malleability

• Key generation: On input 1k sample two pairs of keys (sk0, pk0) ← KeyGen(1k) and
(sk1, pk1) ← KeyGen(1k). Then, for every i ∈ {0, . . . , t} sample crs(i) ← CRSGen(i)(1k).
Output the secret key sk = (sk0, sk1) and the public key pk =

(
pk0, pk1, crs

(0), . . . , crs(t)
)
.

• Encryption: On input a public key pk and a plaintext m, sample r0, r1 ∈ {0, 1}∗ uniformly

at random, and output the ciphertext c(0) =
(
0, c

(0)
0 , c

(0)
1 , π(0)

)
, where

c
(0)
0 = Encpk0(m; r0) ,

c
(0)
1 = Encpk1(m; r1) ,

π(0) ← P(0)
((

pk0, pk1, c
(0)
0 , c

(0)
1

)
, (m, r0, r1) , crs

(0)
)

.

• Homomorphic evaluation: On input a public key pk, a ciphertext
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, and

a function f ∈ F , proceed as follows. If i /∈ {0, . . . , t− 1} or

V(i)
((

pk0, pk1, c
(i)
0 , c

(i)
1 , crs(i−1), . . . , crs(0)

)
, π(i), crs(i)

)
= 0

then output ⊥. Otherwise, output the ciphertext c(i+1) =
(
i+ 1, c

(i+1)
0 , c

(i+1)
1 , π(i+1)

)
, where

c
(i+1)
0 = HomEvalpk0

(
c
(i)
0 , f

)
,

c
(i+1)
1 = HomEvalpk1

(
c
(i)
1 , f

)
,

π(i+1) ← P(i+1)
((

pk0, pk1, c
(i+1)
0 , c

(i+1)
1 , crs(i), . . . , crs(0)

)
,
(
c
(i)
0 , c

(i)
1 , π(i), f

)
, crs(i+1)

)
.

• Decryption: On input a secret key sk and a ciphertext
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, output ⊥ if i /∈

{0, . . . , t} or

V(i)
((

pk0, pk1, c
(i)
0 , c

(i)
1 , crs(i−1), . . . , crs(0)

)
, π(i), crs(i)

)
= 0 .

Otherwise, compute m0 = Decsk0

(
c
(i)
0

)
and m1 = Decsk1

(
c
(i)
1

)
. If m0 ̸= m1 then output ⊥,

and otherwise output m0.

Note that at any point in time a ciphertext of the scheme is of the form
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, where

i ∈ {0, . . . , t}, c(i)0 and c
(i)
1 are ciphertexts of the underlying encryption scheme, and π(i) is a proof

or an argument with respect to one of Π(0), . . . ,Π(t). Note that the assumption that the argument
systems Π(1), . . . ,Π(t) are 1/4-succinct implies that the length of their arguments is upper bounded
by length of the proofs of Π(0) (i.e., ℓπ(i) ≤ ℓπ(0) for every i ∈ {1, . . . , t}). Thus, the only dependency
on t in the length of the ciphertext results from the ⌈log2(t+ 1)⌉ bits describing the prefix i.

4.3 Chosen-Plaintext Security

We now prove that the construction offers targeted malleability against chosen-plaintext attacks.
For concreteness we focus on the case of a single message and a single ciphertext (i.e., the case
r(k) = q(k) = 1 in Definition 3.1), and note that the more general case is a straightforward
generalization. Given an adversary A = (A1, A2) we construct a simulator S = (S1, S2) as follows.

14

3. Targeted Malleability

The algorithm S1. The algorithm S1 is identical to A1, except for also including the public key
pk and the distributionM in the state that it forwards to S2. That is, S1 on input (1k, pk) invokes
A1 on the same input to obtain a triplet (M, state1, state2), and then outputs (M, state1, state

′
2)

where state′2 = (pk,M, state2).

The algorithm S2. The algorithm S2 on input (1k, state′2) where state′2 = (pk,M, state2), first
samples m′ ← M, and computes c∗ ← Enc′pk(m

′). Then, it samples r ← {0, 1}∗, and computes

c =
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
= A2(1

k, c∗, state2; r). If i /∈ {0, . . . , t} or

V(i)
((

pk0, pk1, c
(i)
0 , c

(i)
1 , crs(i−1), . . . , crs(0)

)
, π(i), crs(i)

)
= 0

then S2 outputs c. Otherwise, S2 utilizes the knowledge extractors guaranteed by the argument
systems Π(1), . . . ,Π(t) to generate a “certification chain” for c of the form(

c(0), f (0), . . . , c(i−1), f (i−1), c(i)
)

satisfying the following two properties:

1. c(i) = c.

2. For every j ∈ {1, . . . , i} it holds that c(j) = HomEval′pk
(
c(j−1), f (j−1)).

We elaborate below on the process of generating the certification chain. If S2 fails in generating
such a chain then it outputs c. Otherwise, S2 computes its output as follows:

1. If c(0) = c∗ and i = 0, then S2 outputs copy1.

2. If c(0) = c∗ and i > 0, then S2 outputs f (0) ◦ · · · ◦ f (i−1).

3. If c(0) ̸= c∗, then S2 outputs c.

Generating the certification chain. We say that a ciphertext
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
is valid if i ∈

{0, . . . , t} and
V(i)

((
pk0, pk1, c

(i)
0 , c

(i)
1 , crs(i−1), . . . , crs(0)

)
, π(i), crs(i)

)
= 1 .

Viewing the algorithm A2 as a malicious prover with respect to the argument system Π(i) with the

common reference string crs(i), whenever A2 outputs a valid ciphertext c(i) =
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, the

algorithm S2 invokes the knowledge extractor ExtA2 that corresponds to A2 (recall Definition 2.3)

to obtain a witness
(
c
(i−1)
0 , c

(i−1)
1 , π(i−1), f (i−1)

)
to the fact that(

pk0, pk1, c
(i)
0 , c

(i)
1 , crs(i−1), . . . , crs(0)

)
∈ L(i) .

Note that S2 chooses the randomness for A2, which it can then provide to ExtA2 . If successful then

by the definition of L(i) we have a new valid cipertext c(i−1) =
(
i− 1, c

(i−1)
0 , c

(i−1)
1 , π(i−1)

)
. If i = 1

then we are done. Otherwise (i.e., if i > 1), viewing the combination of A2 and ExtA2 as a malicious
prover with respect to the argument system Π(i−1) with the common reference string crs(i−1), the

15

3. Targeted Malleability

algorithm S2 invokes the knowledge extractor Ext(A2,ExtA2
) that corresponds to the combination of

A2 and ExtA2 to obtain a witness
(
c
(i−2)
0 , c

(i−2)
1 , π(i−2), f (i−2)

)
to the fact that(

pk0, pk1, c
(i−1)
0 , c

(i−1)
1 , crs(i−2), . . . , crs(0)

)
∈ L(i−1) ,

and so on for i iterations or until the first failure.
Having described the simulator we now prove the following theorem stating the security of the

scheme in the case r(k) = q(k) = 1 (noting again that the more general case is a straightforward
generalization). As discussed in Section 2.2, the quadratic blow-up in the length of the common-
reference string in Groth’s argument system [Gro10] restricts our treatment here to a constant
number t of repeated homomorphic operations, and any improvement to Groth’s argument system
with a common-reference string of linear length will directly allow any logarithmic number of
repeated homomorphic operations (and any polynomial number of such operations in the scheme
presented in Section 5).

Theorem 4.1. For any constant t ∈ N and for any probabilistic polynomial-time adversary A the
distributions {RealCPAΠ′,A,t,r,q(k)}k∈N and {SimCPA

Π′,S,t,r,q(k)}k∈N are computationally indistinguishable,
for r(k) = q(k) = 1.

Proof. We define a sequence of distributions D1, . . . ,D7 such that D1 = SimCPA
Π′,S,t,r,q and D7 =

RealCPAΠ′,A,t,r,q, and prove that for every i ∈ {1, . . . , 6} the distributions Di and Di+1 are com-
putationally indistinguishable. For simplicity in what follows we assume that the scheme Π =
(KeyGen,Enc,Dec,HomEval) actually has perfect decryption for all keys (and not with an over-
whelming probability over the choice of keys). This assumption clearly does not hurt any of the
indistinguishability arguments in our proof, since we can initially condition on the event that both
(sk0, pk0) and (sk1, pk1) provide perfect decryption.

The distribution D1. This is the distribution SimCPA
Π′,S,t,r,q.

The distribution D2. This distribution is obtained from D1 via the following modification. As
in D1, if S2 fails to obtain a certification chain, then output (state1,m,⊥). Otherwise, the
output is computed as follows:

1. If c(0) = c∗ and i = 0 then output (state1,m, copy1). This is identical to D1.

2. If c(0) = c∗ and i > 0 then output (state1,m, f(m)), where f = f (0) ◦ · · · ◦ f (i−1). This
is identical to D1.

3. If c(0) ̸= c∗ then compute the message m(0) = Dec′sk(c
(0)). If m(0) ̸= ⊥ then output(

state1,m, f
(
m(0)

))
, where f = f (0) ◦ · · · ◦ f (i−1), and otherwise output (state1,m,⊥).

That is, in this case instead of invoking the decryption algorithm Dec′ on c(i), we invoke
it on c(0), and then apply the functions given by the certification chain.

The distribution D3. This distribution is obtained from D2 by producing crs(0) and π∗ (where
c∗ = (c∗0, c

∗
1, π
∗)) using the simulator of the NIZK proof system Π(0).

The distribution D4. This distribution is obtained from D3 by producing the challenge cipher-
text c∗ = (c∗0, c

∗
1, π
∗) with c∗0 = Encpk0(m) (instead of c∗0 = Encpk0(m

′) as in D3).

The distribution D5. This distribution is obtained from D4 by producing the challenge cipher-
text c∗ = (c∗0, c

∗
1, π
∗) with c∗1 = Encpk1(m) (instead of c∗1 = Encpk1(m

′) as in D4).

16

3. Targeted Malleability

The distribution D6. This distribution is obtained from D5 by producing crs(0) and π∗ (where
c∗ = (c∗0, c

∗
1, π
∗)) using the algorithms CRSGen(0) and P(0), respectively (and not by using the

simulator of the NIZK proof system Π(0) as in D5).

The distribution D7. This is the distribution RealCPAΠ′,A,t,r,q.

Before proving that the above distributions are computationally indistinguishable, we first prove
that S2 fails to produce a certification chain with all but a negligible probability.

Lemma 4.2. In distributions D1, . . . ,D6, whenever A2 outputs a valid ciphertext, S2 generates a
certification chain with all but a negligible probability.

Proof. Assume towards a contradictions that in one of D1, . . . ,D6 with a non-negligible probability
it holds that A2 outputs a valid ciphertext but S2 fails to generate a certification chain. In particular,
there exists an index i ∈ {1, . . . , t} for which with a non-negligible probability A2 outputs a valid

ciphertext of the form c(i) =
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, but S2 fails to generate a certification chain. Recall

that for generating a certification chain starting with c(i), the simulator S2 attempts to invoke
i knowledge extractors (until the first failure occurs) that we denote by Ext(i), . . . ,Ext(1). These
knowledge extractors correspond to the malicious provers described in the description of S2 for the
argument systems Π(i), . . . ,Π(1), respectively. Then, there exists an index j ∈ {1, . . . , i} for which
with a non-negligible probability S2 is successful with Ext(i), . . . ,Ext(j+1) but fails with Ext(j).
The fact that S2 is successful with Ext(j+1) implies that it produces a valid ciphertext c(j) =(
j, c

(j)
0 , c

(j)
1 , π(j)

)
. In particular, it holds that

V(j)
((

pk0, pk1, c
(j)
0 , c

(j)
1 , crs(j−1), . . . , crs(0)

)
, π(j), crs(j)

)
= 1 .

Now, the fact that with a non-negligible probability S2 fails with Ext(j) immediately translates to a
malicious prover that contradicts the knowledge extraction property of the argument system Π(j).

We now prove that for every i ∈ {1, . . . , 6} the distributions Di and Di+1 are computationally
indistinguishable.

Lemma 4.3. The distributions D1 and D2 are computationally indistinguishable.

Proof. Whenever A2 outputs an invalid ciphertext, or outputs a valid ciphertext and S2 generates
a certification chain, the distributions D1 and D2 are identical. Indeed, in such a case the perfect
decryption property guarantees that Dec′sk

(
c(i)

)
= f

(
m(0)

)
. Therefore, D1 and D2 differ only

when when A2 outputs a valid ciphertext but S2 fails to generate a certification chain. Lemma 4.2
guarantees that this event occurs with only a negligible probability.

Lemma 4.4. The distributions D2 and D3 are computationally indistinguishable.

Proof. This follows from the zero-knowledge property of Π(0). Specifically, any efficient algorithm
that distinguishes between D2 and D3 can be used (together with S) in a straightforward manner
to contradict the zero-knowledge property of Π(0).

Lemma 4.5. The distributions D3 and D4 are computationally indistinguishable.

17

3. Targeted Malleability

Proof. The simulation soundness of Π(0) guarantees that instead of computing Dec′sk
(
c(0)

)
we

can verify that V(0)
((

pk0, pk1, c
(0)
0 , c

(0)
1

)
, π(0), crs(0)

)
= 1, and then compute Decsk1

(
c
(0)
1

)
. The

resulting distribution will be identical with all but a negligible probability. This implies that we do
not need the key sk0, and this immediately translates to a distinguisher between (pk0,Encpk0(m))
and (pk0,Encpk0(m

′)), where m and m′ are sampled independently fromM. That is, the simulation
soundness of Π(0) and the semantic security of the underlying encryption scheme guarantee that
D3 and D4 are computationally indistinguishable.

Lemma 4.6. The distributions D4 and D5 are computationally indistinguishable.

Proof. As in the proof of Lemma 4.5, the simulation soundness of Π(0) guarantees that instead of

computing Dec′sk(c
(0)) we can verify that V(0)

((
pk0, pk1, c

(0)
0 , c

(0)
1

)
, π(0), crs(0)

)
= 1, and then com-

pute Decsk0

(
c
(0)
0

)
. The resulting distribution will be identical with all but a negligible probability.

This implies that we do not need the key sk1, and this immediately translates to a distinguisher be-
tween (pk1,Encpk1(m)) and (pk1,Encpk1(m

′)), where m and m′ are sampled independently fromM.
That is, the simulation soundness of Π(0) and the semantic security of the underlying encryption
scheme guarantee that D4 and D5 are computationally indistinguishable.

Lemma 4.7. The distributions D5 and D6 are computationally indistinguishable.

Proof. As in the proof of Lemma 4.4, this follows from the zero-knowledge property of Π(0).
Specifically, any efficient algorithm that distinguishes between D5 and D6 can be used (together
with S) in a straightforward manner to contradict the zero-knowledge property of Π(0).

Lemma 4.8. The distributions D6 and D7 are computationally indistinguishable.

Proof. In the distributions D6 and D7 the algorithm A2 receives an encryption c∗ ofm, and outputs
a ciphertext c. First, we note that in both D6 and D7, if c = c∗ then the output is (state1,m, copy1),
and if c is invalid then the output is (state1,m,⊥). Therefore, we now focus on the case that c ̸= c∗

and c is valid. In this case, in D7 the output is (state1,m,Dec′sk(c)), and we now show that with
an overwhelming probability the same output is obtained also in D6.

In D6 Lemma 4.2 guarantees that whenever c is valid S2 produces a certification chain with all
but a negligible probability. There are now two cases to consider. In the first case, if c(0) = c∗ and
i > 0 then the output of D6 is (state1,m, f(m)), where f = f (0) ◦ · · · ◦ f (i−1). Since c∗ is in fact
an encryption of m, then the perfect decryption property guarantees that Dec′sk(c) = f(m). In the
second case, if c(0) ̸= c∗ then the output of D6 is

(
state1,m, f

(
m(0)

))
where m(0) = Dec′sk

(
c(0)

)
.

Again by the perfect decryption property, it holds that Dec′sk(c) = f(m(0)).

This concludes the proof of Theorem 4.1.

4.4 Chosen-Ciphertext Security

We now show that the proof of security in Section 4.3 in fact extends to the setting of a-priori
chosen-ciphertext attacks (CCA1). The difficulty in extending the proof is that now whereas the
adversary A1 is given oracle access to the decryption algorithm, the simulator S1 is not given
such access. Therefore, it is not immediately clear that S1 can correctly simulate the decryption
queries of A1. We note that this issue seems to capture the main difference between the simulation-
based and the indistinguishability-based approaches for defining non-malleability, as pointed out
by Bellare and Sahai [BS99].

18

3. Targeted Malleability

We resolve this issue using the approach of [DDN00, BS99]: S will not run A on the given public
key pk, but instead will sample a new public key pk′ together with a corresponding secret key sk′,
and run A on pk′. This way, S can use the secret key sk′ for answering all of A1’s decryption queries.
In addition, when A2 outputs a ciphertext, S then uses sk′ for “translating” this ciphertext from
pk′ to pk.

We now provide the modified description of S. Given an adversary A = (A1, A2) we define the
simulator S = (S1, S2) as follows.

The algorithm S1. The algorithm S1 on input (1k, pk) first samples (sk′, pk′) ← KeyGen′(1k).
Then, it invokes A1 on the input (1k, pk′) while answering decryption queries using the secret key
sk′, to obtain a triplet (M, state1, state2). Finally, it outputs (M, state1, state

′
2) where state′2 =

(M, pk, sk′, pk′, state2).

The algorithm S2. The algorithm S2 on input (1k, state′2) where state
′
2 = (M, pk, sk′, pk′, state2),

first samples m′ ←M and computes c∗ ← Enc′pk′(m
′). Then, it samples r ← {0, 1}∗ and computes

c =
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
= A2(1

k, c∗, state1; r). If c is invalid with respect to pk′, that is, if i /∈ {0, . . . , t}
or

V(i)
((

pk′0, pk
′
1, c

(i)
0 , c

(i)
1 , crs′(i−1), . . . , crs′(0)

)
, π(i), crs′(i)

)
= 0

then S2 outputs any ciphertext that is invalid with respect to pk (e.g., (t+ 1,⊥,⊥,⊥)). Other-
wise, as in Section 4.3, S2 utilizes the knowledge extractors guaranteed by the argument systems
Π(1), . . . ,Π(t) to generate a “certification chain” for c of the form(

c(0), f (0), . . . , c(i−1), f (i−1), c(i)
)

.

If S2 fails in generating such a chain then it again outputs any invalid ciphertext with respect to
pk. Otherwise, S2 computes its output as follows:

1. If c(0) = c∗ and i = 0, then S2 outputs copy1.

2. If c(0) = c∗ and i > 0, then S2 outputs f (0) ◦ · · · ◦ f (i−1).

3. If c(0) ̸= c∗, then S2 outputs the ciphertext c̃ that is obtained by “translating” c from pk′ to
pk as follows. First, S2 computes m̃ = Decsk′

(
c(0)

)
. Then, it computes c̃(0) = Encpk (m̃), and

c̃(j) = HomEvalpk
(
c̃(j−1), f (j−1)) for every j ∈ {1, . . . , i}. The ciphertext c̃ is then defined as

c̃(i).

Having described the modified simulator we now prove the following theorem stating the security
of the scheme in the case r(k) = q(k) = 1 (noting once again that the more general case is a
straightforward generalization).

Theorem 4.9. For any constant t ∈ N and for any probabilistic polynomial-time adversary A the
distributions {RealCCA1Π′,A,t,r,q(k)}k∈N and {SimCCA1

Π′,S,t,r,q(k)}k∈N are computationally indistinguishable,
for r(k) = q(k) = 1.

Proof. As in the proof of Theorem 4.1 we define a similar sequence of distributions D1, . . . ,D7

such that D1 = SimCCA1
Π′,S,t,r,q and D7 = RealCCA1Π′,A,t,r,q, and prove that for every i ∈ {1, . . . , 6} the

distributions Di and Di+1 are computationally indistinguishable. The main difference is that in
this case we change the distribution of the public key pk′ chosen by the simulator, and not of the
given public key pk. The proofs are very similar, and therefore here we only point out the main
differences.

19

3. Targeted Malleability

The distribution D1. This is the distribution SimCCA1
Π′,S,t,r,q.

The distribution D2. This distribution is obtained from D1 via the following modification. As
in D1, if S2 fails to obtain a certification chain, then output (state1,m,⊥). Otherwise, the
output is computed as follows:

1. If c(0) = c∗ and i = 0 then output (state1,m, copy1). This is identical to D1.

2. If c(0) = c∗ and i > 0 then output (state1,m, f(m)), where f = f (0) ◦ · · · ◦ f (i−1). This
is identical to D1.

3. If c(0) ̸= c∗ then compute m(0) = Dec′sk′
(
c(0)

)
. If m(0) ̸= ⊥ output

(
state1,m, f

(
m(0)

))
,

where f = f (0) ◦ · · · ◦ f (i−1), and otherwise output (state1,m,⊥). That is, in this case
instead of invoking the decryption algorithm Dec′ on c(i), we invoke it on c(0), and then
apply the functions given by the certification chain.

The distribution D3. This distribution is obtained from D2 by changing the distribution of pk′

(that is chosen by S) and the challenge ciphertext: we produce crs′(0) and π∗ (where c∗ =
(c∗0, c

∗
1, π
∗)) using the simulator of the NIZK proof system Π(0).

The distribution D4. This distribution is obtained from D3 by producing the challenge cipher-
text c∗ = (c∗0, c

∗
1, π
∗) with c∗0 = Encpk′0(m) (instead of c∗0 = Encpk′0(m

′) as in D3).

The distribution D5. This distribution is obtained from D4 by producing the challenge cipher-
text c∗ = (c∗0, c

∗
1, π
∗) with c∗1 = Encpk′1(m) (instead of c∗1 = Encpk′1(m

′) as in D4).

The distribution D6. This distribution is obtained from D5 by changing the distribution of pk′

(that is chosen by S) and the challenge ciphertext: we produce crs′(0) and π∗ (where c∗ =
(c∗0, c

∗
1, π
∗)) using the algorithms CRSGen(0) and P(0), respectively (and not by using the

simulator of the NIZK proof system Π(0) as in D5).

The distribution D7. This is the distribution RealCPAΠ′,A,t,r,q.

The remainder of the proof is essentially identical to the proof of Theorem 4.1. The only subtle
point is that S1 can simulate the decryption oracle to A1 while knowing only one of sk′0 and sk′1.

Specifically, given a ciphertext
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, it outputs ⊥ if i /∈ {0, . . . , t} or

V(i)
((

pk′0, pk
′
1, c

(i)
0 , c

(i)
1 , crs′(i−1), . . . , crs′(0)

)
, π(i), crs′(i)

)
= 0 .

Otherwise, it computes mb = Decsk′b

(
c
(i)
b

)
for the value b ∈ {0, 1} for which its known the key sk′b.

The soundness of the proof system Π(0) and of the argument systems Π(1), . . . ,Π(t) guarantee that
the simulation is correct with all but a negligible probability.

5 The Tree-Based Construction

In this section we present our second construction which is obtained by modifying our first con-
struction to offer a different trade-off between the length of the public key and the length of the
ciphertext. As in Section 4, the scheme is parameterized by an upper bound t on the number of
repeated homomorphic operations that can be applied to a ciphertext produced by the encryption
algorithm. Recall that in our first construction, the length of the ciphertext is essentially indepen-
dent of t, and the public key consists of t+1 common reference strings. In our second construction

20

3. Targeted Malleability

the number of common reference strings in the public key is only log t, and a ciphertext now consists
of log t ciphertexts of the underlying homomorphic scheme and log t succinct arguments. Such a
trade-off may be preferable over the one offered by our first construction, for example, when using
argument systems that are tailored to the NP languages under considerations and or when it is not
possible to use the same common reference string for all argument systems (depending, of course,
on the length of the longest common reference strings).

The main idea underlying this construction is that the arguments computed by the homomorphic
evaluation algorithm form a tree structure instead of a path structure. Specifically, instead of using
t argument systems, we use only d = log t argument systems where the i-th one is used for arguing
the well-formedness of a ciphertext after 2i repeated homomorphic operations.

In Section 5.1 we formally specify the building blocks of the scheme, and in Section 5.2 we pro-
vide a description of the scheme and discuss its proof of security against a-priori chosen-ciphertext
attacks (CCA1), which is rather similar to that of our first construction.

5.1 The Building Blocks

Our construction relies on the following building blocks:

1. A homomorphic public-key encryption scheme Π = (KeyGen,Enc,Dec,HomEval) with respect
to an efficiently recognizable set of efficiently computable functions F . We assume that the
scheme has almost-all-key perfect decryption (see Definition 2.1). In addition, as discussed
in Section 2.1, as we do not consider function privacy we assume without loss of generality
that HomEval is deterministic.

For any security parameter k ∈ N we denote by ℓpk = ℓpk(k), ℓm = ℓm(k), ℓr = ℓr(k), and
ℓc = ℓc(k) the bit-lengths of the public key, plaintext, randomness of Enc, and ciphertext7,
respectively, for the scheme Π. In addition, we denote by VF the deterministic polynomial-
time algorithm for testing membership in the set F , and denote by ℓF = ℓF (k) the bit-length
of the description of each function f ∈ F .

2. A non-interactive deterministic-verifier simulation-sound adaptive zero-knowledge proof sys-

tem (see Section 2.3) Π(0) =
(
CRSGen(0),P(0),V(0)

)
for the NP-language L(0) =

∪
k∈N L(0)(k)

defined as follows.

L(0)(k) =

(
pk0, pk1, c

(0)
0 , c

(0)
1

)
∈ {0, 1}2ℓpk+2ℓc :

∃(m, r0, r1) ∈ {0, 1}ℓm+2ℓr s.t.

c
(0)
0 = Encpk0(m; r0)

and c
(0)
1 = Encpk1(m; r1)

For any security parameter k ∈ N we denote by ℓcrs(0) = ℓcrs(0)(k) and ℓπ(0) = ℓπ(0)(k) the bit-
lengths of the common reference strings produced by CRSGen(0) and of the proofs produced
by P(0), respectively.

3. For every j ∈ {1, . . . , d} (where d = ⌈log t⌉) a 1/7-succinct non-interactive deterministic-

verifier extractable argument system (see Section 2.2) Π(j) =
(
CRSGen(j),P(j),V(j)

)
for the

7For simplicity we assume a fixed upper bound ℓc on the length of ciphertexts, but this is not essential to
our construction. More generally, one can allow the length of ciphertexts to increase as a result of applying the
homomorphic operation.

21

3. Targeted Malleability

NP-language L(j) =
∪

k∈N L(j)(k) defined as follows for j = 1

L(1)(k) =

(
pk0, pk1, c

(1)
0 , c

(1)
1 , c

(2)
0 , c

(2)
1

)
∈ {0, 1}2ℓpk+4ℓc :

∃f ∈ {0, 1}ℓF s.t.
• VF (f) = 1

• c
(2)
0 = HomEvalpk0

(
c
(1)
0 , f

)
• c

(2)
1 = HomEvalpk1

(
c
(1)
1 , f

)

and defined as follows for j > 1:

L(j)(k) =

(
pk0, pk1, c

(1)
0 , c

(1)
1 , c

(2j)
0 , c

(2j)
1 ,−→crs(j−1)

)
∈ {0, 1}ℓ

(j)
1 :

∃
(
c
(2j−1)
0 , c

(2j−1)
1 , c

(2j−1+1)
0 , c

(2j−1+1)
1 , f, π

(j−1)
L , π

(j−1)
R

)
∈ {0, 1}ℓ

(j)
2 s.t.

• VF (f) = 1

• c
(2j−1+1)
0 = HomEvalpk0

(
c
(2j−1)
0 , f

)
• c

(2j−1+1)
1 = HomEvalpk1

(
c
(2j−1)
1 , f

)
• V(j−1)

((
pk0, pk1, c

(1)
0 , c

(1)
1 , c

(2j−1)
0 , c

(2j−1)
1 ,−→crs(j−2)

)
, π

(j−1)
L , crs(j−1)

)
= 1

• V(j−1)
((

pk0, pk1, c
(2j−1+1)
0 , c

(2j−1+1)
1 , c

(2j)
0 , c

(2j)
1 ,−→crs(j−2)

)
, π

(j−1)
R , crs(j−1)

)
= 1

where ℓ

(j)
1 = 2ℓpk+4ℓc+

∑d−1
t=1 ℓcrs(t) , ℓ

(j)
2 = 4ℓc+ℓF+2ℓπ(j−1) , and for every 1 ≤ j ≤ d we define

−→crs(j) =
(
crs(j), . . . , crs(1)

)
. For any security parameter k ∈ N we denote by ℓcrs(j) = ℓcrs(j)(k)

and ℓπ(j) = ℓπ(j)(k) the bit-lengths of the common reference strings produced by CRSGen(j)

and of the arguments produced by P(j), respectively.

We note that for j = 1 we in fact do not need an argument system, as we can use the witness
f ∈ F as the arguments. Without loss of generality we assume that ℓπ(1) ≥ max {ℓc, ℓF}
(as otherwise arguments can always be padded). Thus, the assumption that the argument
systems Π(2), . . . ,Π(d) are 1/7-succinct implies that the length of their arguments is upper
bounded by that of Π(1) (and therefore independent of t).

5.2 The Scheme

The scheme Π′ = (KeyGen′,Enc′,Dec′,HomEval′) is parameterized by an upper bound t on the
number of repeated homomorphic operations, and we let d = ⌈log t⌉. The key-generation and
encryption algorithm are essentially identical to those described in Section 4.2:

• Key generation: On input 1k sample two pairs of keys (sk0, pk0) ← KeyGen(1k) and
(sk1, pk1) ← KeyGen(1k). Then, for every j ∈ {0, . . . , d} sample crs(j) ← CRSGen(j)(1k).
Output the secret key sk = (sk0, sk1) and the public key pk =

(
pk0, pk1, crs

(0), . . . , crs(d)
)
.

• Encryption: On input a public key pk and a plaintext m, sample r0, r1 ∈ {0, 1}∗ uniformly

at random, and output the ciphertext c(0) =
(
c
(0)
0 , c

(0)
1 , π(0)

)
, where

c
(0)
0 = Encpk0(m; r0) ,

c
(0)
1 = Encpk1(m; r1) ,

π(0) ← P(0)
((

pk0, pk1, c
(0)
0 , c

(0)
1

)
, (m, r0, r1) , crs

(0)
)

.

22

3. Targeted Malleability

• Homomorphic evaluation: The homomorphic evaluation algorithm follows the same ap-
proach used in Section 4.2, but computes the arguments of well-formedness in the form of a
sparse binary tree. The leaves of the tree correspond to a chain of ciphertexts

(
c(1), . . . , c(i)

)
that are generated from one another using the homomorphic evaluation algorithm. Each
internal node at level j ∈ {1, . . . , d} (where the leaves are considered to be at level 0) is a
succinct argument for membership in the language L(j). We first describe how to generate
the leaves and the internal nodes, and then describe the content of a ciphertext (i.e., which
nodes of the tree should be contained in a ciphertext).

– The leaves: The leftmost leaf in the tree c(1) =
(
c
(1)
0 , c

(1)
1

)
is generated from a cipher-

text c(0) =
(
c
(0)
0 , c

(0)
1 , π(0)

)
that is produced by the encryption algorithm and a function

f (0) ∈ F . It is defined as

c
(1)
0 = HomEvalpk0

(
c
(0)
0 , f (0)

)
,

c
(1)
1 = HomEvalpk1

(
c
(0)
1 , f (0)

)
.

From this point on both the ciphertext c(0), the function f (0), and the leaf c(1) are kept
part of all future ciphertexts.

For every i ∈ {1, . . . , t−1} the leaf c(i+1) =
(
c
(i+1)
0 , c

(i+1)
1

)
is generated from the previous

leaf c(i) =
(
c
(i)
0 , c

(i)
1

)
and a function f (i) ∈ F by computing

c
(i+1)
0 = HomEvalpk0

(
c
(i)
0 , f (i)

)
,

c
(i+1)
1 = HomEvalpk1

(
c
(i)
1 , f (i)

)
.

– The internal nodes: Each internal node v at level j ∈ {1, . . . , d} is an argument
for membership in the language L(j). For j = 1, the two children of x are leaves

c(i) =
(
c
(i)
0 , c

(i)
1

)
and c(i+1) =

(
c
(i+1)
0 , c

(i+1)
1

)
, and in this case v is an argument that c(i+1)

is obtained from c(i) using the homomorphic operation with some function f (i) ∈ F . This
is computed as:

π ← P(1)
((

pk0, pk1, c
(i)
0 , c

(i)
1 , c

(i+1)
0 , c

(i+1)
1 ,

)
, f (i), crs(1)

)
.

For every j ∈ {2, . . . , d}, denote by vL and vR the two children of v. These are arguments

for membership in L(j−1). Denote by c(1) =
(
c
(1)
0 , c

(1)
1

)
and c(2

j−1) =
(
c
(2j−1)
0 , c

(2j−1)
1

)
the leftmost and rightmost leaves in the subtree of vL, respectively. Similarly, denote

by c(2
j−1+1) =

(
c
(2j−1+1)
0 , c

(2j−1+1)
1

)
and c(2

j) =
(
c
(2j)
0 , c

(2j)
1

)
the leftmost and rightmost

leaves in the subtree of vR, respectively. Then, the node v is an argument that vL is a

valid argument for
(
c(1), . . . , c(2

j−1)
)
, vR is a valid argument for

(
c(2

j−1+1), . . . , c(2
j)
)
,

and that c(2
j−1+1) is obtained from c(2

j−1) using the homomorphic operation with some
function f (2j−1) ∈ F . This is computed as π ← P(j)

(
x,w, crs(j)

)
, where:

x =
(
pk0, pk1, c

(1)
0 , c

(1)
1 , c

(2j)
0 , c

(2j)
1 ,−→crs(j−1)

)
w =

(
c
(2j−1)
0 , c

(2j−1)
1 , c

(2j−1+1)
0 , c

(2j−1+1)
1 , f (2j−1), π

(j−1)
L , π

(j−1)
R

)
.

23

3. Targeted Malleability

Figure 2: The above illustration shows the structure of a ciphertext after 13 repeated homo-
morphic operations. The ciphertext c(0) is an output of the encryption algorithm, and for every
i ∈ {1, . . . , 13} the ciphertext c(i) is obtained from c(i−1) by applying the homomorphic evaluation
algorithm using a function f (i) ∈ F . The internal nodes on levels 1, 2, and 3 contain succinct
arguments for membership in the languages L(1), L(2), and L(3), respectively. The ciphertext of
the new scheme consists of the black nodes and the functions f (0), f (8), and f (12).

– The ciphertext: The ciphertext always includes the initial ciphertext c(0) that was
produced by the encryption algorithm, the first leaf c(1), and the function f (0) ∈ F that
was used for generating c(1) from c(0). Then, every time we compute the value of two
adjacent internal nodes vL and vR at some level j − 1 that belong to the same subtree,
we compute the value of their parent v at level j, as described above. As a result, we
do not longer keep any information from the subtree of v, except for its leftmost and
rightmost leaves. In addition, for every two adjacent subtrees we include the function
that transforms the rightmost leaf of the first subtree to the leftmost leaf of the second
subtree. Note that such subtrees must be of different depths, as otherwise they are
merged. Thus, at any point in time a ciphertext may contain at most 2d+1 ciphertexts
of the underlying scheme, d short arguments, and d descriptions of functions from F
(connecting subtrees). See Figure 2 for an illustration of the structure of a ciphertext.

• Decryption: On input the secret key sk and a ciphertext of the above form, verify the validity
of the non-interactive zero-knowledge proof contained in c(0), verify that c(1) is obtained from
c(0) using the function f (0) ∈ F , verify that the given tree has the right structure (with
functions from F connecting subtrees), and verify the validity of all the arguments in the non-
empty internal nodes of the tree. If any of these verifications fail, then output ⊥. Otherwise,

compute m0 = Decsk0

(
c
(i)
0

)
and m1 = Decsk1

(
c
(i)
1

)
, where c(i) =

(
c
(i)
0 , c

(i)
1

)
is the rightmost

leaf. If m0 ̸= m1 then output ⊥, and otherwise output m0.

Chosen-ciphertext security. As this scheme is obtained from the one in Section 4 by only
changing the structure of the arguments that generate the ciphertext, the proof of security is
rather similar to that in Sections 4.3 and 4.4. The only difference is in the way S2 produces
the “certification chain” for the ciphertext that the adversary outputs: instead of using the path
structure of the ciphertext, the simulator now uses the tree structure of the ciphertext and applies
the knowledge extractors accordingly. The remainder of the proof is exactly the same.

6 Extensions and Open Problems

We conclude the paper with a discussion of several extensions of our work and open problems.

24

3. Targeted Malleability

The number of repeated homomorphic operations. Our schemes allow any pre-specified
constant bound t ∈ N on the number of repeated homomorphic operations. It would be interesting
to allow this bound to be a function t(k) of the security parameter. As discussed in Section 2.2,
the bottleneck is the super-linear length of the common-reference string in Groth’s and Lipmaa’s
argument systems [Gro10, Lip11]. Any improvement to these argument systems with a common-
reference string of linear length will directly allow any logarithmic number of repeated homomorphic
operations in the path-based scheme, and any polynomial number of such operations in the tree-
based scheme.

Function privacy and unlinkability. For some applications a homomorphic encryption scheme
may be required to ensure function privacy [GHV10] or even unlinkability [PR08]. Function privacy
asks that the homomorphic evaluation algorithm does not reveal (in a semantic security fashion)
which operation it applies, and unlinkability asks that the output of the homomorphic evaluation
algorithm is computationally indistinguishable from the output of the encryption algorithm. For
example, the voting application discussed in the introduction requires function privacy to ensure
that individual votes remain private. Our approach in this paper focuses on preventing a blow-up in
the length of ciphertexts, and incorporating function privacy and unlinkability into our framework
is an interesting direction for future work. We note that since Groth’s argument system [Gro10]
is also zero-knowledge it is quite plausible to show that ciphertexts in our schemes reveal nothing
more than the number of repeated homomorphic operations.

A-posteriori chosen-ciphertext security (CCA2). As discussed in Section 1.3, Prabhakaran
and Rosulek [PR08] considered the rather orthogonal problem of providing a homomorphic encryp-
tion scheme that is secure against a meaningful variant of a-posteriori chosen-ciphertext attacks
(CCA2). In light of the fact that our schemes already offer targeted malleability against a-priori
chosen-ciphertext attacks (CCA1), it would be interesting to extend our approach to the setting
considered by Prabhakaran and Rosulek.

References

[ADR02] J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In Advances in Cryptology – EUROCRYPT ’02, pages 83–107, 2002.

[AIK10] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient ver-
ification via secure computation. In Proceedings of the 37th International Colloquium
on Automata, Languages and Programming, pages 152–163, 2010.

[BFM88] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applica-
tions. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
pages 103–112, 1988.

[BP04a] M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In Advances in Cryptology – CRYPTO ’04, pages 273–289, 2004.

[BP04b] M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without
random oracles. In Advances in Cryptology – ASIACRYPT ’04, pages 48–62, 2004.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM Conference on Computer and Communications Security,
pages 62–73, 1993.

25

3. Targeted Malleability

[BS99] M. Bellare and A. Sahai. Non-malleable encryption: Equivalence between two no-
tions, and an indistinguishability-based characterization. In Advances in Cryptology –
CRYPTO ’99, pages 519–536, 1999. The full version is available as Cryptology ePrint
Archive, Report 2006/228.

[BSM+91] M. Blum, A. D. Santis, S. Micali, and G. Persiano. Noninteractive zero-knowledge.
SIAM Journal on Computing, 20(6):1084–1118, 1991.

[CGS97] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-
authority election scheme. In Advances in Cryptology – EUROCRYPT ’97, pages
103–118, 1997.

[CKN03] R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In
Advances in Cryptology – CRYPTO ’03, pages 565–582, 2003.

[CKV10] K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of computation using
fully homomorphic encryption. In Advances in Cryptology – CRYPTO ’10, pages
483–501, 2010.

[CS98] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Advances in Cryptology - CRYPTO ’98, pages
13–25, 1998.

[CT10] A. Chiesa and E. Tromer. Proof-carrying data and hearsay arguments from signature
cards. In Proceedings of the 1st Symposium on Innovations in Computer Science, pages
310–331, 2010.

[Dam91] I. Damg̊ard. Towards practical public key systems secure against chosen ciphertext
attacks. In Advances in Cryptology – CRYPTO ’91, pages 445–456, 1991.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM Journal on
Computing, 30(2):391–437, 2000.

[DNR04] C. Dwork, M. Naor, and O. Reingold. Immunizing encryption schemes from decryption
errors. In Advances in Cryptology – EUROCRYPT ’04, pages 342–360, 2004.

[FLS90] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string. In Proceedings of the 31st Annual IEEE Symposium
on Foundations of Computer Science, pages 308–317, 1990.

[Gen09] C. Gentry. A fully homomorphic encryption scheme. PhD Thesis, Stanford University,
2009. Available at http://crypto.stanford.edu/craig.

[GGP10] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In Advances in Cryptology – CRYPTO
’10, pages 465–482, 2010.

[GHV10] C. Gentry, S. Halevi, and V. Vaikuntanathan. i-hop homomorphic encryption and
rerandomizable Yao circuits. In Advances in Cryptology – CRYPTO ’10, pages 155–
172, 2010.

[GKR08] S. Goldwasser, Y. T. Kalai, and G. Rothblum. Delegating computation: Interactive
proofs for muggles. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, pages 113–122, 2008.

26

3. Targeted Malleability

[Gro04] J. Groth. Rerandomizable and replayable adaptive chosen ciphertext attack secure
cryptosystems. In Proceedings of the 1st Theory of Cryptography Conference, pages
152–170, 2004.

[Gro10] J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In Advances
in Cryptology – ASIACRYPT ’10, pages 321–340, 2010.

[GW11] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In Proceedings of the 43rd Annual ACM Symposium on Theory
of Computing, pages 99–108, 2011.

[Lin06] Y. Lindell. A simpler construction of CCA2-secure public-key encryption under general
assumptions. Journal of Cryptology, 19(3):359–377, 2006.

[Lip11] H. Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. Cryptology ePrint Archive, Report 2011/009, 2011.

[Mic00] S. Micali. Computationally sound proofs. SIAM Journal of Computing, 30(4):1253–
1298, 2000. An extended abstract appeared in Proceedings of the 35th Annual IEEE
Symposium on Foundations of Computer Science, 1994.

[Nao03] M. Naor. On cryptographic assumptions and challenges. In Advances in Cryptology –
CRYPTO ’03, pages 96–109, 2003.

[NY90] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, pages 427–437, 1990.

[PR07] M. Prabhakaran and M. Rosulek. Rerandomizable RCCA encryption. In Advances in
Cryptology – CRYPTO ’07, pages 517–534, 2007.

[PR08] M. Prabhakaran and M. Rosulek. Homomorphic encryption with CCA security. In
Proceedings of the 35th International Colloquium on Automata, Languages and Pro-
gramming, pages 667–678, 2008.

[PSV07] R. Pass, A. Shelat, and V. Vaikuntanathan. Relations among notions of non-
malleability for encryption. In Advances in Cryptology - ASIACRYPT ’07, pages
519–535, 2007.

[RAD78] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms.
Foundations of Secure Computation, 1978.

[Sah99] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In Proceedings of the 40th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 543–553, 1999.

[SV10] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small
key and ciphertext sizes. In Public Key Cryptography – PKC ’10, pages 420–443, 2010.

[Val08] P. Valiant. Incrementally verifiable computation – or – proofs of knowledge imply
time/space efficiency. In Proceedings of the 5th Theory of Cryptography Conference,
pages 1–18, 2008.

27

3. Targeted Malleability

[vDGH+10] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic en-
cryption over the integers. In Advances in Cryptology – EUROCRYPT ’10, pages
24–43, 2010.

28

3. Targeted Malleability

Trapdoors for Lattices:
Simpler, Tighter, Faster, Smaller

Daniele Micciancio∗ Chris Peikert†

September 14, 2011

Abstract

We give new methods for generating and using “strong trapdoors” in cryptographic lattices, which
are simultaneously simple, efficient, easy to implement (even in parallel), and asymptotically optimal
with very small hidden constants. Our methods involve a new kind of trapdoor, and include specialized
algorithms for inverting LWE, randomly sampling SIS preimages, and securely delegating trapdoors.
These tasks were previously the main bottleneck for a wide range of cryptographic schemes, and our
techniques substantially improve upon the prior ones, both in terms of practical performance and quality
of the produced outputs. Moreover, the simple structure of the new trapdoor and associated algorithms can
be exposed in applications, leading to further simplifications and efficiency improvements. We exemplify
the applicability of our methods with new digital signature schemes and CCA-secure encryption schemes,
which have better efficiency and security than the previously known lattice-based constructions.

1 Introduction

Cryptography based on lattices has several attractive and distinguishing features:

• On the security front, the best attacks on the underlying problems require exponential 2Ω(n) time in
the main security parameter n, even for quantum adversaries. By constrast, for example, mainstream
factoring-based cryptography can be broken in subexponential 2Õ(n1/3) time classically, and even in
polynomial nO(1) time using quantum algorithms. Moreover, lattice cryptography is supported by
strong worst-case/average-case security reductions, which provide solid theoretical evidence that the
random instances used in cryptography are indeed asymptotically hard, and do not suffer from any
unforeseen “structural” weaknesses.

∗University of California, San Diego. Email: textttdaniele@cs.ucsd.edu. This material is based on research sponsored by
DARPA under agreement number FA8750-11-C-0096. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.
†School of Computer Science, College of Computing, Georgia Institute of Technology. Email: cpeikert@cc.gatech.edu.

This material is based upon work supported by the National Science Foundation under Grant CNS-0716786 and CAREER
Award CCF-1054495, by the Alfred P. Sloan Foundation, and by the Defense Advanced Research Projects Agency (DARPA) and the
Air Force Research Laboratory (AFRL) under Contract No. FA8750-11-C-0098. The views expressed are those of the authors and
do not necessarily reflect the official policy or position of the National Science Foundation, the Sloan Foundation, DARPA or the
U.S. Government.

1

4. Trapdoors for Lattices

• On the efficiency and implementation fronts, lattice cryptography operations can be extremely simple,
fast and parallelizable. Typical operations are the selection of uniformly random integer matrices A
modulo some small q = poly(n), and the evaluation of simple linear functions like

fA(x) := Ax mod q and gA(s, e) := stA + et mod q

on short integer vectors x, e.1 (For commonly used parameters, fA is surjective while gA is injective.)
Often, the modulus q is small enough that all the basic operations can be directly implemented using
machine-level arithmetic. By contrast, the analogous operations in number-theoretic cryptography (e.g.,
generating huge random primes, and exponentiating modulo such primes) are much more complex,
admit only limited parallelism in practice, and require the use of “big number” arithmetic libraries.

In recent years lattice-based cryptography has also been shown to be extremely versatile, leading to a large
number of theoretical applications ranging from (hierarchical) identity-based encryption [GPV08, CHKP10,
ABB10a, ABB10b], to fully homomorphic encryption schemes [Gen09b, Gen09a, vGHV10, BV11b, BV11a,
GH11, BGV11], and much more (e.g., [LM08, PW08, Lyu08, PV08, PVW08, Pei09b, ACPS09, Rüc10,
Boy10, GHV10, GKV10]).

Not all lattice cryptography is as simple as selecting random matrices A and evaluating linear functions
like fA(x) = Ax mod q, however. In fact, such operations yield only collision-resistant hash functions,
public-key encryption schemes that are secure under passive attacks, and little else. Richer and more advanced
lattice-based cryptographic schemes, including chosen ciphertext-secure encryption, “hash-and-sign” digital
signatures, and identity-based encryption also require generating a matrix A together with some “strong”
trapdoor, typically in the form of a nonsingular square matrix (a basis) S of short integer vectors such that
AS = 0 mod q. (The matrix S is usually interpreted as a basis of a lattice defined by using A as a “parity
check” matrix.) Applications of such strong trapdoors also require certain efficient inversion algorithms for the
functions fA and gA, using S. Appropriately inverting fA can be particularly complex, as it typically requires
sampling random preimages of fA(x) according to a Gaussian-like probability distribution (see [GPV08]).

Theoretical solutions for all the above tasks (generating A with strong trapdoor S [Ajt99, AP09], trapdoor
inversion of gA and preimage sampling for fA [GPV08]) are known, but they are rather complex and not very
suitable for practice, in either runtime or the “quality” of their outputs. (The quality of a trapdoor S roughly
corresponds to the Euclidean lengths of its vectors — shorter is better.) The current best method for trapdoor
generation [AP09] is conceptually and algorithmically complex, and involves costly computations of Hermite
normal forms and matrix inverses. And while the dimensions and quality of its output are asymptotically
optimal (or nearly so, depending on the precise notion of quality), the hidden constant factors are rather large.
Similarly, the standard methods for inverting gA and sampling preimages of fA [Bab85, Kle00, GPV08]
are inherently sequential and time-consuming, as they are based on an orthogonalization process that uses
high-precision real numbers. A more efficient and parallelizable method for preimage sampling (which
uses only small-integer arithmetic) has recently been discovered [Pei10], but it is still more complex than is
desirable for practice, and the quality of its output can be slightly worse than that of the sequential algorithm
when using the same trapdoor S.

More compact and efficient trapdoors appear necessary for bringing advanced lattice-based schemes
to practice, not only because of the current unsatisfactory runtimes, but also because the concrete security
of lattice cryptography can be quite sensitive to even small changes in the main parameters. As already

1 Inverting these functions corresponds to solving the “short integer solution” (SIS) problem [Ajt96] for fA, and the “learning
with errors” (LWE) problem [Reg05] for gA, both of which are widely used in lattice cryptography and enjoy provable worst-case
hardness.

2

4. Trapdoors for Lattices

mentioned, two central objects are a uniformly random matrix A ∈ Zn×mq that serves as a public key, and an
associated secret matrix S ∈ Zm×m consisting of short integer vectors having “quality” s, where smaller
is better. Here n is the main security parameter governing the hardness of breaking the functions, and m is
the dimension of a lattice associated with A, which is generated by the vectors in S. Note that the security
parameter n and lattice dimension m need not be the same; indeed, typically we have m = Θ(n lg q), which
for many applications is optimal up to constant factors. (For simplicity, throughout this introduction we
use the base-2 logarithm; other choices are possible and yield tradeoffs among the parameters.) For the
trapdoor quality, achieving s = O(

√
m) is asymptotically optimal, and random preimages of fA generated

using S have Euclidean length β ≈ s
√
m. For security, it must be hard (without knowing the trapdoor) to find

any preimage having length bounded by β. Interestingly, the computational resources needed to do so can
increase dramatically with only a moderate decrease in the bound β (see, e.g., [GN08, MR09]). Therefore,
improving the parameters m and s by even small constant factors can have a significant impact on concrete
security. Moreover, this can lead to a “virtuous cycle” in which the increased security allows for the use
of a smaller security parameter n, which leads to even smaller values of m, s, and β, etc. Note also that
the schemes’ key sizes and concrete runtimes are reduced as well, so improving the parameters yields a
“win-win-win” scenario of simultaneously smaller keys, increased concrete security, and faster operations.
(This phenomenon is borne out concretely; see Figure 2.)

1.1 Contributions

The first main contribution of this paper is a new method of trapdoor generation for cryptographic lattices,
which is simultaneously simple, efficient, easy to implement (even in parallel), and asymptotically optimal
with small hidden constants. The new trapdoor generator strictly subsumes the prior ones of [Ajt99, AP09],
in that it proves the main theorems from those works, but with improved concrete bounds for all the
relevant quantities (simultaneously), and via a conceptually simpler and more efficient algorithm. To
accompany our trapdoor generator, we also give specialized algorithms for trapdoor inversion (for gA) and
preimage sampling (for fA), which are simpler and more efficient in our setting than the prior general
solutions [Bab85, Kle00, GPV08, Pei10].

Our methods yield large constant-factor improvements, and in some cases even small asymptotic im-
provements, in the lattice dimension m, trapdoor quality s, and storage size of the trapdoor. Because trapdoor
generation and inversion algorithms are the main operations in many lattice cryptography schemes, our
algorithms can be plugged in as ‘black boxes’ to deliver significant concrete improvements in all such applica-
tions. Moreover, it is often possible to expose the special (and very simple) structure of our trapdoor directly
in cryptographic schemes, yielding additional improvements and potentially new applications. (Below we
summarize a few improvements to existing applications, with full details in Section 6.)

We now give a detailed comparison of our results with the most relevant prior works [Ajt99, AP09,
GPV08, Pei10]. The quantitative improvements are summarized in Figure 1.

Simpler, faster trapdoor generation and inversion algorithms. Our trapdoor generator is exceedingly
simple, especially as compared with the prior constructions [Ajt99, AP09]. It essentially amounts to just one
multiplication of two random matrices, whose entries are chosen independently from appropriate probability
distributions. Surprisingly, this method is nearly identical to Ajtai’s original method [Ajt96] of generating a
random lattice together with a “weak” trapdoor of one or more short vectors (but not a full basis), with one
added twist. And while there are no detailed runtime analyses or public implementations of [Ajt99, AP09],
it is clear from inspection that our new method is significantly more efficient, since it does not involve any
expensive Hermite normal form or matrix inversion computations.

3

4. Trapdoors for Lattices

Our specialized, parallel inversion algorithms for fA and gA are also simpler and more practically
efficient than the general solutions of [Bab85, Kle00, GPV08, Pei10] (though we note that our trapdoor
generator is entirely compatible with those general algorithms as well). In particular, we give the first parallel
algorithm for inverting gA under asymptotically optimal error rates (previously, handling such large errors
required the sequential “nearest-plane” algorithm of [Bab85]), and our preimage sampling algorithm for fA
works with smaller integers and requires much less offline storage than the one from [Pei10].

Tighter parameters. To generate a matrix A ∈ Zn×mq that is within negligible statistical distance of
uniform, our new trapdoor construction improves the lattice dimension from m > 5n lg q [AP09] down to
m ≈ 2n lg q. (In both cases, the base of the logarithm is a tunable parameter that appears as a multiplicative
factor in the quality of the trapdoor; here we fix upon base 2 for concreteness.) In addition, we give the first
known computationally pseudorandom construction (under the LWE assumption), where the dimension can
be as small as m = n(1 + lg q), although at the cost of an Ω(

√
n) factor worse quality s.

Our construction also greatly improves the quality s of the trapdoor. The best prior construction [AP09]
produces a basis whose Gram-Schmidt quality (i.e., the maximum length of its Gram-Schmidt orthogonalized
vectors) was loosely bounded by 20

√
n lg q. However, the Gram-Schmidt notion of quality is useful only

for less efficient, sequential inversion algorithms [Bab85, GPV08] that use high-precision real arithmetic.
For the more efficient, parallel preimage sampling algorithm of [Pei10] that uses small-integer arithmetic,
the parameters guaranteed by [AP09] are asymptotically worse, at m > n lg2 q and s ≥ 16

√
n lg2 q. By

contrast, our (statistically secure) trapdoor construction achieves the “best of both worlds:” asymptotically
optimal dimension m ≈ 2n lg q and quality s ≈ 1.6

√
n lg q or better, with a parallel preimage sampling

algorithm that is slightly more efficient than the one of [Pei10].
Altogether, for any n and typical values of q ≥ 216, we conservatively estimate that the new trapdoor

generator and inversion algorithms collectively provide at least a 7 lg q ≥ 112-fold improvement in the
length bound β ≈ s

√
m for fA preimages (generated using an efficient algorithm). We also obtain similar

improvements in the size of the error terms that can be handled when efficiently inverting gA.

New, smaller trapdoors. As an additional benefit, our construction actually produces a new kind of
trapdoor — not a basis — that is at least 4 times smaller in storage than a basis of corresponding quality,
and is at least as powerful, i.e., a good basis can be efficiently derived from the new trapdoor. We stress that
our specialized inversion algorithms using the new trapdoor provide almost exactly the same quality as the
inefficient, sequential algorithms using a derived basis, so there is no trade-off between efficiency and quality.
(This is in contrast with [Pei10] when using a basis generated according to [AP09].) Moreover, the storage
size of the new trapdoor grows only linearly in the lattice dimension m, rather than quadratically as a basis
does. This is most significant for applications like hierarchical ID-based encryption [CHKP10, ABB10a]
that delegate trapdoors for increasing values of m. The new trapdoor also admits a very simple and efficient
delegation mechanism, which unlike the prior method [CHKP10] does not require any costly operations like
linear independence tests, or conversions from a full-rank set of lattice vectors into a basis. In summary,
the new type of trapdoor and its associated algorithms are strictly preferable to a short basis in terms of
algorithmic efficiency, output quality, and storage size (simultaneously).

Ring-based constructions. Finally, and most importantly for practice, all of the above-described construc-
tions and algorithms extend immediately to the ring setting, where functions analogous to fA and gA require
only quasi-linear Õ(n) space and time to specify and evaluate (respectively), which is a factor of Ω̃(n)
improvement over the matrix-based functions defined above. See the representative works [Mic02, PR06,
LM06, LMPR08, LPR10] for more details on these functions and their security foundations.

4

4. Trapdoors for Lattices

[Ajt99, AP09] constructions This work (fast f−1
A) Factor Improvement

Dimension m
slow f−1

A [Kle00, GPV08]: > 5n lg q 2n lg q (
s
≈)

2.5 – lg q
fast f−1

A [Pei10]: > n lg2 q n(1 + lg q) (
c
≈)

Quality s
slow f−1

A : ≈ 20
√
n lg q

≈ 1.6
√
n lg q (

s
≈) 12.5 – 10

√
lg q

fast f−1
A : ≈ 16

√
n lg2 q

Length β ≈ s
√
m

slow f−1
A : > 45n lg q

≈ 2.3n lg q (
s
≈) 19 – 7 lg q

fast f−1
A : > 16n lg2 q

Figure 1: Summary of parameters for our constructions and algorithms versus prior ones. In the column
labelled “this work,”

s
≈ and

c
≈ denote constructions producing public keys A that are statistically close to

uniform, and computationally pseudorandom, respectively. (All quality terms s and length bounds β omit the
same statistical “smoothing” factor for Z, which is about 4–5 in practice.)

To illustrate the kinds of concrete improvements that our methods provide, in Figure 2 we give rep-
resentative parameters for the canonical application of GPV sigantures [GPV08], comparing the old and
new trapdoor constructions for nearly equal levels of concrete security. We stress that these parameters are
not highly optimized, and making adjustments to some of the tunable parameters in our constructions may
provide better combinations of efficiency and concrete security. We leave this effort for future work.

1.2 Techniques

The main idea behind our new method of trapdoor generation is as follows. Instead of building a random
matrix A through some specialized and complex process, we start from a carefully crafted public matrix G
(and its associated lattice), for which the associated functions fG and gG admit very efficient (in both
sequential and parallel complexity) and high-quality inversion algorithms. In particular, preimage sampling
for fG and inversion for gG can be performed in essentially O(n log n) sequential time, and can even be
performed by n parallel O(log n)-time operations or table lookups. (This should be compared with the
general algorithms for these tasks, which require at least quadratic Ω(n2 log2 n) time, and are not always
parallelizable for optimal noise parameters.) We emphasize that G is not a cryptographic key, but rather a
fixed and public matrix that may be used by all parties, so the implementation of all its associated operations
can be highly optimized, in both software and hardware. We also mention that the simplest and most
practically efficient choices of G work for a modulus q that is a power of a small prime, such as q = 2k, but a
crucial search/decision reduction for LWE was not previously known for such q, despite its obvious practical
utility. In Section 3 we provide a very general reduction that covers this case and others, and subsumes all of
the known (and incomparable) search/decision reductions for LWE [BFKL93, Reg05, Pei09b, ACPS09].

To generate a random matrix A with a trapdoor, we take two additional steps: first, we extend G
into a semi-random matrix A′ = [Ā | G], for uniform Ā ∈ Zn×m̄q and sufficiently large m̄. (As shown
in [CHKP10], inversion of gA′ and preimage sampling for fA′ reduce very efficiently to the corresponding
tasks for gG and fG.) Finally, we simply apply to A′ a certain random unimodular transformation defined by
the matrix T =

[
I −R
0 I

]
, for a random “short” secret matrix R that will serve as the trapdoor, to obtain

A = A′ ·T = [Ā | G− ĀR].

5

4. Trapdoors for Lattices

[AP09] with fast f−1
A This work Factor Improvement

Sec param n 436 284 1.5

Modulus q 232 224 256

Dimension m 446,644 13,812 32.3

Quality s 10.7× 103 418 25.6

Length β 12.9× 106 91.6× 103 141

Key size (bits) 6.22× 109 92.2× 106 67.5

Key size (ring-based) ≈ 16× 106 ≈ 361× 103 ≈ 44.3

Figure 2: Representative parameters for GPV signatures (using fast inversion algorithms) for the old and new
trapdoor generation methods. Using the methodology from [MR09], both sets of parameters have security
level corresponding to a parameter δ of at most 1.007, which is estimated to require about 246 core-years
on a 64-bit 1.86GHz Xeon using the state-of-the-art in lattice basis reduction [GN08, CN11]. We use a
smoothing parameter of r = 4.5 for Z, which corresponds to statistical error of less than 2−90 for each
randomized-rounding operation during signing. Key sizes are calculated using the Hermite normal form
optimization. Key sizes for ring-based GPV signatures are approximated to be smaller by a factor of about
0.9n.

The transformation given by T has the following properties:

• It is very easy to compute and invert, requiring essentially just one multiplication by R in both cases.
(Note that T−1 =

[
I R
0 I

]
.)

• It results in a matrix A that is distributed essentially uniformly at random, as required by the security
reductions (and worst-case hardness proofs) for lattice-based cryptographic schemes.

• For the resulting functions fA and gA, preimage sampling and inversion very simply and efficiently
reduce to the corresponding tasks for fG, gG. The overhead of the reduction is essentially just a single
matrix-vector product with the secret matrix R (which, when inverting fA, can largely be precomputed
even before the target value is known).

As a result, the cost of the inversion operations ends up being very close to that of computing fA and gA in the
forward direction. Moreover, the fact that the running time is dominated by matrix-vector multiplications with
the fixed trapdoor matrix R yields theoretical (but asymptotically significant) improvements in the context
of batch execution of several operations relative to the same secret key R: instead of evaluating several
products Rz1,Rz2, . . . ,Rzn individually at a total cost of Ω(n3), one can employ fast matrix multiplication
techniques to evaluate R[z1, . . . , zn] as a whole is subcubic time. Batch operations can be exploited in
applications like the multi-bit IBE of [GPV08] and its extensions to HIBE [CHKP10, ABB10a, ABB10b].

Related techniques. At the surface, our trapdoor generator appears similar to the original “GGH” approach
of [GGH97] for generating a lattice together with a short basis. That technique works by choosing some
random short vectors as the secret “good basis” of a lattice, and then transforms them into a public “bad basis”
for the same lattice, via a unimodular matrix having large entries. (Note, though, that this does not produce
a lattice from Ajtai’s worst-case-hard family.) A closer look reveals, however, that (worst-case hardness
aside) our method is actually not an instance of the GGH paradigm: here the initial short basis of the lattice

6

4. Trapdoors for Lattices

defined by G (or the semi-random matrix [Ā|G]) is fixed and public, while the random unimodular matrix
T =

[
I −R
0 I

]
actually produces a new lattice by applying a (reversible) linear transformation to the original

lattice. In other words, in contrast with GGH we multiply a (short) unimodular matrix on the “other side” of
the original short basis, thus changing the lattice it generates.

A more appropriate comparison is to Ajtai’s original method [Ajt96] for generating a random A together
with a “weak” trapdoor of one or more short lattice vectors (but not a full basis). There, one simply chooses a
semi-random matrix A′ = [Ā | 0] and outputs A = A′ ·T = [Ā | −ĀR], with short vectors

[
R
I

]
. Perhaps

surprisingly, our strong trapdoor generator is just a simple twist on Ajtai’s original weak generator, replacing
0 with the gadget G.

Our constructions and inversion algorithms also draw upon several other techniques from throughout the
literature. The trapdoor basis generator of [AP09] and the LWE-based “lossy” injective trapdoor function
of [PW08] both use a fixed “gadget” matrix analogous to G, whose entries grow geometrically in a structured
way. In both cases, the gadget is concealed (either statistically or computationally) in the public key by
a small combination of uniformly random vectors. Our method for adding tags to the trapdoor is very
similar to a technique for doing the same with the lossy TDF of [PW08], and is identical to the method used
in [ABB10a] for constructing compact (H)IBE. Finally, in our preimage sampling algorithm for fA, we use
the “convolution” technique from [Pei10] to correct for some statistical skew that arises when converting
preimages for fG to preimages for fA, which would otherwise leak information about the trapdoor R.

1.3 Applications

Our improved trapdoor generator and inversion algorithms can be plugged into any scheme that uses such tools
as a “black box,” and the resulting scheme will inherit all the efficiency improvements. (Every application
we know of admits such a black-box replacement.) Moreover, the special properties of our methods allow
for further improvements to the design, efficiency, and security reductions of existing schemes. Here we
summarize some representative improvements that are possible to obtain; see Section 6 for complete details.

Hash-and-sign digital signatures. Our construction and supporting algorithms plug directly into the “full
domain hash” signature scheme of [GPV08], which is strongly unforgeable in the random oracle model, with
a tight security reduction. One can even use our computationally secure trapdoor generator to obtain a smaller
public verification key, though at the cost of a hardness-of-LWE assumption, and a somewhat stronger SIS
assumption (which affects concrete security). Determining the right balance between key size and security is
left for later work.

In the standard model, there are two closely related types of hash-and-sign signature schemes:

• The one of [CHKP10], which has signatures of bit length Õ(n2), and is existentially unforgeable (later
improved to be strongly unforgeable [Rüc10]) assuming the hardness of inverting fA with solution
length bounded by β = Õ(n1.5).2

• The scheme of [Boy10], a lattice analogue of the pairing-based signature of [Wat05], which has
signatures of bit length Õ(n) and is existentially unforgeable assuming the hardness of inverting fA
with solution length bounded by β = Õ(n3.5).

We improve the latter scheme in several ways, by: (i) improving the length bound to β = Õ(n2.5); (ii) reducing
the online runtime of the signing algorithm from Õ(n3) to Õ(n2) via chameleon hashing [KR00]; (iii) making
the scheme strongly unforgeable a la [GPV08, Rüc10]; (iv) giving a tighter and simpler security reduction

2All parameters in this discussion assume a message length of Θ̃(n) bits.

7

4. Trapdoors for Lattices

(using a variant of the “prefix technique” [HW09] as in [CHKP10]), where the reduction’s advantage degrades
only linearly in the number of signature queries; and (v) removing all additional constraints on the parameters
n and q (aside from those needed to ensure hardness of the SIS problem). We stress that the scheme itself
is essentially the same (up to the improved and generalized parameters, and chameleon hashing) as that
of [Boy10]; only the security proof and underlying assumption are improved. Note that in comparison
with [CHKP10], there is still a trade-off between the bit length of the signatures and the bound β in the
underlying SIS assumption; this appears to be inherent to the style of the security reduction. Note also that the
public keys in all of these schemes are still rather large at Õ(n3) bits (or Õ(n2) bits using the ring analogue
of SIS), so they are still mainly of theoretical interest. Improving the key sizes of standard-model signatures
is an important open problem.

Chosen ciphertext-secure encryption. We give a new construction of CCA-secure public-key encryption (in the
standard model) from the learning with errors (LWE) problem with error rate α = 1/poly(n), where larger α
corresponds to a harder concrete problem. Existing schemes exhibit various incomparable tradeoffs between
key size and error rate. The first such scheme is due to [PW08]: it has public keys of size Õ(n2) bits (with
somewhat large hidden factors) and relies on a quite small LWE error rate of α = Õ(1/n4). The next scheme,
from [Pei09b], has larger public keys of Õ(n3) bits, but uses a better error rate of α = Õ(1/n). Finally, using
the generic conversion from selectively secure ID-based encryption to CCA-secure encryption [BCHK07],
one can obtain from [ABB10a] a scheme having key size Õ(n2) bits and using error rate α = Õ(1/n2).
(Here decryption is randomized, since the IBE key-derivation algorithm is.) In particular, the public key of
the scheme from [ABB10b] consists of 3 matrices in Zn×mq where m is large enough to embed a (strong)
trapdoor, plus essentially one vector in Znq per message bit.

We give a CCA-secure system that enjoys the best of all prior constructions, which has Õ(n2)-bit public
keys, uses error rate α = Õ(1/n) (both with small hidden factors), and has deterministic decryption. To
achieve this, we need to go beyond just plugging our improved trapdoor generator as a black box into prior
constructions. Our scheme relies on the particular structure of the trapdoor instances; in effect, we directly
construct a “tag-based adaptive trapdoor function” [KMO10]. The public key consists of only 1 matrix with
an embedded (strong) trapdoor, rather than 3 as in the most compact scheme to date [ABB10a]; moreover,
we can encrypt up to n log q message bits per ciphertext without needing any additional public key material.
Combining these design changes with the improved dimension of our trapdoor generator, we obtain more than
a 7.5-fold improvement in the public key size as compared with [ABB10a]. (This figure does not account for
removing the extra public key material for the message bits, nor the other parameter improvements implied
by our weaker concrete LWE assumption, which would shrink the keys even further.)

(Hierarchical) identity-based encryption. Just as with signatures, our constructions plug directly into the
random-oracle IBE of [GPV08]. In the standard-model depth-d hierarchical IBEs of [CHKP10, ABB10a],
our techniques can shrink the public parameters by an additional factor of about 2+4d

1+d ∈ [3, 4], relative to
just plugging our improved trapdoor generator as a “black box” into the schemes. This is because for each
level of the hierarchy, the public parameters only need to contain one matrix of the same dimension as G
(i.e., about n lg q), rather than two full trapdoor matrices (of dimension about 2n lg q each).3 Because the
adaptation is straightforward given the tools developed in this work, we omit the details.

3We note that in [Pei09a] (an earlier version of [CHKP10]) the schemes are defined in a similar way using lower-dimensional
extensions, rather than full trapdoor matrices at each level.

8

4. Trapdoors for Lattices

1.4 Other Related Work

Concrete parameter settings for a variety “strong” trapdoor applications are given in [RS10]. Those parameters
are derived using the previous suboptimal generator of [AP09], and using the methods from this work would
yield substantial improvements. The recent work of [LP11] also gives improved key sizes and concrete
security for LWE-based cryptosystems; however, that work deals only with IND-CPA-secure encryption,
and not at all with strong trapdoors or the further applications they enable (CCA security, digital signatures,
(H)IBE, etc.).

2 Preliminaries

We denote the real numbers by R and the integers by Z. For a nonnegative integer k, we let [k] = {1, . . . , k}.
Vectors are denoted by lower-case bold letters (e.g., x) and are always in column form (xt is a row vector).
We denote matrices by upper-case bold letters, and treat a matrix X interchangeably with its ordered set
{x1,x2, . . .} of column vectors. For convenience, we sometimes use a scalar s to refer to the scaled identity
matrix sI, where the dimension will be clear from context.

The statistical distance between two distributionsX , Y over a finite or countable domainD is ∆(X,Y) =
1
2

∑
w∈D|X(w)− Y (w)|. Statistical distance is a metric, and in particular obeys the triangle inequality. We

say that a distribution over D is ε-uniform if its statistical distance from the uniform distribution is at most ε.
Throughout the paper, we use a “randomized-rounding parameter” r that we let be a fixed function

r(n) = ω(
√

log n) growing asymptotically faster than
√

log n. By “fixed function” we mean that r =
ω(
√

log n) always refers to the very same function, and no other factors will be absorbed into the ω(·)
notation. This allows us to keep track of the precise multiplicative constants introduced by our constructions.
Concretely, we take r ≈

√
ln(2/ε)/π where ε is a desired bound on the statistical error introduced by

each randomized-rounding operation for Z, because the error is bounded by ≈ 2 exp(−πr2) according to
Lemma 2.3 below. For example, for ε = 2−54 we have r ≤ 3.5, and for ε = 2−71 we have r ≤ 4.

2.1 Linear Algebra

A unimodular matrix U ∈ Zm×m is one for which |det(U)| = 1; in particular, U−1 ∈ Zm×m as well. The
Gram-Schmidt orthogonalization of an ordered set of vectors V = {v1, . . . ,vk} ∈ Rn, is Ṽ = {ṽ1, . . . , ṽk}
where ṽi is the component of vi orthogonal to span(v1, . . . ,vi−1) for all i = 1, . . . , k. (In some cases we
orthogonalize the vectors in a different order.) In matrix form, V = QDU for some orthogonal Q ∈ Rn×k,
diagonal D ∈ Rk×k with nonnegative entries, and upper unitriangular U ∈ Rk×k (i.e., U is upper triangular
with 1s on the diagonal). The decomposition is unique when the vi are linearly independent, and we always
have ‖ṽi‖ = di,i, the ith diagonal entry of D.

For any basis V = {v1, . . . ,vn} of Rn, its origin-centered parallelepiped is defined as P1/2(V) =

V · [−1
2 ,

1
2)n. Its dual basis is defined as V∗ = V−t = (V−1)t. If we orthogonalize V and V∗ in forward

and reverse order, respectively, then we have ṽ∗i = ṽi/‖ṽi‖2 for all i. In particular, ‖ṽ∗i ‖ = 1/‖ṽi‖.
For any square real matrix X, the (Moore-Penrose) pseudoinverse, denoted X+, is the unique matrix

satisfying (XX+)X = X, X+(XX+) = X+, and such that both XX+ and X+X are symmetric. We
always have span(X) = span(X+), and when X is invertible, we have X+ = X−1.

A symmetric matrix Σ ∈ Rn×n is positive definite (respectively, positive semidefinite), written Σ > 0
(resp., Σ ≥ 0), if xtΣx > 0 (resp., xtΣx ≥ 0) for all nonzero x ∈ Rn. We have Σ > 0 if and only if Σ
is invertible and Σ−1 > 0, and Σ ≥ 0 if and only if Σ+ ≥ 0. Positive (semi)definiteness defines a partial

9

4. Trapdoors for Lattices

ordering on symmetric matrices: we say that Σ1 > Σ2 if (Σ1 − Σ2) > 0, and similarly for Σ1 ≥ Σ2. We
have Σ1 ≥ Σ2 ≥ 0 if and only if Σ+

2 ≥ Σ+
1 ≥ 0, and likewise for the analogous strict inequalities.

For any matrix B, the symmetric matrix Σ = BBt is positive semidefinite, because

xtΣx = 〈Btx,Btx〉 = ‖Btx‖2 ≥ 0

for any nonzero x ∈ Rn, where the inequality is always strict if and only if B is nonsingular. We say that
B is a square root of Σ > 0, written B =

√
Σ, if BBt = Σ. Every Σ ≥ 0 has a square root, which can be

computed efficiently, e.g., via the Cholesky decomposition.
For any matrix B ∈ Rn×k, there exists a singular value decomposition B = QDPt, where Q ∈ Rn×n,

P ∈ Rk×k are orthogonal matrices, and D ∈ Rn×k is a diagonal matrix with nonnegative entries si ≥ 0 on
the diagonal, in non-increasing order. The si are called the singular values of B. Under this convention, D is
uniquely determined (though Q,P may not be), and s1(B) = maxu‖Bu‖ = maxu‖Btu‖ ≥ ‖B‖, ‖Bt‖,
where the maxima are taken over all unit vectors u ∈ Rk.

2.2 Lattices and Hard Problems

Generally defined, anm-dimensional lattice Λ is a discrete additive subgroup of Rm. For some k ≤ m, called
the rank of the lattice, Λ is generated as the set of all Z-linear combinations of some k linearly independent
basis vectors B = {b1, . . . ,bk}, i.e., Λ = {Bz : z ∈ Zk}. In this work, we are mostly concerned with
full-rank integer lattices, i.e., Λ ⊆ Zm with k = m. (We work with non-full-rank lattices only in the analysis
of our Gaussian sampling algorithm in Section 5.4.) The dual lattice Λ∗ is the set of all v ∈ span(Λ) such
that 〈v,x〉 ∈ Z for every x ∈ Λ. If B is a basis of Λ, then B∗ = B(BtB)−1 is a basis of Λ∗. Note that when
Λ is full-rank, B is invertible and hence B∗ = B−t.

Many cryptographic applications use a particular family of so-called q-ary integer lattices, which contain
qZm as a sublattice for some (typically small) integer q. For positive integers n and q, let A ∈ Zn×mq be
arbitrary and define the following full-rank m-dimensional q-ary lattices:

Λ⊥(A) = {z ∈ Zm : Az = 0 mod q}
Λ(At) = {z ∈ Zm : ∃ s ∈ Znq s.t. z = Ats mod q}.

It is easy to check that Λ⊥(A) and Λ(At) are dual lattices, up to a q scaling factor: q · Λ⊥(A)∗ = Λ(At),
and vice-versa. For this reason, it is sometimes more natural to consider the non-integral, “1-ary” lattice
1
qΛ(At) = Λ⊥(A)∗ ⊇ Zm. For any u ∈ Znq admitting an integral solution to Ax = u mod q, define the
coset (or “shifted” lattice)

Λ⊥u (A) = {z ∈ Zm : Az = u mod q} = Λ⊥(A) + x.

Here we recall some basic facts about these q-ary lattices.

Lemma 2.1. Let A ∈ Zn×mq be arbitrary and let S ∈ Zm×m be any basis of Λ⊥(A).

1. For any unimodular T ∈ Zm×m, we have T · Λ⊥(A) = Λ⊥(A ·T−1), with T · S as a basis.

2. [ABB10a, implicit] For any invertible H ∈ Zn×nq , we have Λ⊥(H ·A) = Λ⊥(A).

3. [CHKP10, Lemma 3.2] Suppose that the columns of A generate all of Znq , let A′ ∈ Zn×m′q be arbitrary,
and let W ∈ Zm×m′ be an arbitrary solution to AW = −A′ mod q. Then S′ =

[
I 0
W S

]
is a basis of

Λ⊥([A′ | A]), and when orthogonalized in appropriate order, S̃′ =
[
I 0
0 S̃

]
. In particular, ‖S̃′‖ = ‖S̃‖.

10

4. Trapdoors for Lattices

Cryptographic problems. For β > 0, the short integer solution problem SISq,β is an average-case version
of the approximate shortest vector problem on Λ⊥(A). The problem is: given uniformly random A ∈ Zn×mq

for any desired m = poly(n), find a relatively short nonzero z ∈ Λ⊥(A), i.e., output a nonzero z ∈ Zm such
that Az = 0 mod q and ‖z‖ ≤ β. When q ≥ β

√
n·ω(
√

log n), solving this problem (with any non-negligible
probability over the random choice of A) is at least as hard as (probabilistically) approximating the Shortest
Independent Vectors Problem (SIVP, a classic problem in the computational study of point lattices [MG02])
on n-dimensional lattices to within Õ(β

√
n) factors in the worst case [Ajt96, MR04, GPV08].

For α > 0, the learning with errors problem LWEq,α may be seen an average-case version of the
bounded-distance decoding problem on the dual lattice 1

qΛ(At). Let T = R/Z, the additive group of
reals modulo 1, and let Dα denote the Gaussian probability distribution over R with parameter α (see
Section 2.3 below). For any fixed s ∈ Znq , define As,α to be the distribution over Znq × T obtained by
choosing a ← Znq uniformly at random, choosing e ← Dα, and outputting (a, b = 〈a, s〉/q + e mod 1).
The search-LWEq,α problem is: given any desired number m = poly(n) of independent samples from As,α

for some arbitrary s, find s. The decision-LWEq,α problem is to distinguish, with non-negligible advantage,
between samples from As,α for uniformly random s ∈ Znq , and uniformly random samples from Znq × T.
There are a variety of (incomparable) search/decision reductions for LWE under certain conditions on the
parameters (e.g., [Reg05, Pei09b, ACPS09]); in Section 3 we give a reduction that essentially subsumes
them all. When q ≥ 2

√
n/α, solving search-LWEq,α is at least as hard as quantumly approximating SIVP

on n-dimensional lattices to within Õ(n/α) factors in the worst case [Reg05]. For a restricted range of
parameters (e.g., when q is exponentially large) a classical (non-quantum) reduction is also known [Pei09b],
but only from a potentially easier class of problems like the decisional Shortest Vector Problem (GapSVP)
and the Bounded Distance Decoding Problem (BDD) (see [LM09]).

Note that the m samples (ai, bi) and underlying error terms ei from As,α may be grouped into a matrix
A ∈ Zn×mq and vectors b ∈ Tm, e ∈ Rm in the natural way, so that b = (Ats)/q+ e mod 1. In this way, b
may be seen as an element of Λ⊥(A)∗ = 1

qΛ(At), perturbed by Gaussian error. By scaling b and discretizing
its entries using a form of randomized rounding (see [Pei10]), we can convert it into b′ = Ats + e′ mod q
where e′ ∈ Zm has discrete Gaussian distribution with parameter (say)

√
2αq.

2.3 Gaussians and Lattices

The n-dimensional Gaussian function ρ : Rn → (0, 1] is defined as

ρ(x)
∆
= exp(−π · ‖x‖2) = exp(−π · 〈x,x〉).

Applying a linear transformation given by a (not necessarily square) matrix B with linearly independent
columns yields the (possibly degenerate) Gaussian function

ρB(x)
∆
=

{
ρ(B+x) = exp

(
−π · xtΣ+x

)
if x ∈ span(B) = span(Σ)

0 otherwise

where Σ = BBt ≥ 0. Because ρB is distinguished only up to Σ, we usually refer to it as ρ√Σ.
Normalizing ρ√Σ by its total measure over span(Σ), we obtain the probability distribution function of

the (continuous) Gaussian distribution D√Σ. By linearity of expectation, this distribution has covariance
Ex←D√Σ

[x ·xt] = Σ
2π . (The 1

2π factor is the variance of the Gaussian D1, due to our choice of normalization.)
For convenience, we implicitly ignore the 1

2π factor, and refer to Σ as the covariance matrix of D√Σ.

11

4. Trapdoors for Lattices

Let Λ ⊂ Rn be a lattice, let c ∈ Rn, and let Σ ≥ 0 be a positive semidefinite matrix such that
(Λ + c) ∩ span(Σ) is nonempty. The discrete Gaussian distribution DΛ+c,

√
Σ is simply the Gaussian

distribution D√Σ restricted to have support Λ + c. That is, for all x ∈ Λ + c,

DΛ+c,
√

Σ(x) =
ρ√Σ(x)

ρ√Σ(Λ + c)
∝ ρ√Σ(x).

We recall the definition of the smoothing parameter from [MR04], generalized to non-spherical (and
potentially degenerate) Gaussians. It is easy to see that the definition is consistent with the partial ordering of
positive semidefinite matrices, i.e., if Σ1 ≥ Σ2 ≥ ηε(Λ), then Σ1 ≥ ηε(Λ).

Definition 2.2. Let Σ ≥ 0 and Λ ⊂ span(Σ) be a lattice. We say that
√

Σ ≥ ηε(Λ) if ρ√
Σ+(Λ∗) ≤ 1 + ε.

The following is a bound on the smoothing parameter in terms of any orthogonalized basis. Note that for
practical choices like n ≤ 214 and ε ≥ 2−80, the multiplicative factor attached to ‖B̃‖ is bounded by 4.6.

Lemma 2.3 ([GPV08, Theorem 3.1]). Let Λ ⊂ Rn be a lattice with basis B, and let ε > 0. We have

ηε(Λ) ≤ ‖B̃‖ ·
√

ln(2n(1 + 1/ε))/π.

In particular, for any ω(
√

log n) function, there is a negligible ε(n) for which ηε(Λ) ≤ ‖B̃‖ · ω(
√

log n).

For appropriate parameters, the smoothing parameter of a random lattice Λ⊥(A) is small, with very high
probability. The following bound is a refinement and strengthening of one from [GPV08], which allows for a
more precise analysis of the parameters and statistical errors involved in our constructions.

Lemma 2.4. Let n, m, q ≥ 2 be positive integers. For s ∈ Znq , let the subgroup Gs = {〈a, s〉 : a ∈ Znq } ⊆
Zq, and let gs = |Gs| = q/ gcd(s1, . . . , sn, q). Let ε > 0, η ≥ ηε(Zm), and s > η be reals. Then for
uniformly random A ∈ Zn×mq ,

E
A

[
ρ1/s(Λ

⊥(A)∗)
]
≤ (1 + ε)

∑
s∈Znq

max{1/gs, η/s}m. (2.1)

In particular, if q = pe is a power of a prime p, and

m ≥ max

{
n+

log(3 + 2/ε)

log p
,
n log q + log(2 + 2/ε)

log(s/η)

}
, (2.2)

then EA

[
ρ1/s(Λ

⊥(A)∗)
]
≤ 1+2ε, and so by Markov’s inequality, s ≥ η2ε/δ(Λ

⊥(A)) except with probability
at most δ.

Proof. We will use the fact (which follows from the Poisson summation formula; see [MR04, Lemma 2.8])
that ρt(Λ) ≤ ρr(Λ) ≤ (r/t)m · ρt(Λ) for any rank-m lattice Λ and r ≥ t > 0.

For any A ∈ Zn×mq , one can check that Λ⊥(A)∗ = Zm + {Ats/q : s ∈ Znq }. Note that Ats is uniformly

12

4. Trapdoors for Lattices

random over Gm
s , for uniformly random A. Then we have

E
A

[
ρ1/s(Λ

⊥(A)∗)
]
≤
∑
s∈Znq

E
A

[
ρ1/s(Zm + Ats/q)

]
(lin. of E)

=
∑
s∈Znq

g−ms · ρ1/s(g
−1
s · Zm) (avg. over A)

≤
∑
s∈Znq

g−ms ·max{1, gsη/s}m · ρ1/η(Zm), (above fact)

≤ (1 + ε)
∑
s∈Znq

max{1/gs, η/s}m, (η ≥ ηε(Zm)).

To prove the second part of the claim, observe that gs = pi for some i ≥ 0, and that there are at most gn

values of s for which gs = g, because each entry of s must be in Gs. Therefore,∑
s∈Znq

1/gms ≤
∑
i≥0

pi(n−m) =
1

1− pn−m
≤ 1 +

ε

2(1 + ε)
.

(More generally, for arbitrary q we have
∑

s 1/gms ≤ ζ(m− n), where ζ(·) is the Riemann zeta function.)
Similarly,

∑
s(η/s)

m = qn(s/η)−m ≤ ε
2(1+ε) , and the claim follows.

We need a number of standard facts about discrete Gaussians.

Lemma 2.5 ([MR04, Lemmas 2.9 and 4.1]). Let Λ ⊂ Rn be a lattice. For any Σ ≥ 0 and c ∈ Rn,
we have ρ√Σ(Λ + c) ≤ ρ√Σ(Λ). Moreover, if

√
Σ ≥ ηε(Λ) for some ε > 0 and c ∈ span(Λ), then

ρ√Σ(Λ + c) ≥ 1−ε
1+ε · ρ√Σ(Λ).

Combining the above lemma with a bound of Banaszczyk [Ban93], we have the following tail bound on
discrete Gaussians.

Lemma 2.6 ([Ban93, Lemma 1.5]). Let Λ ⊂ Rn be a lattice and r ≥ ηε(Λ) for some ε ∈ (0, 1). For any
c ∈ span(Λ), we have

Pr
[
‖DΛ+c,r‖ ≥ r

√
n
]
≤ 2−n · 1+ε

1−ε .

Moreover, if c = 0 then the bound holds for any r > 0, with ε = 0.

The next lemma bounds the predictability (i.e., probability of the most likely outcome or equivalently,
min-entropy) of a discrete Gaussian.

Lemma 2.7 ([PR06, Lemma 2.11]). Let Λ ⊂ Rn be a lattice and r ≥ 2ηε(Λ) for some ε ∈ (0, 1). For any
c ∈ Rn and any y ∈ Λ + c, we have Pr[DΛ+c,r = y] ≤ 2−n · 1+ε

1−ε .

2.4 Subgaussian Distributions and Random Matrices

For δ ≥ 0, we say that a random variable X (or its distribution) over R is δ-subgaussian with parameter
s > 0 if for all t ∈ R, the (scaled) moment-generating function satisfies

E [exp(2πtX)] ≤ exp(δ) · exp(πs2t2).

13

4. Trapdoors for Lattices

Notice that the exp(πs2t2) term on the right is precisely the (scaled) moment-generating function of the
Gaussian distribution Ds. So, our definition differs from the usual definition of subgaussian only in the
additional factor of exp(δ); we need this relaxation when working with discrete Gaussians, usually taking
δ = ln(1+ε

1−ε) ≈ 2ε for the same small ε as in the smoothing parameter ηε.
If X is δ-subgaussian, then its tails are dominated by a Gaussian of parameter s, i.e., Pr [|X| ≥ t] ≤

2 exp(δ) exp(−πt2/s2) for all t ≥ 0.4 This follows by Markov’s inequality: by scaling X we can assume
s = 1, and we have

Pr[X ≥ t] = Pr[exp(2πtX) ≥ exp(2πt2)] ≤ exp(δ) exp(πt2)/ exp(2πt2) = exp(δ) exp(−πt2).

The claim follows by repeating the argument with −X , and the union bound. Using the Taylor series
expansion of exp(2πtX), it can be shown that any B-bounded symmetric random variable X (i.e., |X| ≤ B
always) is 0-subgaussian with parameter B

√
2π.

More generally, we say that a random vector x or its distribution (respectively, a random matrix X) is δ-
subgaussian (of parameter s) if all its one-dimensional marginals 〈u,v〉 (respectively, utXv) for unit vectors
u,v are δ-subgaussian (of parameter s). It follows immediately from the definition that the concatenation of
independent δi-subgaussian vectors with common parameter s, interpreted as either a vector or matrix, is
(
∑
δi)-subgaussian with parameter s.

Lemma 2.8. Let Λ ⊂ Rn be a lattice and s ≥ ηε(Λ) for some 0 < ε < 1. For any c ∈ span(Λ), DΛ+c,s is
ln(1+ε

1−ε)-subgaussian with parameter s. Moreover, it is 0-subgaussian for any s > 0 when c = 0.

Proof. By scaling Λ we can assume that s = 1. Let x have distribution DΛ+c, and let u ∈ Rn be any unit
vector. We bound the scaled moment-generating function of the marginal 〈x,u〉 for any t ∈ R:

ρ(Λ + c) · E [exp(2π〈x, tu〉)] =
∑

x∈Λ+c

exp(−π(〈x,x〉 − 2〈x, tu〉))

= exp(πt2) ·
∑

x∈Λ+c

exp(−π〈x− tu,x− tu〉)

= exp(πt2) · ρ(Λ + c− tu).

Both claims then follow by Lemma 2.5.

Here we recall a standard result from the non-asymptotic theory of random matrices; for further details,
see [Ver11]. (The proof for δ-subgaussian distributions is a trivial adaptation of the 0-subgaussian case.)

Lemma 2.9. Let X ∈ Rn×m be a δ-subgaussian random matrix with parameter s. There exists a universal
constant C > 0 such that for any t ≥ 0, we have s1(X) ≤ C · s · (

√
m+

√
n+ t) except with probability at

most 2 exp(δ) exp(−πt2).

Empirically, for discrete Gaussians the universal constant C in the above lemma is very close to 1/
√

2π.
In fact, it has been proved that C ≤ 1/

√
2π for matrices with independent identically distributed continuous

Gaussian entries.
4The converse also holds (up to a small constant factor in the parameter s) when E[X] = 0, but this will frequently not quite be

the case in our applications, which is why we define subgaussian in terms of the moment-generating function.

14

4. Trapdoors for Lattices

3 Search to Decision Reduction

Here we give a new search-to-decision reduction for LWE that essentially subsumes all of the (incomparable)
prior ones given in [BFKL93, Reg05, Pei09b, ACPS09].5 Most notably, it handles moduli q that were not
covered before, specifically, those like q = 2k that are divisible by powers of very small primes. The only
known reduction that ours does not subsume is a different style of sample-preserving reduction recently given
in [MM11], which works for a more limited class of moduli and error distributions; extending that reduction
to the full range of parameters considered here is an interesting open problem. In what follows, ω(

√
log n)

denotes some fixed function that grows faster than
√

log n, asymptotically.

Theorem 3.1. Let q have prime factorization q = pe11 · · · p
ek
k for pairwise distinct poly(n)-bounded primes pi

with each ei ≥ 1, and let 0 < α ≤ 1/ω(
√

log n). Let ` be the number of prime factors pi < ω(
√

log n)/α.
There is a probabilistic polynomial-time reduction from solving search-LWEq,α (in the worst case, with
overwhelming probability) to solving decision-LWEq,α′ (on the average, with non-negligible advantage) for
any α′ ≥ α such that α′ ≥ ω(

√
log n)/peii for every i, and (α′)` ≥ α · ω(

√
log n)1+`.

For example, when every pi ≥ ω(
√

log n)/α we have ` = 0, and any α′ ≥ α is acceptable. (This special
case, with the additional constraint that every ei = 1, is proved in [Pei09b].) As a qualitatively new example,
when q = pe is a prime power for some (possibly small) prime p, then it suffices to let α′ ≥ α · ω(

√
log n)2.

(A similar special case where q = pe for sufficiently large p and α′ = α� 1/p is proved in [ACPS09].)

Proof. We show how to recover each entry of s modulo a large enough power of each pi, given access to the
distribution As,α for some s ∈ Znq and to an oracle O solving DLWEq,α′ . For the parameters in the theorem
statement, we can then recover the remainder of s in polynomial time by rounding and standard Gaussian
elimination.

First, observe that we can transform As,α into As,α′ simply by adding (modulo 1) an independent sample
from D√α′2−α2 to the second component of each (a, b = 〈a, s〉/q+Dα mod 1) ∈ Znq ×T drawn from As,α.

We now show how to recover each entry of s modulo (powers of) any prime p = pi dividing q. Let
e = ei, and for j = 0, 1, . . . , e define Ajs,α′ to be the distribution over Znq × T obtained by drawing
(a, b) ← As,α′ and outputting (a, b + r/pj mod 1) for a fresh uniformly random r ← Zq. (Clearly, this
distribution can be generated efficiently from As,α′ .) Note that when α′ ≥ ω(

√
log n)/pj ≥ ηε((1/p

j)Z)

for some ε = negl(n), Ajs,α′ is negligibly far from U = U(Znq × T), and this holds at least for j = e
by hypothesis. Therefore, by a hybrid argument there exists some minimal j ∈ [e] for which O has a
non-negligible advantage in distinguishing between Aj−1

s,α′ and Ajs,α′ , over a random choice of s and all other
randomness in the experiment. (This j can be found efficiently by measuring the behavior of O.) Note that
when pi ≥ ω(

√
log n)/α ≥ ω(

√
log n)/α′, the minimal j must be 1; otherwise it may be larger, but there

are at most ` of these by hypothesis. Now by a standard random self-reduction and amplification techniques
(e.g., [Reg05, Lemma 4.1]), we can in fact assume that O accepts (respectively, rejects) with overwhelming
probability given Aj−1

s,α′ (resp., Ajs,α′), for any s ∈ Znq .

Given access to Aj−1
s,α′ and O, we can test whether s1 = 0 mod p by invoking O on samples from Aj−1

s,α′

that have been transformed as follows (all of what follows is analogous for s2, . . . , sn): take each sample
(a, b = 〈a, s〉/q + e+ r/pj−1 mod 1)← Aj−1

s,α′ to

(a′ = a− r′ · (q/pj) · e1 , b′ = b = 〈a′, s〉/q + e+ (pr + r′s1)/pj mod 1) (3.1)
5We say “essentially subsumes” because our reduction is not very meaningful when q is itself a very small prime, whereas those

of [BFKL93, Reg05] are meaningful. This is only because our reduction deals with the continuous version of LWE. If we discretize
the problem, then for very small prime q our reduction specializes to those of [BFKL93, Reg05].

15

4. Trapdoors for Lattices

for a fresh r′ ← Zq (where e1 = (1, 0, . . . , 0) ∈ Znq). Observe that if s1 = 0 mod p, the transformed
samples are also drawn from Aj−1

s,α′ , otherwise they are drawn from Ajs,α′ because r′s1 is uniformly random
modulo p. Therefore, O tells us which is the case.

Using the above test, we can efficiently recover s1 mod p by ‘shifting’ s1 by each of 0, . . . , p− 1 mod p
using the standard transformation that maps As,α′ to As+t,α′ for any desired t ∈ Znq , by taking (a, b)
to (a, b + 〈a, t〉/q mod 1). (This enumeration step is where we use the fact that every pi is poly(n)-
bounded.) Moreover, we can iteratively recover s1 mod p2, . . . , pe−j+1 as follows: having recovered
s1 mod pi, first ‘shift’ As,α′ to As′,α′ where s′1 = 0 mod pi, then apply a similar procedure as above to
recover s′1 mod pi+1: specifically, just modify the transformation in (3.1) to let a′ = a− r′ · (q/pj+i) · e1,
so that b′ = b = 〈a′, s〉/q + e+ (pr + r′(s′1/p

i))/pj . This procedure works as long as pj+i divides q, so we
can recover s1 mod pe−j+1.

Using the above reductions and the Chinese remainder theorem, and letting ji be the above minimal value
of j for p = pi (of which at most ` of these are greater than 1), from As,α we can recover s modulo

P =
∏
i

p
ei−(ji−1)
i = q/

∏
i

pji−1
i ≥ q ·

(
α′

ω(
√

log n)

)`
≥ q · α · ω(

√
log n),

because α′ < ω(
√

log n)/pji−1
i for all i by definition of ji and by hypothesis on α′. By applying the ‘shift’

transformation to As,α we can assume that s = 0 mod P . Now every 〈a, s′〉/q is an integer multiple of
P/q ≥ α · ω(

√
log n), and since every noise term e ← Dα has magnitude < (α/2) · ω(

√
log n) with

overwhelming probability, we can round the second component of every (a, b)← As,α to the exact value of
〈a, s〉/q mod 1. From these we can solve for s by Gaussian elimination, and we are done.

4 Primitive Lattices

At the heart of our new trapdoor generation algorithm (described in Section 5) is the construction of a very
special family of lattices which have excellent geometric properties, and admit very fast and parallelizable
decoding algorithms. The lattices are defined by means of what we call a primitive matrix. We say that a
matrix G ∈ Zn×mq is primitive if its columns generate all of Znq , i.e., G · Zm = Znq .6

The main results of this section are summarized in the following theorem.

Theorem 4.1. For any integers q ≥ 2, n ≥ 1, k = dlog2 qe and m = nk, there is a primitive matrix
G ∈ Zn×mq such that

• The lattice Λ⊥(G) has a known basis S ∈ Zm×m with ‖S̃‖ ≤
√

5 and ‖S‖ ≤ max{
√

5,
√
k}.

Moreover, when q = 2k, we have S̃ = 2I (so ‖S̃‖ = 2) and ‖S‖ =
√

5.

• Both G and S require little storage. In particular, they are sparse (with only O(m) nonzero entries)
and highly structured.

• Inverting gG(s, e) := stG + et mod q can be performed in quasilinear O(n · logc n) time for any
s ∈ Znq and any e ∈ P1/2(q ·B−t), where B can denote either S or S̃. Moreover, the algorithm is
perfectly parallelizable, running in polylogarithmic O(logc n) time using n processors. When q = 2k,
the polylogarithmic term O(logc n) is essentially just the cost of k additions and shifts on k-bit integers.

6We do not say that G is “full-rank,” because Zq is not a field when q is not prime, and the notion of rank for matrices over Zq is
not well defined.

16

4. Trapdoors for Lattices

• Preimage sampling for fG(x) = Gx mod q with Gaussian parameter s ≥ ‖S̃‖ · ω(
√

log n) can
be performed in quasilinear O(n · logc n) time, or parallel polylogarithmic O(logc n) time using n
processors. When q = 2k, the polylogarithmic term is essentially just the cost of k additions and shifts
on k-bit integers, plus the (offline) generation of about m random integers drawn from DZ,s.

More generally, for any integer b ≥ 2, all of the above statements hold with k = dlogb qe, ‖S̃‖ ≤
√
b2 + 1,

and ‖S‖ ≤ max{
√
b2 + 1, (b− 1)

√
k}; and when q = bk, we have S̃ = bI and ‖S‖ =

√
b2 + 1.

The rest of this section is dedicated to the proof of Theorem 4.1. In the process, we also make several
important observations regarding the implementation of the inversion and sampling algorithms associated
with G, showing that our algorithms are not just asymptotically fast, but also quite practical.

Let q ≥ 2 be an integer modulus and k ≥ 1 be an integer dimension. Our construction starts with a
primitive vector g ∈ Zkq , i.e., a vector such that gcd(g1, . . . , gk, q) = 1. The vector g defines a k-dimensional
lattice Λ⊥(gt) ⊂ Zk having determinant |Zk/Λ⊥(gt)| = q, because the residue classes of Zk/Λ⊥(gt) are
in bijective correspondence with the possible values of 〈g,x〉 mod q for x ∈ Zk, which cover all of Zq
since g is primitive. Concrete primitive vectors g will be described in the next subsections. Notice that
when q = poly(n), we have k = O(log q) = O(log n) and so Λ⊥(gt) is a very low-dimensional lattice. Let
Sk ∈ Zk×k be a basis of Λ⊥(gt), that is, gt · Sk = 0 ∈ Z1×k

q and |det(Sk)| = q.
The primitive vector g and associated basis Sk are used to define the parity-check matrix G and basis

S ∈ Zq as G := In ⊗ gt ∈ Zn×nkq and S := In ⊗ Sk ∈ Znk×nk. That is,

G :=

· · ·gt · · ·

· · ·gt · · ·
. . .
· · ·gt · · ·

 ∈ Zn×nkq , S :=

Sk

Sk
. . .

Sk

 ∈ Znk×nk.

Equivalently, G, Λ⊥(G), and S are the direct sums of n copies of gt, Λ⊥(gt), and Sk, respectively. It follows
that G is a primitive matrix, the lattice Λ⊥(G) ⊂ Znk has determinant qn, and S is a basis for this lattice. It
also follows (and is clear by inspection) that ‖S‖ = ‖Sk‖ and ‖S̃‖ = ‖S̃k‖.

By this direct sum construction, it is immediate that inverting gG(s, e) and sampling preimages of
fG(x) can be accomplished by performing the same operations n times in parallel for ggt and fgt on the
corresponding portions of the input, and concatenating the results. For preimage sampling, if each of the fgt
preimages has Gaussian parameter

√
Σ, then by independence, their concatenation has parameter In ⊗

√
Σ.

Likewise, inverting gG will succeed whenever all the n independent ggt-inversion subproblems are solved
correctly.

In the next two subsections we study concrete instantiations of the primitive vector g, and give optimized
algorithms for inverting ggt and sampling preimages for fgt . In both subsections, we consider primitive
lattices Λ⊥(gt) ⊂ Zk defined by the vector

gt :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q , k = dlog2 qe, (4.1)

whose entries form a geometrically increasing sequence. (We focus on powers of 2, but all our results
trivially extend to other integer powers, or even mixed-integer products.) The only difference between
the two subsections is in the form of the modulus q. We first study the case when the modulus q = 2k

is a power of 2, which leads to especially simple and fast algorithms. Then we discuss how the results
can be generalized to arbitrary moduli q. Notice that in both cases, the syndrome 〈g,x〉 ∈ Zq of a binary

17

4. Trapdoors for Lattices

vector x = (x0, . . . , xk−1) ∈ {0, 1}k is just the positive integer with binary expansion x. In general, for
arbitrary x ∈ Zk the syndrome 〈g,x〉 ∈ Zq can be computed very efficiently by a sequence of k additions
and binary shifts, and a single reduction modulo q, which is also trivial when q = 2k is a power of 2. The
syndrome computation is also easily parallelizable, leading to O(log k) = O(log log n) computation time
using O(k) = O(log n) processors.

4.1 Power-of-Two Modulus

Let q = 2k be a power of 2, and let g be the geometric vector defined in Equation (4.1). Define the matrix

Sk :=

2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k.

This is a basis for Λ⊥(gt), because gt · Sk = 0 mod q and det(Sk) = 2k = q. Clearly, all the basis vectors
are short. Moreover, by orthogonalizing Sk in reverse order, we have S̃k = 2 · Ik. This construction is
summarized in the following proposition. (It generalizes in the obvious way to any integer base, not just 2.)

Proposition 4.2. For q = 2k and g = (1, 2, . . . , 2k−1) ∈ Zkq , the lattice Λ⊥(gt) has a basis S such that
S̃ = 2I and ‖S‖ ≤

√
5. In particular, ηε(Λ⊥(gt)) ≤ 2r = 2 · ω(

√
log n) for some ε(n) = negl(n).

Using Proposition 4.2 and known generic algorithms [Bab85, Kle00, GPV08], it is possible to invert
ggt(s, e) correctly whenever e ∈ P1/2((q/2) · I), and sample preimages under fgt with Gaussian parameter
s ≥ 2r = 2 · ω(

√
log n). In what follows we show how the special structure of the basis S leads to simpler,

faster, and more practical solutions to these general lattice problems.

Inversion. Here we show how to efficiently find an unknown scalar s ∈ Zq given bt = [b0, b1, . . . , bk−1] =
s · gt + et = [s+ e0, 2s+ e1, . . . , 2

k−1s+ ek−1] mod q, where e ∈ Zk is a short error vector.
An iterative algorithm works by recovering the binary digits s0, s1, . . . , sk−1 ∈ {0, 1} of s ∈ Zq, from

least to most significant, as follows: first, determine s0 by testing whether

bk−1 = 2k−1s+ ek−1 = (q/2)s0 + ek−1 mod q

is closer to 0 or to q/2 (modulo q). Then recover s1 from bk−2 = 2k−2s + ek−2 = 2k−1s1 + 2k−2s0 +
ek−2 mod q, by subtracting 2k−2s0 and testing proximity to 0 or q/2, etc. It is easy to see that the algorithm
produces correct output if every ei ∈

[
− q

4 ,
q
4

)
, i.e., if e ∈ P1/2(q · Ik/2) = P1/2(q · (S̃k)−t). It can also be

seen that this algorithm is exactly Babai’s “nearest-plane” algorithm [Bab85], specialized to the scaled dual
q(Sk)

−t of the basis Sk of Λ⊥(gt), which is a basis for Λ(g).
Formally, the iterative algorithm is: given a vector bt = [b0, . . . , bk−1] ∈ Z1×k

q , initialize s← 0.

1. For i = k−1, . . . , 0: let s← s+2k−1−i ·
[
bi − 2i · s 6∈

[
− q

4 ,
q
4

)
mod q

]
, where [E] = 1 if expression

E is true, and 0 otherwise. Also let ei ← bi − 2i · s ∈
[
− q

4 ,
q
4

)
.

2. Output s ∈ Zq and e = (e0, . . . , ek−1) ∈
[
− q

4 ,
q
4

)k ⊂ Zk.

18

4. Trapdoors for Lattices

Note that for x ∈ {0, . . . , q − 1} with binary representation (xk−1xk−2 · · ·x0)2, we have[
x 6∈

[
− q

4 ,
q
4

)
mod q

]
= xk−1 ⊕ xk−2.

There is also a non-iterative approach to decoding using a lookup table, and a hybrid approach between
the two extremes. Notice that rounding each entry bi of b to the nearest multiple of 2i (modulo q, breaking
ties upward) before running the above algorithm does not change the value of s that is computed. This lets
us precompute a lookup table that maps the 2k(k+1)/2 = qO(lg q) possible rounded values of b to the correct
values of s. The size of this table grows very rapidly for k > 3, but in this case we can do better if we assume
slightly smaller error terms ei ∈

[
− q

8 ,
q
8

)
: simply round each bi to the nearest multiple of max{ q8 , 2

i}, thus
producing one of exactly 8k−1 = q3/8 possible results, whose solutions can be stored in a lookup table. Note
that the result is correct, because in each coordinate the total error introduced by ei and rounding to a multiple
of q

8 is in the range
[
− q

4 ,
q
4

)
. A hybrid approach combining the iterative algorithm with table lookups of `

bits of s at a time is potentially the most efficient option in practice, and is easy to devise from the above
discussion.

Gaussian sampling. We now consider the preimage sampling problem for function fgt , i.e., the task of
Gaussian sampling over a desired coset of Λ⊥(gt). More specifically, we want to sample a vector from the
set Λ⊥u (gt) = {x ∈ Zk : 〈g,x〉 = u mod q} for a desired syndrome u ∈ Zq, with probability proportional
to ρs(x). We wish to do so for any fixed Gaussian parameter s ≥ ‖S̃k‖ · r = 2 · ω(

√
log n), which is an

optimal bound on the smoothing parameter of Λ⊥(G).
As with inversion, there are two main approaches to Gaussian sampling, which are actually opposite

extremes on a spectrum of storage/parallelism trade-offs. The first approach is essentially to precompute
and store many independent samples x← DZk,s, ‘bucketing’ them based on the value of 〈g,x〉 ∈ Zq until
there is at least one sample per bucket. Because each 〈g,x〉 is statistically close to uniform over Zq (by the
smoothing parameter bound for Λ⊥(gt)), a coupon-collecting argument implies that we need to generate
about q log q samples to occupy every bucket. The online part of the sampling algorithm for Λ⊥(gt) is trivial,
merely taking a fresh x from the appropriate bucket. The downside is that the storage and precomputation
requirements are rather high: in many applications, q (while polynomial in the security parameter) can be in
the many thousands or more.

The second approach exploits the niceness of the orthogonalized basis S̃k = 2Ik. Using this basis, the
randomized nearest-plane algorithm of [Kle00, GPV08] becomes very simple and efficient, and is equivalent
to the following: given a syndrome u ∈ {0, . . . , q − 1} (viewed as an integer),

1. For i = 0, . . . , k − 1: choose xi ← D2Z+u,s and let u← (u− xi)/2 ∈ Z.

2. Output x = (x0, . . . , xk−1).

Observe that every Gaussian xi in the above algorithm is chosen from one of only two possible cosets of 2Z,
determined by the least significant bit of u at that moment. Therefore, we may precompute and store several
independent Gaussian samples from each of 2Z and 2Z+1, and consume one per iteration when executing the
algorithm. (As above, the individual samples may be generated by choosing several x← DZ,s and bucketing
each one according to its least-significant bit.) Such presampling makes the algorithm deterministic during
its online phase, and because there are only two cosets, there is almost no wasted storage or precomputation.
Notice, however, that this algorithm requires k = lg(q) sequential iterations.

Between the extremes of the two algorithms described above, there is a hybrid algorithm that chooses
` ≥ 1 entries of x at a time. (For simplicity, we assume that ` divides k exactly, though this is not

19

4. Trapdoors for Lattices

strictly necessary.) Let ht = [1, 2, . . . , 2`−1] ∈ Z1×`
2`

be a parity-check matrix defining the 2`-ary lattice
Λ⊥(ht) ⊆ Z`, and observe that gt = [ht, 2` · ht, . . . , 2k−` · ht]. The hybrid algorithm then works as follows:

1. For i = 0, . . . , k/`−1, choose (xi`, . . . , x(i+1)`−1)← DΛ⊥
u mod 2`

(ht),s and let u← (u−x)/2`, where

x =
∑`−1

j=0 xi`+j · 2j ∈ Z.

2. Output x = (x0, . . . , xk−1).

As above, we can precompute samples x ← DZ`,s and store them in a lookup table having 2` buckets,
indexed by the value 〈h,x〉 ∈ Z2` , thereby making the algorithm deterministic in its online phase.

4.2 Arbitrary Modulus

For a modulus q that is not a power of 2, most of the above ideas still work, with slight adaptations. Let
k = dlg(q)e, so q < 2k. As above, define gt := [1, 2, . . . , 2k−1] ∈ Z1×k

q , but now define the matrix

Sk :=

2 q0

−1 2 q1

−1 q2

. . .
...

2 qk−2

−1 qk−1

∈ Zk×k

where (q0, . . . , qk−1) ∈ {0, 1}k is the binary expansion of q =
∑

i 2i · qi. Again, S is a basis of Λ⊥(gt)
because gt · Sk = 0 mod q, and det(Sk) = q. Moreover, the basis vectors have squared length ‖si‖2 = 5
for i < k and ‖sk‖2 =

∑
i qi ≤ k. The next lemma shows that Sk also has a good Gram-Schmidt

orthogonalization.

Lemma 4.3. With S = Sk defined as above and orthogonalized in forward order, we have ‖s̃i‖2 = 4−4−i

1−4−i
∈

(4, 5] for 1 ≤ i < k, and ‖s̃k‖2 = 3q2

4k−1
< 3.

Proof. Notice that the the vectors s1, . . . , sk−1 are all orthogonal to gk = (1, 2, 4, . . . , 2k−1) ∈ Zk. Thus,
the orthogonal component of sk has squared length

‖s̃k‖2 =
〈sk,gk〉2

‖gk‖2
=

q2∑
j<k 4j

=
3q2

4k − 1
.

Similarly, the squared length of s̃i for i < k can be computed as

‖s̃i‖2 = 1 +
4i∑
j<i 4j

=
4− 4−i

1− 4−i
.

This concludes the description and analysis of the primitive lattice Λ⊥(gt) when q is not a power
of 2. Specialized inversion algorithms can also be adapted as well, but some care is needed. Of course,
since the lattice dimension k = O(log n) is very small, one could simply use the general methods of
[Bab85, Kle00, GPV08, Pei10] without worrying too much about optimizations, and satisfy all the claims
made in Theorem 4.1. Below we briefly discuss alternatives for Gaussian sampling.

20

4. Trapdoors for Lattices

The offline ‘bucketing’ approach to Gaussian sampling works without any modification for arbitrary
modulus, with just slighly larger Gaussian parameter s ≥

√
5 · r, because it relies only on the smoothing

parameter bound of ηε(Λ⊥(gt)) ≤ ‖S̃k‖ · ω(
√

log n) and the fact that the number of buckets is q. The
randomized nearest-plane approach to sampling does not admit a specialization as simple as the one we have
described for q = 2k. The reason is that while the basis S is sparse, its orthogonalization S̃ is not sparse in
general. (This is in contrast to the case when q = 2k, for which orthogonalizing in reverse order leads to
the sparse matrix S̃ = 2I.) Still, S̃ is “almost triangular,” in the sense that the off-diagonal entries decrease
geometrically as one moves away from the diagonal. This may allow for optimizing the sampling algorithm
by performig “truncated” scalar product computations, and still obtain an almost-Gaussian distribution on the
resulting samples. An interesting alternative is to use a hybrid approach, where one first performs a single
iteration of randomized nearest-plane algorithm to take care of the last basis vector sk, and then performs
some variant of the convolution algorithm from [Pei10] to deal with the first k−1 basis vectors [s1, . . . , sk−1],
which have very small lengths and singular values. Notice that the orthogonalized component of the last
vector sk is simply a scalar multiple of the primitive vector g, so the scalar product 〈sk, t〉 (for any vector t
with syndrome u = 〈g, t〉) can be immediately computed from u as u/q (see Lemma 4.3).

4.3 The Ring Setting

The above constructions and algorithms all transfer easily to compact lattices defined over polynomial rings
(i.e., number rings), as used in the representative works [Mic02, PR06, LM06, LPR10]. A commonly used
example is the cyclomotic ring R = Z[x]/(Φm(x)) where Φm(x) denotes the mth cyclotomic polynomial,
which is a monic, degree-ϕ(m), irreducible polynomial whose zeros are all the primitive mth roots of unity
in C. The ring R is a Z-module of rank n, i.e., it is generated as the additive integer combinations of the
“power basis” elements 1, x, x2, . . . , xϕ(m)−1. We let Rq = R/qR, the ring modulo the ideal generated by an
integer q. For geometric concepts like error vectors and Gaussian distributions, it is usually nicest to work
with the “canonical embedding” of R, which roughly (but not exactly) corresponds with the “coefficient
embedding,” which just considers the vector of coefficients relative to the power basis.

Let g ∈ Rkq be a primitive vector modulo q, i.e., one for which the ideal generated by q, g1, . . . , gk is the
full ring R. As above, the vector g defines functions fgt : Rk → Rq and ggt : Rq ×Rk → R1×k

q , defined as
fgt(x) = 〈g,x〉 =

∑k
i=1 gi · xi mod q and ggt(s, e) = s · gt + et mod q, and the related R-module

qRk ⊆ Λ⊥(gt) := {x ∈ Rk : fgt(x) = 〈g,x〉 = 0 mod q} (Rk,

which has index (determinant) qn = |Rq| as an additive subgroup of Rk because g is primitive. Concretely,
we can use the exact same primitive vector gt = [1, 2, . . . , 2k−1] ∈ Rkq as in Equation (4.1), interpreting its
entries in the ring Rq rather than Zq.

Inversion and preimage sampling algorithms for ggt and fgt (respectively) are relatively straightforward
to obtain, by adapting the basic approaches from the previous subsections. These algorithms are simplest
when the power basis elements 1, x, x2, . . . , xϕ(m)−1 are orthogonal under the canonical embedding (which
is the case exactly when m is a power of 2, and hence Φm(x) = xm/2 + 1), because the inversion operations
reduce to parallel operations relative to each of the power basis elements. We defer the details to the full
version.

21

4. Trapdoors for Lattices

5 Trapdoor Generation and Operations

In this section we describe our new trapdoor generation, inversion and sampling algorithms for hard random
lattices. Recall that these are lattices Λ⊥(A) defined by an (almost) uniformly random matrix A ∈ Zn×mq ,
and that the standard notion of a “strong” trapdoor for these lattices (put forward in [GPV08] and used
in a large number of subsequent applications) is a short lattice basis S ∈ Zm×m for Λ⊥(A). There are
several measures of quality for the trapdoor S, the most common ones being (in nondecreasing order):
the maximal Gram-Schmidt length ‖S̃‖; the maximal Euclidean length ‖S‖; and the maximal singular
value s1(S). Algorithms for generating random lattices together with high-quality trapdoor bases are given
in [Ajt99, AP09]. In this section we give much simpler, faster and tighter algorithms to generate a hard
random lattice with a trapdoor, and to use a trapdoor for performing standard tasks like inverting the LWE
function gA and sampling preimages for the SIS function fA. We also give a new, simple algorithm for
delegating a trapdoor, i.e., using a trapdoor for A to obtain one for a matrix [A | A′] that extends A, in a
secure and non-reversible way.

The following theorem summarizes the main results of this section. Here we state just one typical
instantiation with only asymptotic bounds. More general results and exact bounds are presented throughout
the section.

Theorem 5.1. There is an efficient randomized algorithm GenTrap(1n, 1m, q) that, given any integers n ≥ 1,
q ≥ 2, and sufficiently large m = O(n log q), outputs a parity-check matrix A ∈ Zn×mq and a ‘trapdoor’ R
such that the distribution of A is negl(n)-far from uniform. Moreover, there are efficient algorithms Invert
and SampleD that with overwhelming probability over all random choices, do the following:

• For bt = stA + et, where s ∈ Znq is arbitrary and either ‖e‖ < q/O(
√
n log q) or e← DZm,αq for

1/α ≥
√
n log q · ω(

√
log n), the deterministic algorithm Invert(R,A,b) outputs s and e.

• For any u ∈ Znq and large enough s = O(
√
n log q), the randomized algorithm SampleD(R,A,u, s)

samples from a distribution within negl(n) statistical distance of DΛ⊥u (A),s·ω(
√

logn).

Throughout this section, we let G ∈ Zn×wq denote some fixed primitive matrix that admits efficient
inversion and preimage sampling algorithms, as described in Theorem 4.1. (Recall that typically, w =
ndlog qe for some appropriate base of the logarithm.) All our algorithms and efficiency improvements are
based on the primitive matrix G and associated algorithms described in Section 4, and a new notion of
trapdoor that we define next.

5.1 A New Trapdoor Notion

We begin by defining the new notion of trapdoor, establish some of its most important properties, and give a
simple and efficient algorithm for generating hard random lattices together with high-quality trapdoors.

Definition 5.2. Let A ∈ Zn×mq and G ∈ Zn×wq be matrices with m ≥ w ≥ n. A G-trapdoor for A is a
matrix R ∈ Z(̄m−w)×w such that A

[
R
I

]
= HG for some invertible matrix H ∈ Zn×nq . We refer to H as the

tag or label of the trapdoor. The quality of the trapdoor is measured by its largest singular value s1(R).

We remark that, by definition of G-trapdoor, if G is a primitive matrix and A admits a G trapdoor, then
A is primitive as well. In particular, det(Λ⊥(A)) = qn. Since the primitive matrix G is typically fixed and
public, we usually omit references to it, and refer to G-trapdoors simply as trapdoors. We remark that since

22

4. Trapdoors for Lattices

G is primitive, the tag H in the above definition is uniquely determined by (and efficiently computable from)
A and the trapdoor R.

The following lemma says that a good basis for Λ⊥(A) may be obtained from knowledge of R. We
do not use the lemma anywhere in the rest of the paper, but include it here primarily to show that our new
definition of trapdoor is at least as powerful as the traditional one of a short basis. Our algorithms for Gaussian
sampling and LWE inversion do not need a full basis, and make direct (and more efficient) use of our new
notion of trapdoor.

Lemma 5.3. Let S ∈ Zw×w be any basis for Λ⊥(G). Let A ∈ Zn×mq have trapdoor R ∈ Z(m−w)×w with
tag H ∈ Zn×nq . Then the lattice Λ⊥(A) is generated by the basis

SA =

[
I R
0 I

] [
I 0
W S

]
,

where W ∈ Zw×m̄ is an arbitrary solution to GW = −H−1A[I | 0]T mod q. Moreover, the basis SA

satisfies ‖S̃A‖ ≤ s1(
[
I R
0 I

]
) · ‖S̃‖ ≤ (s1(R) + 1) · ‖S̃‖, when SA is orthogonalized in suitable order.

Proof. It is immediate to check that A · SA = 0 mod q, so SA generates a sublattice of Λ⊥(A). In fact, it
generates the entire lattice because det(SA) = det(S) = qn = det(Λ⊥(A)).

The bound on ‖S̃A‖ follows by simple linear algebra. Recall by Item 3 of Lemma 2.1 that ‖B̃‖ = ‖S̃‖
when the columns of B =

[
I 0
W S

]
are reordered appropriately. So it suffices to show that ‖T̃B‖ ≤

s1(T) · ‖B̃‖ for any T, B. Let B = QDU and TB = Q′D′U′ be Gram-Schmidt decompositions of B
and TB, respectively, with Q,Q′ orthogonal, D,D′ diagonal with nonnegative entries, and U,U′ upper
unitriangular. We have

TQDU = Q′D′U′ =⇒ T′D = D′U′′,

where T = Q′T′Q−1 ⇒ s1(T′) = s1(T), and U′′ is upper unitriangular because such matrices form a
multiplicative group. Now every row of T′D has Euclidean norm at most s1(T) · ‖D‖ = s1(T) · ‖B̃‖,
while the ith row of D′U′′ has norm at least d′i,i, the ith diagonal of D′. We conclude that ‖T̃B‖ = ‖D‖ ≤
s1(T) · ‖B̃‖, as desired.

We also make the following simple but useful observations:

• The rows of
[
R
I

]
in Definition 5.2 can appear in any order, since this just induces a permutation of A’s

columns.

• If R is a trapdoor for A, then it can be made into an equally good trapdoor for any extension [A | B],
by padding R with zero rows; this leaves s1(R) unchanged.

• If R is a trapdoor for A with tag H, then R is also a trapdoor for A′ = A − [0 | H′G] with tag
(H −H′) for any H′ ∈ Zn×nq , as long as (H −H′) is invertible modulo q. This is the main idea
behind the compact IBE of [ABB10a], and can be used to give a family of “tag-based” trapdoor
functions [KMO10]. In Section 6 we give explicit families of matrices H having suitable properties
for applications.

5.2 Trapdoor Generation

We now give an algorithm to generate a (pseudo)random matrix A together with a G-trapdoor. The algorithm
is straightforward, and in fact it can be easily derived from the definition of G-trapdoor itself. A random

23

4. Trapdoors for Lattices

lattice is built by first extending the primitive matrix G into a semi-random matrix A′ = [Ā | HG]
(where Ā ∈ Zn×m̄q is chosen at random, and H ∈ Zn×nq is the desired tag), and then applying a random
transformation T =

[
I R
0 I

]
∈ Zm×m to the semi-random lattice Λ⊥(A′). Since T is unimodular with inverse

T−1 =
[
I −R
0 I

]
, by Lemma 2.1 this yields the lattice T · Λ⊥(A′) = Λ⊥(A′ · T−1) associated with the

parity-check matrix A = A′ ·T−1 = [Ā | HG− ĀR]. Moreover, the distribution of A is close to uniform
(either statistically, or computationally) as long as the distribution of [Ā | 0]T−1 = [Ā | −ĀR] is. For
details, see Algorithm 1, whose correctness is immediate.

Algorithm 1 Efficient algorithm GenTrapD(Ā,H) for generating a parity-check matrix A with trapdoor R.
Input: Matrix Ā ∈ Zn×m̄q for some m̄ ≥ 1, invertible matrix H ∈ Zn×nq , and distribution D over Zm̄×w.

(If no particular Ā, H are given as input, then the algorithm may choose them itself, e.g., picking
Ā ∈ Zn×m̄q uniformly at random, and setting H = I.)

Output: A parity-check matrix A = [Ā | A1] ∈ Zn×mq , where m = m̄+ w, and trapdoor R with tag H.
1: Choose a matrix R ∈ Zm̄×w from distribution D.
2: Output A = [Ā | HG− ĀR] ∈ Zn×mq and trapdoor R ∈ Zm̄×w.

We next describe two types of GenTrap instantiations. The first type generates a trapdoor R for a
statistically near-uniform output matrix A using dimension m̄ ≈ n log q or less (there is a trade-off between
m̄ and the trapdoor quality s1(R)). The second types generates a computationally pseudorandom A (under
the LWE assumption) using dimension m̄ = 2n; this pseudorandom construction is the first of its kind in the
literature. Certain applications allow for an optimization that decreases m̄ by an additive n term; this is most
significant in the computationally secure construction because it yields m̄ = n.

Statistical instantiation. This instantiation works for any parameter m̄ and distribution D over Zm̄×w
having the following two properties:

1. Subgaussianity: D is subgaussian with some parameter s > 0 (or δ-subgaussian for some small δ).
This implies by Lemma 2.9 that R ← D has s1(R) = s · O(

√
m̄ +

√
w), except with probability

2−Ω(m̄+w). (Recall that the constant factor hidden in the O(·) expression is ≈ 1/
√

2π.)

2. Regularity: for Ā← Zn×m̄q and R← D, A = [Ā | ĀR] is δ-uniform for some δ = negl(n).

In fact, there is no loss in security if Ā contains an identity matrix I as a submatrix and is otherwise
uniform, since this corresponds with the Hermite normal form of the SIS and LWE problems. See,
e.g., [MR09, Section 5] for further details.

For example, let D = Pm̄×w where P is the distribution over Z that outputs 0 with probability 1/2, and ±1
each with probability 1/4. Then P (and hence D) is 0-subgaussian with parameter

√
2π, and satisfies the

regularity condition (for any q) for δ ≤ w
2

√
qn/2m̄, by a version of the leftover hash lemma (see, e.g., [AP09,

Section 2.2.1]). Therefore, we can use any m̄ ≥ n lg q + 2 lg w
2δ .

As another important example, let D = Dm̄×w
Z,s be a discrete Gaussian distribution for some s ≥ ηε(Z)

and ε = negl(n). Then D is 0-subgaussian with parameter s by Lemma 2.8, and satisfies the regularity
condition when m̄ satisfies the bound (2.2) from Lemma 2.4. For example, letting s = 2ηε(Z) we can use
any m̄ = n lg q + ω(log n). (Other tradeoffs between s and m̄ are possible, potentially using a different
choice of G, and more exact bounds on the error probabilities can be worked out from the lemma statements.)
Moreover, by Lemmas 2.4 and 2.8 we have that with overwhelming probability over the choice of Ā, the

24

4. Trapdoors for Lattices

conditional distribution of R given A = [Ā | ĀR] is negl(n)-subgaussian with parameter s. We will use
this fact in some of our applications in Section 6.

Computational instantiation. Let Ā = [I | Â] ∈ Zn×m̄q for m̄ = 2n, and let D = Dm̄×w
Z,s for some

s = αq, where α > 0 is an LWE relative error rate (and typically αq >
√
n). Clearly, D is 0-subgaussian

with parameter αq. Also, [Ā | ĀR = ÂR2 + R1] for R =
[
R1
R2

]
← D is exactly an instance of decision-

LWEn,q,α (in its normal form), and hence is pseudorandom (ignoring the identity submatrix) assuming that
the problem is hard.

Further optimizations. If an application only uses a single tag H = I (as is the case with, for example,
GPV signatures [GPV08]), then we can save an additive n term in the dimension m̄ (and hence in the total
dimension m): instead of putting an identity submatrix in Ā, we can instead use the identity submatrix from
G (which exists without loss of generality, since G is primitive) and conceal the remainder of G using either
of the above methods.

All of the above ideas also translate immediately to the ring setting (see Section 4.3), using an appropriate
regularity lemma (e.g., the one in [LPR10]) for a statistical instantiation, and the ring-LWE problem for a
computationally secure instantiation.

5.3 LWE Inversion

Algorithm 2 below shows how to use a trapdoor to solve LWE relative to A. Given a trapdoor R for
A ∈ Zn×mq and an LWE instance bt = stA + et mod q for some short error vector e ∈ Zm, the algorithm
recovers s (and e). This naturally yields an inversion algorithm for the injective trapdoor function gA(s, e) =
stA + et mod q, which is hard to invert (and whose output is pseudorandom) if LWE is hard.

Algorithm 2 Efficient algorithm InvertO(R,A,b) for inverting the function gA(s, e).
Input: An oracle O for inverting the function gG(ŝ, ê) when ê ∈ Zw is suitably small.

• parity-check matrix A ∈ Zn×mq ;

• G-trapdoor R ∈ Zm̄×kn for A with invertible tag H ∈ Zn×nq ;
• vector bt = gA(s, e) = stA + et for any s ∈ Znq and suitably small e ∈ Zm.

Output: The vectors s and e.
1: Compute b̂t = bt

[
R
I

]
.

2: Get (ŝ, ê)← O(b̂).
3: return s = H−tŝ and e = b−Ats (interpreted as a vector in Zm with entries in [− q

2 ,
q
2)).

Theorem 5.4. Suppose that oracle O in Algorithm 2 correctly inverts gG(ŝ, ê) for any error vector ê ∈
P1/2(q · B−t) for some B. Then for any s and e of length ‖e‖ < q/(2‖B‖s) where s =

√
s1(R)2 + 1,

Algorithm 2 correctly inverts gA(s, e). Moreover, for any s and random e ← DZm,αq where 1/α ≥
2‖B‖s · ω(

√
log n), the algorithm inverts successfully with overwhelming probability over the choice of e.

Note that using our constructions from Section 4, we can implement O so that either ‖B‖ = 2 (for q a
power of 2, where B = S̃ = 2I) or ‖B‖ =

√
5 (for arbitrary q).

25

4. Trapdoors for Lattices

Proof. Let R̄ = [Rt I], and note that s = s1(R̄). By the above description, the algorithm works correctly
when R̄e ∈ P1/2(q ·B−t); equivalently, when (btiR̄)e/q ∈ [−1

2 ,
1
2) for all i. By definition of s, we have

‖btiR̄‖ ≤ s‖B‖. If ‖e‖ < q/(2‖B‖s), then |(btiR̄)e/q| < 1/2 by Cauchy-Schwarz. Moreover, if e is
chosen at random from DZm,αq, then by the fact that e is 0-subgaussian (Lemma 2.8) with parameter αq, the
probability that |(btiR̄)e/q| ≥ 1/2 is negligible, and the second claim follows by the union bound.

5.4 Gaussian Sampling

Here we show how to use a trapdoor for efficient Gaussian preimage sampling for the function fA, i.e.,
sampling from a discrete Gaussian over a desired coset of Λ⊥(A). Our precise goal is, given a G-trapdoor R
(with tag H) for matrix A and a syndrome u ∈ Znq , to sample from the spherical discrete Gaussian DΛ⊥u (A),s

for relatively small parameter s. As we show next, this task can be reduced, via some efficient pre- and
post-processing, to sampling from any sufficiently narrow (not necessarily spherical) Gaussian over the
primitive lattice Λ⊥(G).

The main ideas behind our algorithm, which is described formally in Algorithm 3, are as follows. For
simplicity, suppose that R has tag H = I, so A

[
R
I

]
= G, and suppose we have a subroutine for Gaussian

sampling from any desired coset of Λ⊥(G) with some small, fixed parameter
√

ΣG ≥ ηε(Λ
⊥(G)). For

example, Section 4 describes algorithms for which
√

ΣG is either 2 or
√

5. (Throughout this summary we
omit the small rounding factor r = ω(

√
log n) from all Gaussian parameters.) The algorithm for sampling

from a coset Λ⊥u (A) follows from two main observations:

1. If we sample a Gaussian z with parameter
√

ΣG from Λ⊥u (G) and produce y =
[
R
I

]
z, then y is

Gaussian over the (non-full-rank) set
[
R
I

]
Λ⊥u (G) (Λ⊥u (A) with parameter

[
R
I

]√
ΣG (i.e., covariance[

R
I

]
ΣG[Rt I]). The (strict) inclusion holds because for any y =

[
R
I

]
z where z ∈ Λ⊥u (G), we have

Ay = (A
[
R
I

]
)z = Gz = u.

Note that s1(
[
R
I

]
·
√

ΣG) ≤ s1(
[
R
I

]
) · s1(

√
ΣG) ≤

√
s1(R)2 + 1 · s1(

√
ΣG), so y’s distribution is

only about an s1(R) factor wider than that of z over Λ⊥u (G). However, y lies in a non-full-rank subset
of Λ⊥u (A), and its distribution is ‘skewed’ (non-spherical). This leaks information about the trapdoor
R, so we cannot just output y.

2. To sample from a spherical Gaussian over all of Λ⊥u (A), we use the ‘convolution’ technique from [Pei10]
to correct for the above-described problems with the distribution of y. Specifically, we first choose a
Gaussian perturbation p ∈ Zm having covariance s2 −

[
R
I

]
ΣG [Rt I], which is well-defined as long

as s ≥ s1(
[
R
I

]
·
√

ΣG). We then sample y =
[
R
I

]
z as above for an adjusted syndrome v = u−Ap,

and output x = p + y. Now the support of x is all of Λ⊥u (A), and because the covariances of p and y
are additive (subject to some mild hypotheses), the overall distribution of x is spherical with Gaussian
parameter s that can be as small as s ≈ s1(R) · s1(

√
ΣG).

Quality analysis. Algorithm 3 can sample from a discrete Gaussian with parameter s · ω(
√

log n) where
s can be as small as

√
s1(R)2 + 1 ·

√
s1(ΣG) + 2. We stress that this is only very slightly larger — a

factor of at most
√

6/4 ≤ 1.23 — than the bound (s1(R) + 1) · ‖S̃‖ from Lemma 5.3 on the largest
Gram-Schmidt norm of a lattice basis derived from the trapdoor R. (Recall that our constructions from
Section 4 give s1(ΣG) = ‖S̃‖2 = 4 or 5.) In the iterative “randomized nearest-plane” sampling algorithm
of [Kle00, GPV08], the Gaussian parameter s is lower-bounded by the largest Gram-Schmidt norm of the
orthogonalized input basis (times the same ω(

√
log n) factor used in our algorithm). Therefore, the efficiency

26

4. Trapdoors for Lattices

and parallelism of Algorithm 3 comes at almost no cost in quality versus slower, iterative algorithms that use
high-precision arithmetic. (It seems very likely that the corresponding small loss in security can easily be
mitigated with slightly larger parameters, while still yielding a significant net gain in performance.)

Runtime analysis. We now analyze the computational cost of Algorithm 3, with a focus on optimizing the
online runtime and parallelism (sometimes at the expense of the offline phase, which we do not attempt to
optimize).

The offline phase is dominated by sampling from DZm,r
√

Σ for some fixed (typically non-spherical)
covariance matrix Σ > I. By [Pei10, Theorem 3.1], this can be accomplished (up to any desired statistical
distance) simply by sampling a continuous Gaussian Dr

√
Σ−I with sufficient precision, then independently

randomized-rounding each entry of the sampled vector to Z using Gaussian parameter r ≥ ηε(Z).
Naively, the online work is dominated by the computation of H−1(u − w̄) and Rz (plus the call to

O(v), which as described in Section 4 requires only O(logc n) work, or one table lookup, by each of n
processors in parallel). In general, the first computation takes O(n2) scalar multiplications and additions
in Zq, while the latter takes O(m̄ · w), which is typically Θ(n2 log2 q). (Obviously, both computations are
perfectly parallelizable.) However, the special form of z, and often of H, allow for some further asymptotic
and practical optimizations: since z is typically produced by concatenating n independent dimension-k
subvectors that are sampled offline, we can precompute much of Rz by pre-multiplying each subvector by
each of the n blocks of k columns in R. This reduces the online computation of Rz to the summation of n
dimension-m̄ vectors, or O(n2 log q) scalar additions (and no multiplications) in Zq. As for multiplication by
H−1, in some applications (like GPV signatures) H is always the identity I, in which case multiplication is
unnecessary; in all other applications we know of, H actually represents multiplication in a certain extension
field/ring of Zq, which can be computed in O(n log n) scalar operations and depth O(log n). In conclusion,
the asymptotic cost of the online phase is still dominated by computing Rz, which takes Õ(n2) work, but the
hidden constants are small and many practical speedups are possible.

Theorem 5.5. Algorithm 3 is correct.

To prove the theorem we need the following fact about products of Gaussian functions.

Fact 5.6 (Product of degenerate Gaussians). Let Σ1,Σ2 ∈ Rm×m be symmetric positive semidefinite matrices,
let Vi = span(Σi) for i = 1, 2 and V3 = V1∩V2, let P = Pt ∈ Rm×m be the symmetric matrix that projects
orthogonally onto V3, and let c1, c2 ∈ Rm be arbitrary. Supposing it exists, let v be the unique point in
(V1 + c1) ∩ (V2 + c2) ∩ V ⊥3 . Then

ρ√Σ1
(x− c1) · ρ√Σ2

(x− c2) = ρ√Σ1+Σ2
(c1 − c2) · ρ√Σ3

(x− c3),

where Σ3 and c3 ∈ v + V3 are such that

Σ+
3 = P(Σ+

1 + Σ+
2)P

Σ+
3 (c3 − v) = Σ+

1 (c1 − v) + Σ+
2 (c2 − v).

Proof of Theorem 5.5. We adopt the notation from the algorithm, let V = span(
[
R
I

]
) ⊂ Rm, let P be the

matrix that projects orthogonally onto V , and define the lattice Λ = Zm ∩ V = L(
[
R
I

]
), which spans V .

We analyze the output distribution of SampleD. Clearly, it always outputs an element of Λ⊥u (A), so let x̄ ∈
Λ⊥u (A) be arbitrary. Now SampleD outputs x̄ exactly when it chooses in Step 1 some p̄ ∈ V + x̄, followed in

27

4. Trapdoors for Lattices

Algorithm 3 Efficient algorithm SampleDO(R, Ā,H,u, s) for sampling a discrete Gaussian over Λ⊥u (A).

Input: An oracle O(v) for Gaussian sampling over a desired coset Λ⊥v (G) with fixed parameter r
√

ΣG ≥
ηε(Λ

⊥(G)), for some ΣG ≥ 2 and ε ≤ 1/2.

Offline phase:
• partial parity-check matrix Ā ∈ Zn×m̄q ;
• trapdoor matrix R ∈ Zm̄×w;
• positive definite Σ ≥

[
R
I

]
(2 + ΣG)[Rt I], e.g., any Σ = s2 ≥ (s1(R)2 + 1)(s1(ΣG) + 2).

Online phase:
• invertible tag H ∈ Zn×nq defining A = [Ā | HG− ĀR] ∈ Zn×mq , for m = m̄+ w

(H may instead be provided in the offline phase, if it is known then);
• syndrome u ∈ Znq .

Output: A vector x drawn from a distribution within O(ε) statistical distance of DΛ⊥u (A),r·
√

Σ.

Offline phase:

1: Choose a fresh perturbation p← DZm,r
√

Σp
, where Σp = Σ−

[
R
I

]
ΣG [Rt I] ≥ 2

[
R
I

]
[Rt I].

2: Let p = [p1
p2] for p1 ∈ Zm̄, p2 ∈ Zw, and compute w̄ = Ā(p1 −Rp2) ∈ Znq and w = Gp2 ∈ Znq .

Online phase:

3: Let v← H−1(u− w̄)−w = H−1(u−Ap) ∈ Znq , and choose z← DΛ⊥v (G),r
√

ΣG
by calling O(v).

4: return x← p +
[
R
I

]
z.

Step 3 by the unique z̄ ∈ Λ⊥v (G) such that x̄− p̄ =
[
R
I

]
z̄. It is easy to check that ρ√ΣG

(z̄) = ρ√
Σy

(x̄− p̄),
where

Σy =
[
R
I

]
ΣG [Rt I] ≥ 2

[
R
I

]
[Rt I]

is the covariance matrix with span(Σy) = V . Note that Σp + Σy = Σ by definition of Σp, and that
span(Σp) = Rm because Σp > 0. Therefore, we have (where C denotes a normalizing constant that may
vary from line to line, but does not depend on x̄):

px̄ = Pr[SampleD outputs x̄]

=
∑

p̄∈Zm∩(V+x̄)

DZm,r
√

Σp
(p̄) ·D

Λ⊥v (G),r
√

Σy
(z̄) (def. of SampleD)

= C
∑
p̄

ρ
r
√

Σp
(p̄) · ρ

r
√

Σy
(p̄− x̄)/ρr

√
ΣG

(Λ⊥v (G)) (def. of D)

= C · ρr√Σ(x̄) ·
∑
p̄

ρr
√

Σ3
(p̄− c3)/ρr

√
ΣG

(Λ⊥v (G)) (Fact 5.6)

∈ C[1, 1+ε
1−ε] · ρr√Σ(x̄) ·

∑
p̄

ρr
√

Σ3
(p̄− c3) (Lemma 2.5 and r

√
ΣG ≥ ηε(Λ⊥(G)))

= C[1, 1+ε
1−ε] · ρr√Σ(x̄) · ρr√Σ3

(Zm ∩ (V + x̄)− c3), (5.1)

where Σ+
3 = P(Σ+

p + Σ+
y)P and c3 ∈ v + V = x̄ + V , because the component of x̄ orthogonal to V is the

unique point v ∈ (V + x̄) ∩ V ⊥. Therefore,

Zm ∩ (V + x̄)− c3 = (Zm ∩ V) + (x̄− c3) ⊂ V

28

4. Trapdoors for Lattices

is a coset of the lattice Λ = L(
[
R
I

]
). It remains to show that r

√
Σ3 ≥ ηε(Λ), so that the rightmost term

in (5.1) above is essentially a constant (up to some factor in [1−ε
1+ε , 1]) independent of x̄, by Lemma 2.5. Then

we can conclude that px̄ ∈ [1−ε
1+ε ,

1+ε
1−ε] · ρr√Σ(x̄), from which the theorem follows.

To show that r
√

Σ3 ≥ ηε(Λ), note that since Λ∗ ⊂ V , for any covariance Π we have ρP
√

Π(Λ∗) =

ρ√Π(Λ∗), and so P
√

Π ≥ ηε(Λ) if and only if
√

Π ≥ ηε(Λ). Now because both Σp,Σy ≥ 2
[
R
I

]
[Rt I], we

have
Σ+
p + Σ+

y ≤ (
[
R
I

]
[Rt I])+.

Because r
[
R
I

]
≥ ηε(Λ) for ε = negl(n) by Lemma 2.3, we have r

√
Σ3 = r

√
(Σ+

p + Σ+
y)+ ≥ ηε(Λ), as

desired.

5.5 Trapdoor Delegation

Here we describe very simple and efficient mechanism for securely delegating a trapdoor for A ∈ Zn×mq

to a trapdoor for an extension A′ ∈ Zn×m′q of A. Our method has several advantages over the previous
basis delegation algorithm of [CHKP10]: first and most importantly, the size of the delegated trapdoor grows
only linearly with the dimension m′ of Λ⊥(A′), rather than quadratically. Second, the algorithm is much
more efficient, because it does not require testing linear independence of Gaussian samples, nor computing
the expensive ToBasis and Hermite normal form operations. Third, the resulting trapdoor R has a ‘nice’
Gaussian distribution that is easy to analyze and may be useful in applications. We do note that while the
delegation algorithm from [CHKP10] works for any extension A′ of A (including A itself), ours requires
m′ ≥ m + w. Fortunately, this is frequently the case in applications such as HIBE and others that use
delegation.

Algorithm 4 Efficient algorithm DelTrapO(A′ = [A | A1],H′, s′) for delegating a trapdoor.

Input: an oracle O for discrete Gaussian sampling over cosets of Λ = Λ⊥(A) with parameter s′ ≥ ηε(Λ).
• parity-check matrix A′ = [A | A1] ∈ Zn×mq × Zn×wq ;

• invertible matrix H′ ∈ Zn×nq ;
Output: a trapdoor R′ ∈ Zm×w for A′ with tag H ∈ Zn×nq .

1: Using O, sample each column of R′ independently from a discrete Gaussian with parameter s′ over the
appropriate coset of Λ⊥(A), so that AR′ = H′G−A1.

Usually, the oracleO needed by Algorithm 4 would be implemented (up to negl(n) statistical distance) by
Algorithm 3 above, using a trapdoor R for A where s1(R) is sufficiently small relative to s′. The following
is immediate from Lemma 2.9 and the fact that the columns of R′ are independent and negl(n)-subgaussian.
A relatively tight bound on the hidden constant factor can also be derived from Lemma 2.9.

Lemma 5.7. For any valid inputs A′ and H′, Algorithm 4 outputs a trapdoor R′ for A′ with tag H′, whose
distribution is the same for any valid implementation of O, and s1(R′) ≤ s′ · O(

√
m +

√
w) except with

negligible probability.

29

4. Trapdoors for Lattices

6 Applications

The main applications of “strong” trapdoors have included digital signature schemes in both the random-
oracle and standard models, encryption secure under chosen-ciphertext attack (CCA), and (hierarchical)
identity-based encryption. Here we focus on signature schemes and CCA-secure encryption, where our
techniques lead to significant new improvements (beyond what is obtained by plugging in our trapdoor
generator as a “black box”). Where appropriate, we also briefly mention the improvements that are possible
in the remaining applications.

6.1 Algebraic Background

In our applications we need a special collection of elements from a certain ringR, which induce invertible
matrices H ∈ Zn×nq as required by our trapdoor construction. We construct such a ring using ideas from the
literature on secret sharing over groups and modules, e.g., [DF94, Feh98]. Define the ringR = Zq[x]/(f(x))
for some monic degree-n polynomial f(x) = xn + fn−1x

n−1 + · · · + f0 ∈ Z[x] that is irreducible
modulo every prime p dividing q. (Such an f(x) can be constructed by finding monic irreducible degree-
n polynomials in Zp[x] for each prime p dividing q, and using the Chinese remainder theorem on their
coefficients to get f(x).) Recall that R is a free Zq-module of rank n, i.e., the elements of R can be
represented as vectors in Znq relative to the standard basis of monomials 1, x, . . . , xn−1. Multiplication by
any fixed element ofR then acts as a linear transformation on Znq according to the rule x · (a0, . . . , an−1)t =
(0, a0, . . . , an−2)t−an−1(f0, f1, . . . , fn−1)t, and so can be represented by an (efficiently computable) matrix
in Zn×nq relative to the standard basis. In other words, there is an injective ring homomorphism h : R → Zn×nq

that maps any a ∈ R to the matrix H = h(a) representing multiplication by a. In particular, H is invertible
if and only if a ∈ R∗, the set of units inR. By the Chinese remainder theorem, and because Zp[x]/(f(x))
is a field by construction of f(x), an element a ∈ R is a unit exactly when it is nonzero (as a polynomial
residue) modulo every prime p dividing q. We use this fact quite essentially in the constructions that follow.

6.2 Signature Schemes

6.2.1 Definitions

A signature scheme SIG for a message spaceM (which may depend on the security parameter n) is a tuple
of PPT algorithms as follows:

• Gen(1n) outputs a verification key vk and a signing key sk.

• Sign(sk, µ), given a signing key sk and a message µ ∈M, outputs a signature σ ∈ {0, 1}∗.
• Ver(vk, µ, σ), given a verification key vk, a message µ, and a signature σ, either accepts or rejects.

The correctness requirement is: for any µ ∈M, generate (vk, sk)← Gen(1n) and σ ← Sign(sk, µ). Then
Ver(vk, µ, σ) should accept with overwhelming probability (over all the randomness in the experiment).

We recall two standard notions of security for signatures. An intermediate notion is strong unforge-
ability under static chosen-message attack, or su-scma security, is defined as follows: first, the forger F
outputs a list of distinct query messages µ(1), . . . , µ(Q) for some Q. (The distinctness condition simplifies
our construction, and does not affect the notion’s usefulness.) Next, we generate (vk, sk) ← Gen(1n)
and σ(i) ← Sign(sk, µ(i)) for each i ∈ [Q], then give vk and each σ(i) to F . Finally, F outputs an at-
tempted forgery (µ∗, σ∗). The forger’s advantage Advsu-scma

SIG (F) is the probability that Ver(vk, µ∗, σ∗)
accepts and (µ∗, σ∗) 6= (µ(i), σ(i)) for all i ∈ [Q], taken over all the randomness of the experiment. The

30

4. Trapdoors for Lattices

scheme is su-scma-secure if Advsu-scma
SIG (F) = negl(n) for every nonuniform probabilistic polynomial-time

algorithm F .
Another notion, called strong existential unforgeability under adaptive chosen-message attack, or su-acma

security, is defined similarly, except that F is first given vk and may adaptively choose the messages µ(i) to
be signed, which need not be distinct.

Using a family of chameleon hash functions, there is a generic transformation from eu-scma- to eu-acma-
security; see, e.g., [KR00]. Furthermore, the transformation results in an offline/online scheme in which the
Sign algorithm can be precomputed before the message to be signed is known; see [ST01]. The basic idea
is that the signer chameleon hashes the true message, then signs the hash value using the eu-scma-secure
scheme (and includes the randomness used in the chameleon hash with the final signature). A suitable type of
chameleon hash function has been constructed under a weak hardness-of-SIS assumption; see [CHKP10].

6.2.2 Standard Model Scheme

Here we give a signature scheme that is statically secure in the standard model. The scheme itself is essentially
identical (up to the improved and generalized parameters) to the one of [Boy10], which is a lattice analogue of
the pairing-based signature of [Wat05]. We give a new proof with an improved security reduction that relies
on a weaker assumption. The proof uses a variant of the “prefix technique” [HW09] also used in [CHKP10].

Our scheme involves a number of parameters. For simplicity, we give some exemplary asymptotic bounds
here. (Other slight trade-offs among the parameters are possible, and more precise values can be obtained
using the more exact bounds from earlier in the paper and the material below.) In what follows, ω(

√
log n)

represents a fixed function that asymptotically grows faster than
√

log n.

• G ∈ Zn×nkq is a gadget matrix for large enough q = poly(n) and k = dlog qe = O(log n), with the
ability to sample from cosets of Λ⊥(G) with Gaussian parameter O(1) · ω(

√
log n) ≥ ηε(Λ

⊥(G)).
(See for example the constructions from Section 4.)

• m̄ = O(nk) and D = Dm̄×nk
Z,ω(
√

logn)
so that (Ā, ĀR) is negl(n)-far from uniform for Ā← Zn×m̄q and

R← D, and m = m̄+ 2nk is the total dimension of the signatures.

• ` is a suitable message length (see below), and s = O(
√
`nk) · ω(

√
log n)2 is a sufficiently large

Gaussian parameter.

The legal values of ` are influenced by the choice of q and n. Our security proof requires a special
collection of units in the ringR = Zq[x]/(f(x)) as constructed in Section 6.1 above. We need a sequence of
` units u1, . . . , u` ∈ R∗, not necessarily distinct, such that any nontrivial subset-sum is also a unit, i.e., for
any nonempty S ⊆ [`],

∑
i∈S ui ∈ R∗. By the characterization of units inR described in Section 6.1, letting

p be the smallest prime dividing q, we can allow any ` ≤ (p− 1) · n by taking p− 1 copies of each of the
monomials xi ∈ R∗ for i = 0, . . . , n− 1.

The signature scheme has message space {0, 1}`, and is defined as follows.

• Gen(1n): choose Ā← Zn×m̄q , choose R ∈ Zm̄×nk from distribution D, and let A = [Ā | G− ĀR].

For i = 0, 1, . . . , `, choose Ai ← Zn×nkq . Also choose a syndrome u← Znq .

The public verification key is vk = (A,A0, . . . ,A`,u). The secret signing key is sk = R.

• Sign(sk, µ ∈ {0, 1}`): let Aµ =
[
A | A0 +

∑
i∈[`] µiAi

]
∈ Zn×mq , where µi ∈ {0, 1} is the ith bit

of µ, interpreted as an integer. Output v ∈ Zm sampled from DΛ⊥u (Aµ),s, using SampleD with trapdoor
R for A (which is also a trapdoor for its extension Aµ).

31

4. Trapdoors for Lattices

• Ver(vk, µ,v): let Aµ be as above. Accept if ‖v‖ ≤ s ·
√
m and Aµ · v = u; otherwise, reject.

Notice that the signing process takesO(`n2k) scalar operations (to add up the Ais), but after transforming
the scheme to a fully secure one using chameleon hashing, these computations can be performed offline
before the message is known.

Theorem 6.1. There exists a PPT oracle algorithm (a reduction) S attacking the SISq,β problem for large
enough β = O(`(nk)3/2) · ω(

√
log n)3 such that, for any adversary F mounting an su-scma attack on SIG

and making at most Q queries,

AdvSISq,β (SF) ≥ Advsu-scma
SIG (F)/(2(`− 1)Q+ 2)− negl(n).

Proof. Let F be an adversary mounting an su-scma attack on SIG, having advantage δ = Advsu-scma
SIG (F).

We construct a reduction S attacking SISq,β . The reduction S takes as input m̄+ nk + 1 uniformly random
and independent samples from Znq , parsing them as a matrix A = [Ā | B] ∈ Zn×(m̄+nk)

q and syndrome
u′ ∈ Znq . It will use F either to find some z ∈ Zm of length ‖z‖ ≤ β − 1 such that Az = u′ (from which it
follows that [A | u′] · z′ = 0, where z′ = [z

−1] is nonzero and of length at most β), or a nonzero z ∈ Zm
such that Az = 0 (from which is follows that [A | u′] · [z0] = 0).

We distinguish between two types of forger F : one that produces a forgery on an unqueried message
(a violation of standard existential unforgeability), and one that produces a new signature on a queried
message (a violation of strong unforgeability). Clearly any F with advantage δ has probability at least δ/2 of
succeeding in at least one of these two tasks.

First we consider F that forges on an unqueried message (with probability at least δ/2). Our reduction S
simulates the static chosen-message attack to F as follows:

• Invoke F to receive up to Q messages µ(1), µ(2), . . . ∈ {0, 1}`. Compute the set P of all strings
p ∈ {0, 1}≤` having the property that p is a shortest string for which no µ(j) has p as a prefix.
Equivalently, P represents the set of maximal subtrees of {0, 1}≤` (viewed as a tree) that do not
contain any of the queried messages. The set P has size at most (`− 1) ·Q+ 1, and may be computed
efficiently. (See, e.g., [CHKP10] for a precise description of an algorithm.) Choose some p from P
uniformly at random, letting t = |p| ≤ `.

• Construct a verification key vk = (A,A0, . . . ,A`,u = u′): for i = 0, . . . , `, choose Ri ← D, and let

Ai = HiG− ĀRi, where Hi =

h(0) = 0 i > t

(−1)pi · h(ui) i ∈ [t]

−
∑

j∈[t] pj ·Hj i = 0

.

(Recall that u1, . . . , u` ∈ R = Zq[x]/(f(x)) are units whose nontrivial subset-sums are also units.)

Note that by hypothesis on m̄ and D, for any choice of p the key vk is only negl(n)-far from uniform
in statistical distance. Note also that by our choice of the Hi, for any message µ ∈ {0, 1}` having p
as a prefix, we have H0 +

∑
i∈[`] µiHi = 0. Whereas for any µ ∈ {0, 1}` having p′ 6= p as its t-bit

prefix, we have

H0 +
∑
i∈[`]

µiHi =
∑
i∈[t]

(p′i − pi) ·Hi =
∑

i∈[t],p′i 6=pi

(−1)pi ·Hi = h
(∑
i∈[t],p′i 6=pi

ui
)
,

which is invertible by hypothesis on the uis. Finally, observe that with overwhelming probability
over any fixed choice of vk and the Hi, each column of each Ri is still independently distributed as

32

4. Trapdoors for Lattices

a discrete Gaussian with parameter ω(
√

log n) ≥ ηε(Ā) over some fixed coset of Λ⊥(Ā), for some
negligible ε = ε(n).

• Generate signatures for the queried messages: for each message µ = µ(i), compute

Aµ =
[
A | A0 +

∑
i∈[`]

µiAi

]
=
[
Ā | B | HG− Ā

(
R0 +

∑
i∈[`]

µiRi

)]
,

where H is invertible because the t-bit prefix of µ is not p. Therefore, R = (R0 +
∑

i∈[`] µiRi) is
a trapdoor for Aµ. By the conditional distribution on the Ris, concatenation of subgaussian random
variables, and Lemma 2.9, we have

s1(R) =
√
`+ 1 ·O(

√
m̄+

√
nk) · ω(

√
log n) = O(

√
`nk) · ω(

√
log n)

with overwhelming probability. Since s = O(
√
`nk) ·ω(

√
log n)2 is sufficiently large, we can generate

a properly distributed signature vµ ← DΛ⊥u (Aµ),s using SampleD with trapdoor R.

Next, S gives vk and the generated signatures to F . Because vk and the signatures are distributed within
negl(n) statistical distance of those in the real attack (for any choice of the prefix p), with probability at least
δ/2−negl(n), F outputs a forgery (µ∗,v∗) where µ∗ is different from all the queried messages, Aµ∗v

∗ = u,
and ‖v∗‖ ≤ s ·

√
m. Furthermore, conditioned on this event, µ∗ has p as a prefix with probability at least

1/((` − 1)Q + 1) − negl(n), because p is still essentially uniform in P conditioned on the view of F .
Therefore, all of these events occur with probability at least δ/(2(`− 1)Q+ 2)− negl(n).

In such a case, S extracts a solution to its SIS challenge instance from the forgery (µ∗,v∗) as follows.
Because µ∗ starts with p, we have Aµ∗ =

[
Ā | B | −ĀR∗

]
for R∗ = R0 +

∑
i∈[`] µ

∗
iRi, and so

[Ā | B]︸ ︷︷ ︸
A

[
Im̄ −R∗

Ink

]
v∗︸ ︷︷ ︸

z

= u mod q,

as desired. Because ‖v∗‖ ≤ s ·
√
m = O(

√
`nk) · ω(

√
log n)2 and s1(R∗) =

√
`+ 1 · O(

√
m̄ +

√
nk) ·

ω(
√

log n) with overwhelming probability (conditioned on the view of F and any fixed Hi), we have
‖z‖ = O(`(nk)3/2) · ω(

√
log n)3, which is at most β − 1, as desired.

Now we consider an F that forges on one of its queried messages (with probability at least δ/2). Our
reduction S simulates the attack to F as follows:

• Invoke F to receive up to Q distinct messages µ(1), µ(2), . . . ∈ {0, 1}`. Choose one of these messages
µ = µ(i) uniformly at random, “guessing” that the eventual forgery will be on µ.

• Construct a verification key vk = (A,A0, . . . ,A`,u): generate Ai exactly as above, using p = µ.
Then choose v← DZm,s and let u = Aµv, where Aµ is defined in the usual way.

• Generate signatures for the queried messages: for all the queries except µ, proceed exactly as above
(which is possible because all the queries are distinct and hence do not have p = µ as a prefix). For µ,
use v as the signature, which has the required distribution DΛ⊥u (Aµ),s by construction.

When S gives vk and the signatures to F , with probability at least δ/2− negl(n) the forger must output a
forgery (µ∗,v∗) where µ∗ is one of its queries, v∗ is different from the corresponding signature it received,
Aµ∗v

∗ = u, and ‖v∗‖ ≤ s ·
√
m. Because vk and the signatures are appropriately distributed for any

33

4. Trapdoors for Lattices

choice µ that S made, conditioned on the above event the probability that µ∗ = µ is at least 1/Q− negl(n).
Therefore, all of these events occur with probability at least δ/(2Q)− negl(n).

In such a case, S extracts a solution to its SIS challenge from the forgery as follows. Because µ∗ = µ, we
have Aµ∗ =

[
Ā | B | −ĀR∗

]
for R∗ = R0 +

∑
i∈[`] µ

∗
iRi, and so

[Ā | B]︸ ︷︷ ︸
A

[
Im̄ −R∗

Ink

]
(v∗ − v)︸ ︷︷ ︸

z

= 0 mod q.

Because both ‖v∗‖, ‖v‖ ≤ s ·
√
m = O(

√
`nk) · ω(

√
log n)2 and s1(R∗) = O(

√
`nk) · ω(

√
log n) with

overwhelming probability (conditioned on the view of F and any fixed Hi), we have ‖z‖ = O(`(nk)3/2) ·
ω(
√

log n)3 with overwhelming probability, as needed. It just remains to show that z 6= 0 with overwhelming
probability. To see this, write w = v∗ − v = (w1,w2,w3) ∈ Zm̄ × Znk × Znk, with w 6= 0. If w2 6= 0 or
w3 = 0, then z 6= 0 and we are done. Otherwise, choose some entry of w3 that is nonzero; without loss of
generality say it is wm. Let r = (R0)nk. Now for any fixed values of Ri for i ∈ [`] and fixed first nk − 1
columns of R0, we have z = 0 only if r · wm = y ∈ Rm̄ for some fixed y. Conditioned on the adversary’s
view (specifically, (A0)nk = Ār), r is distributed as a discrete Gaussian of parameter ≥ 2ηε(Λ

⊥(Ā)) for
some ε = negl(n) over a coset of Λ⊥(Ā). Then by Lemma 2.7, we have r = y/wm with only 2−Ω(n)

probability, and we are done.

6.3 Chosen Ciphertext-Secure Encryption

Definitions. A public-key cryptosystem for a message space M (which may depend on the security
parameter) is a tuple of algorithms as follows:

• Gen(1n) outputs a public encryption key pk and a secret decryption key sk.

• Enc(pk,m), given a public key pk and a message m ∈M, outputs a ciphertext c ∈ {0, 1}∗.
• Dec(sk, c), given a decryption key sk and a ciphertext c, outputs some m ∈M∪ {⊥}.

The correctness requirement is: for any m ∈M, generate (pk, sk)← Gen(1n) and c← Enc(pk,m). Then
Dec(sk, c) should output m with overwhelming probability (over all the randomness in the experiment).

We recall the two notions of security under chosen-ciphertext attacks. We start with the weaker notion
of CCA1 (or “lunchtime”) security. Let A be any nonuniform probabilistic polynomial-time algorithm.
First, we generate (pk, sk)← Gen(1n) and give pk to A. Next, we give A oracle access to the decryption
procedure Dec(sk, ·). Next, A outputs two messages m0,m1 ∈ M and is given a challenge ciphertext
c← Enc(pk,mb) for either b = 0 or b = 1. The scheme is CCA1-secure if the views of A (i.e., the public
key pk, the answers to its oracle queries, and the ciphertext c) for b = 0 versus b = 1 are computationally
indistinguishable (i.e., A’s acceptance probabilities for b = 0 versus b = 1 differ by only negl(n)). In the
stronger CCA2 notion, after receiving the challenge ciphertext, A continues to have access to the decryption
oracle Dec(sk, ·) for any query not equal to the challenge ciphertext c; security it defined similarly.

Construction. To highlight the main new ideas, here we present a public-key encryption scheme that
is CCA1-secure. Full CCA2 security can be obtained via relatively generic transformations using either
strongly unforgeable one-time signatures [DDN00], or a message authentication code and weak form of
commitment [BCHK07]; we omit these details.

Our scheme involves a number of parameters, for which we give some exemplary asymptotic bounds. In
what follows, ω(

√
log n) represents a fixed function that asymptotically grows faster than

√
log n.

34

4. Trapdoors for Lattices

• G ∈ Zn×nkq is a gadget matrix for large enough prime power q = pe = poly(n) and k = O(log q) =
O(log n). We require an oracle O that solves LWE with respect to Λ(Gt) for any error vector in some
P1/2(q ·B−t) where ‖B‖ = O(1). (See for example the constructions from Section 4.)

• m̄ = O(nk) and D = Dm̄×nk
Z,ω(
√

logn)
so that (Ā, ĀR) is negl(n)-far from uniform for Ā← Zn×m̄q and

R← D, and m = m̄+ nk is the total dimension of the public key and ciphertext.

• α is an error rate for LWE, for sufficiently large 1/α = O(nk) · ω(
√

log n).

Our scheme requires a special collection of elements in the ring R = Zq[x]/(f(x)) as constructed in
Section 6.1 (recall that here q = pe). We need a very large set U = {u1, . . . , u`} ⊂ R with the “unit
differences” property: for any i 6= j, the difference ui − uj ∈ R∗, and hence h(ui − uj) = h(ui)− h(uj) ∈
Zn×nq is invertible. (Note that the uis need not all be units themselves.) Concretely, by the characterization
of units in R given above, we take U to be all linear combinations of the monomials 1, x, . . . , xn−1 with
coefficients in {0, . . . , p− 1}, of which there are exactly pn. Since the difference between any two such
distinct elements is nonzero modulo p, it is a unit.

The system has message space {0, 1}nk, which we map bijectively to the cosets of Λ/2Λ for Λ = Λ(Gt)
via some function encode that is efficient to evaluate and invert. Concretely, letting S ∈ Znk×nk be any basis
of Λ, we can map m ∈ {0, 1}nk to encode(m) = Sm ∈ Znk.

• Gen(1n): choose Ā← Zn×m̄q and R← D, letting A1 = −ĀR mod q. The public key is pk = A =
[Ā | A1] ∈ Zn×mq and the secret key is sk = R.

• Enc(pk = [Ā | A1],m ∈ {0, 1}nk): choose nonzero u ← U and let Au = [Ā | A1 + h(u)G].
Choose s← Znq , ē← Dm̄

Z,αq, and e1 ← Dnk
Z,s where s2 = (‖ē‖2 + m̄(αq)2) · ω(

√
log n)2.

Let
bt = 2(stAu mod q) + et + (0, encode(m))t mod 2q,

where e = (ē, e1) ∈ Zm and 0 has dimension m̄. (Note the use of mod-2q arithmetic: 2(stAu mod q)
is an element of the lattice 2Λ(At

u) ⊇ 2qZm.) Output the ciphertext c = (u,b) ∈ U × Zm2q.

• Dec(sk = R, c = (u,b) ∈ U × Zm2q): Let Au = [Ā | A1 + h(u)G] = [Ā | h(u)G− ĀR].

1. If c does not parse or u = 0, output ⊥. Otherwise, call InvertO(R,Au,b mod q) to get values
z ∈ Znq and e = (ē, e1) ∈ Zm̄×Znk for which bt = ztAu+et mod q. (Note that h(u) ∈ Zn×nq

is invertible, as required by Invert.) If the call to Invert fails for any reason, output ⊥.

2. If ‖ē‖ ≥ αq
√
m̄ or ‖e1‖ ≥ αq

√
2m̄nk · ω(

√
log n), output ⊥.

3. Let v = b− e mod 2q, parsed as v = (v̄,v1) ∈ Zm̄2q × Znk2q . If v̄ 6∈ 2Λ(Āt), output ⊥. Finally,
output encode−1(vt

[
R
I

]
mod 2q) ∈ {0, 1}nk if it exists, otherwise output ⊥.

(In practice, to avoid timing attacks one would perform all of the Dec operations first, and only then
finally output ⊥ if any of the validity tests failed.)

Lemma 6.2. The above scheme has only 2−Ω(n) probability of decryption error.

The error probability can be made zero by changing Gen and Enc so that they resample R, ē, and/or e1

in the rare event that they violate the corresponding bounds given in the proof below.

35

4. Trapdoors for Lattices

Proof. Let (A,R) ← Gen(1n). By Lemma 2.9, we have s1(R) ≤ O(
√
nk) · ω(

√
log n) except with

probability 2−Ω(n). Now consider the random choices made by Enc(A,m) for arbitrary m ∈ {0, 1}nk.
By Lemma 2.6, we have both ‖ē‖ < αq

√
m̄ and ‖e1‖ < αq

√
2m̄nk · ω(

√
log n), except with probability

2−Ω(n). Letting e = (ē, e1), we have∥∥et[RI]∥∥ ≤ ‖ētR‖+ ‖e1‖ < αq ·O(nk) · ω(
√

log n).

In particular, for large enough 1/α = O(nk) · ω(
√

log n) we have et
[
R
I

]
∈ P1/2(q ·B−t). Therefore, the

call to Invert made by Dec(R, (u,b)) returns e. It follows that for v = (v̄,v1) = b− e mod 2q, we have
v̄ ∈ 2Λ(Āt) as needed. Finally,

vt
[
R
I

]
= 2(sth(u)G mod q) + encode(m) mod 2q,

which is in the coset encode(m) ∈ Λ(Gt)/2Λ(Gt), and so Dec outputs m as desired.

Theorem 6.3. The above scheme is CCA1-secure assuming the hardness of decision-LWEq,α′ for α′ =
α/3 ≥ 2

√
n/q.

Proof. We start by giving a particular form of discretized LWE that we will need below. Given access to an
LWE distribution As,α′ over Znq × T for any s ∈ Znq (where recall that T = R/Z), by [Pei10, Theorem 3.1]
we can transform its samples (a, b = 〈s,a〉/q+e mod 1) to have the form (a, 2(〈s,a〉 mod q)+e′ mod 2q)
for e′ ← DZ,αq, by mapping b 7→ 2qb + DZ−2qb,s mod 2q where s2 = (αq)2 − (2α′q)2 ≥ 4n ≥ ηε(Z)2.
This transformation maps the uniform distribution over Znq × T to the uniform distribution over Znq × Z2q, so
the discretized distribution is pseudorandom under the hypothesis of the theorem.

We proceed via a sequence of hybrid games. The game H0 is exactly the CCA1 attack with the system
described above.

In gameH1, we change how the public key A and challenge ciphertext c∗ = (u∗,b∗) are constructed, and
the way that decryption queries are answered (slightly), but in a way that introduces only negl(n) statistical
difference with H0. At the start of the experiment we choose nonzero u∗ ← U and let the public key be
A = [Ā | A1] = [Ā | −h(u∗)G − ĀR], where Ā and R are chosen in the same way as in H0. (In
particular, we still have s1(R) ≤ O(

√
nk) · ω(

√
log n) with overwhelming probability.) Note that A is still

negl(n)-uniform for any choice of u∗, so conditioned on any fixed choice of A, the value of u∗ is statistically
hidden from the attacker. To aid with decryption queries, we also choose an arbitrary (not necessarily short)
R̂ ∈ Zm̄×nk such that A1 = −ĀR̂ mod q.

To answer a decryption query on a ciphertext (u,b), we use an algorithm very similar to Dec with
trapdoor R. After testing whether u = 0 (and outputting ⊥ if so), we call InvertO(R,Au,b mod q) to get
some z ∈ Znq and e ∈ Zm, where

Au = [Ā | A1 + h(u)G] = [Ā | h(u− u∗)G− ĀR].

(If Invert fails, we output ⊥.) We then perform steps 2 and 3 on e ∈ Zm and v = b− e mod 2q exactly as
in Dec, except that we use R̂ in place of R when decoding the message in step 3.

We now analyze the behavior of this decryption routine. Whenever u 6= u∗, which is the case with
overwhelming probability because u∗ is statistically hidden, by the “unit differences” property on U we have
that h(u − u∗) ∈ Zn×nq is invertible, as required by the call to Invert. Now, either there exists an e that
satisfies the validity tests in step 2 and such that bt = ztAu + et mod q for some z ∈ Znq , or there does not.
In the latter case, no matter what Invert does in H0 and H1, step 2 will return ⊥ in both games. Now consider
the former case: by the constraints on e, we have et

[
R
I

]
∈ P1/2(q ·B−t) in both games, so the call to Invert

36

4. Trapdoors for Lattices

must return this e (but possibly different z) in both games. Finally, the result of decryption is the same in
both games: if v̄ ∈ 2Λ(Āt) (otherwise, both games return ⊥), then we can express v as

vt = 2(stAu mod q) + (0,v′)t mod 2q

for some s ∈ Znq and v′ ∈ Znk2q . Then for any solution R ∈ Zm̄×nk to A1 = −ĀR mod q, we have

vt
[
R
I

]
= 2(sth(u)G mod q) + (v′)t mod 2q.

In particular, this holds for the R in H0 and the R̂ in H1 that are used for decryption. It follows that both
games output encode−1(v′), if it exists (and ⊥ otherwise).

Finally, in H1 we produce the challenge ciphertext (u,b) on a message m ∈ {0, 1}nk as follows. Let
u = u∗, and choose s ← Znq and ē ← Dm̄

Z,αq as usual, but do not choose e1. Note that Au = [Ā | −ĀR].
Let b̄t = 2(stĀ mod q) + ēt mod 2q. Let

bt1 = −b̄tR + êt + encode(m) mod 2q,

where ê ← Dnk
Z,αq

√
m·ω(

√
logn)

, and output (u,b = (b̄,b1)). We now show that the distribution of (u,b)

is within negl(n) statistical distance of that in H0, given the attacker’s view (i.e., pk and the results of
the decryption queries). Clearly, u and b̄ have essentially the same distribution as in H0, because u is
negl(n)-uniform given pk, and by construction of b̄. By substitution, we have

bt1 = 2(st(−ĀR) mod q) + (ētR + êt) + encode(m).

Therefore, it suffices to show that for fixed ē, each 〈ē, ri〉+ êi has distribution negl(n)-far from DZ,s, where
s2 = (‖ē‖2 +m(αq)2) · ω(

√
log n)2, over the random choice of ri (conditioned on the value of Āri from

the public key) and of êi. Because each ri is an independent discrete Gaussian over a coset of Λ⊥(Ā), the
claim follows essentially by [Reg05, Corollary 3.10], but adapted to discrete random variables using [Pei10,
Theorem 3.1] in place of [Reg05, Claim 3.9].

In game H2, we only change how the b̄ component of the challenge ciphertext is created, letting it be
uniformly random in Zm̄2q. We construct pk, answer decryption queries, and construct b1 in exactly the
same way as in H1. First observe that under our (discretized) LWE hardness assumption, games H1 and
H2 are computationally indistinguishable by an elementary reduction: given (Ā, b̄) ∈ Zn×m̄q × Zm̄2q where
Ā is uniformly random and either b̄t = 2(stĀ mod q) + et mod 2q (for s ← Znq and e ← Dm̄

Z,αq) or b̄
is uniformly random, we can efficiently emulate either game H1 or H2 (respectively) by doing everything
exactly as in the two games, except using the given Ā and b̄ when constructing the public key and challenge
ciphertext.

Now by the leftover hash lemma, (Ā, b̄t, ĀR,−b̄tR) is negl(n)-uniform when R is chosen as in H2.
Therefore, the challenge ciphertext has the same distribution (up to negl(n) statistical distance) for any
encrypted message, and so the adversary’s advantage is negligible. This completes the proof.

References

[ABB10a] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In
EUROCRYPT, pages 553–572. 2010.

[ABB10b] S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension and shorter-
ciphertext hierarchical IBE. In CRYPTO, pages 98–115. 2010.

37

4. Trapdoors for Lattices

[ACPS09] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In CRYPTO, pages 595–618. 2009.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1–32, 2004.
Preliminary version in STOC 1996.

[Ajt99] M. Ajtai. Generating hard instances of the short basis problem. In ICALP, pages 1–9. 1999.

[AP09] J. Alwen and C. Peikert. Generating shorter bases for hard random lattices. Theory of Computing
Systems, 48(3):535–553, April 2011. Preliminary version in STACS 2009.

[Bab85] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,
6(1):1–13, 1986. Preliminary version in STACS 1985.

[Ban93] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers.
Mathematische Annalen, 296(4):625–635, 1993.

[BCHK07] D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. SIAM J. Comput., 36(5):1301–1328, 2007.

[BFKL93] A. Blum, M. L. Furst, M. J. Kearns, and R. J. Lipton. Cryptographic primitives based on hard
learning problems. In CRYPTO, pages 278–291. 1993.

[BGV11] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption without bootstrap-
ping. Cryptology ePrint Archive, Report 2011/277, 2011. http://eprint.iacr.org/.

[Boy10] X. Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures
and more. In Public Key Cryptography, pages 499–517. 2010.

[BV11a] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS. 2011. To appear.

[BV11b] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security
for key dependent messages. In CRYPTO, pages 505–524. 2011.

[CHKP10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis.
In EUROCRYPT, pages 523–552. 2010.

[CN11] Y. Chen and P. Q. Nguyen. BKZ 2.0: Simulation and better lattice security estimates. In
ASIACRYPT. 2011. To appear.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. Comput., 30(2):391–437,
2000.

[DF94] Y. Desmedt and Y. Frankel. Perfect homomorphic zero-knowledge threshold schemes over any
finite abelian group. SIAM J. Discrete Math., 7(4):667–679, 1994.

[Feh98] S. Fehr. Span Programs over Rings and How to Share a Secret from a Module. Master’s thesis,
ETH Zurich, Institute for Theoretical Computer Science, 1998.

[Gen09a] C. Gentry. A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

38

4. Trapdoors for Lattices

[Gen09b] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178. 2009.

[GGH97] O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lattice reduction
problems. In CRYPTO, pages 112–131. 1997.

[GH11] C. Gentry and S. Halevi. Fully homomorphic encryption without squashing using depth-3
arithmetic circuits. In FOCS. 2011. To appear.

[GHV10] C. Gentry, S. Halevi, and V. Vaikuntanathan. A simple BGN-type cryptosystem from LWE. In
EUROCRYPT, pages 506–522. 2010.

[GKV10] S. D. Gordon, J. Katz, and V. Vaikuntanathan. A group signature scheme from lattice assumptions.
In ASIACRYPT, pages 395–412. 2010.

[GN08] N. Gama and P. Q. Nguyen. Predicting lattice reduction. In EUROCRYPT, pages 31–51. 2008.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In STOC, pages 197–206. 2008.

[HW09] S. Hohenberger and B. Waters. Short and stateless signatures from the RSA assumption. In
CRYPTO, pages 654–670. 2009.

[Kle00] P. N. Klein. Finding the closest lattice vector when it’s unusually close. In SODA, pages 937–941.
2000.

[KMO10] E. Kiltz, P. Mohassel, and A. O’Neill. Adaptive trapdoor functions and chosen-ciphertext security.
In EUROCRYPT, pages 673–692. 2010.

[KR00] H. Krawczyk and T. Rabin. Chameleon signatures. In NDSS. 2000.

[LM06] V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are collision resistant. In
ICALP (2), pages 144–155. 2006.

[LM08] V. Lyubashevsky and D. Micciancio. Asymptotically efficient lattice-based digital signatures. In
TCC, pages 37–54. 2008.

[LM09] V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique shortest vectors,
and the minimum distance problem. In CRYPTO, pages 577–594. 2009.

[LMPR08] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT: A modest proposal for
FFT hashing. In FSE, pages 54–72. 2008.

[LP11] R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In CT-RSA,
pages 319–339. 2011.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings.
In EUROCRYPT, pages 1–23. 2010.

[Lyu08] V. Lyubashevsky. Lattice-based identification schemes secure under active attacks. In Public
Key Cryptography, pages 162–179. 2008.

39

4. Trapdoors for Lattices

[MG02] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic perspective,
volume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer
Academic Publishers, Boston, Massachusetts, 2002.

[Mic02] D. Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions.
Computational Complexity, 16(4):365–411, 2007. Preliminary version in FOCS 2002.

[MM11] D. Micciancio and P. Mol. Pseudorandom knapsacks and the sample complexity of LWE
search-to-decision reductions. In CRYPTO, pages 465–484. 2011.

[MR04] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures.
SIAM J. Comput., 37(1):267–302, 2007. Preliminary version in FOCS 2004.

[MR09] D. Micciancio and O. Regev. Lattice-based cryptography. In Post Quantum Cryptography, pages
147–191. Springer, February 2009.

[Pei09a] C. Peikert. Bonsai trees (or, arboriculture in lattice-based cryptography). Cryptology ePrint
Archive, Report 2009/359, July 2009. http://eprint.iacr.org/.

[Pei09b] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In STOC,
pages 333–342. 2009.

[Pei10] C. Peikert. An efficient and parallel Gaussian sampler for lattices. In CRYPTO, pages 80–97.
2010.

[PR06] C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case assumptions on
cyclic lattices. In TCC, pages 145–166. 2006.

[PV08] C. Peikert and V. Vaikuntanathan. Noninteractive statistical zero-knowledge proofs for lattice
problems. In CRYPTO, pages 536–553. 2008.

[PVW08] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable
oblivious transfer. In CRYPTO, pages 554–571. 2008.

[PW08] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In STOC, pages
187–196. 2008.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):1–40, 2009. Preliminary version in STOC 2005.

[RS10] M. Rückert and M. Schneider. Selecting secure parameters for lattice-based cryptography.
Cryptology ePrint Archive, Report 2010/137, 2010. http://eprint.iacr.org/.

[Rüc10] M. Rückert. Strongly unforgeable signatures and hierarchical identity-based signatures from
lattices without random oracles. In PQCrypto, pages 182–200. 2010.

[ST01] A. Shamir and Y. Tauman. Improved online/offline signature schemes. In CRYPTO, pages
355–367. 2001.

[Ver11] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices, Jan-
uary 2011. Available at http://www-personal.umich.edu/˜romanv/papers/
non-asymptotic-rmt-plain.pdf, last accessed 4 Feb 2011.

40

4. Trapdoors for Lattices

[vGHV10] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over
the integers. In EUROCRYPT, pages 24–43. 2010.

[Wat05] B. Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT, pages
114–127. 2005.

41

4. Trapdoors for Lattices

Homomorphic Evaluation of the AES Circuit

Craig Gentry
IBM Research

Shai Halevi
IBM Research

Nigel P. Smart
University of Bristol

June 15, 2012

Abstract

We describe a working implementation of leveled homomorphic encryption (without bootstrapping)
that can evaluate the AES-128 circuit in three different ways. One variant takes under over 36 hours to
evaluate an entire AES encryption operation, using NTL (over GMP) as our underlying software plat-
form, and running on a large-memory machine. Using SIMD techniques, we can process over 54 blocks
in each evaluation, yielding an amortized rate of just under 40 minutes per block. Another implemen-
tation takes just over two and a half days to evaluate the AES operation, but can process 720 blocks in
each evaluation, yielding an amortized rate of just over five minutes per block. We also detail a third
implementation, which theoretically could yield even better amortized complexity, but in practice turns
out to be less competitive.

For our implementations we develop both AES-specific optimizations as well as several “generic”
tools for FHE evaluation. These last tools include (among others) a different variant of the Brakerski-
Vaikuntanathan key-switching technique that does not require reducing the norm of the ciphertext vector,
and a method of implementing the Brakerski-Gentry-Vaikuntanathan modulus-switching transformation
on ciphertexts in CRT representation.

Keywords. AES, Fully Homomorphic Encryption, Implementation

The first and second authors are sponsored by DARPA under agreement number FA8750-11-C-0096. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstand-
ing any copyright notation thereon. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of DARPA or the U.S. Government. Distribution Statement “A” (Approved for Public Release,
Distribution Unlimited).

The third author is sponsored by DARPA and AFRL under agreement number FA8750-11-2-0079. The
same disclaimers as above apply. He is also supported by the European Commission through the ICT
Programme under Contract ICT-2007-216676 ECRYPT II and via an ERC Advanced Grant ERC-2010-
AdG-267188-CRIPTO, by EPSRC via grant COED–EP/I03126X, and by a Royal Society Wolfson Merit
Award. The views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of the European
Commission or EPSRC.

5. Homomorphic Evaluation of the AES Circuit

Contents

1 Introduction 1

2 Background 3
2.1 Notations and Mathematical Background . 3
2.2 BGV-type Cryptosystems . 3
2.3 Computing on Packed Ciphertexts . 6

3 General-Purpose Optimizations 6
3.1 A New Variant of Key Switching . 6
3.2 Modulus Switching in Evaluation Representation . 8
3.3 Dynamic Noise Management . 8
3.4 Randomized Multiplication by Constants . 9

4 Homomorphic Evaluation of AES 9
4.1 Homomorphic Evaluation of the Basic Operations . 10

4.1.1 AddKey and SubBytes . 10
4.1.2 ShiftRows and MixColumns . 11
4.1.3 The Cost of One Round Function . 12

4.2 Byte- and Bit-Slice Implementations . 12
4.3 Performance Details . 12

References 13

A More Details 15
A.1 Plaintext Slots . 15
A.2 Canonical Embedding Norm . 15
A.3 Double CRT Representation . 16
A.4 Sampling From Aq . 17
A.5 Canonical embedding norm of random polynomials . 17

B The Basic Scheme 18
B.1 Our Moduli Chain . 18
B.2 Modulus Switching . 18
B.3 Key Switching . 19
B.4 Key-Generation, Encryption, and Decryption . 21
B.5 Homomorphic Operations . 22

C Security Analysis and Parameter Settings 23
C.1 Lower-Bounding the Dimension . 23

C.1.1 LWE with Sparse Key . 25
C.2 The Modulus Size . 25
C.3 Putting It Together . 27

D Scale(c, qt, qt−1) in dble-CRT Representation 28

5. Homomorphic Evaluation of the AES Circuit

E Other Optimizations 29

2

5. Homomorphic Evaluation of the AES Circuit

1 Introduction

In his breakthrough result [13], Gentry demonstrated that fully-homomorphic encryption was theoreti-
cally possible, assuming the hardness of some problems in integer lattices. Since then, many different
improvements have been made, for example authors have proposed new variants, improved efficiency,
suggested other hardness assumptions, etc. Some of these works were accompanied by implementation
[26, 14, 8, 27, 19, 9], but all the implementations so far were either “proofs of concept” that can compute
only one basic operation at a time (at great cost), or special-purpose implementations limited to evaluat-
ing very simple functions. In this work we report on the first implementation powerful enough to support
an “interesting real world circuit”. Specifically, we implemented a variant of the leveled FHE-without-
bootstrapping scheme of Brakerski, Gentry, and Vaikuntanathan [5] (BGV), with support for deep enough
circuits so that we can evaluate an entire AES-128 encryption operation.

Why AES? We chose to shoot for an evaluation of AES since it seems like a natural benchmark: AES is
widely deployed and used extensively in security-aware applications (so it is “practically relevant” to imple-
ment it), and the AES circuit is nontrivial on one hand, but on the other hand not astronomical. Moreover the
AES circuit has a regular (and quite “algebraic”) structure , which is amenable to parallelism and optimiza-
tions. Indeed, for these same reasons AES is often used as a benchmark for implementations of protocols for
secure multi-party computation (MPC), for example [24, 10, 17, 18]. Using the same yardstick to measure
FHE and MPC protocols is quite natural, since these techniques target similar application domains and in
some cases both techniques can be used to solve the same problem.

Beyond being a natural benchmark, homomorphic evaluation of AES decryption also has interesting
applications: When data is encrypted under AES and we want to compute on that data, then homomorphic
AES decryption would transform this AES-encrypted data into an FHE-encrypted data, and then we could
perform whatever computation we wanted. (Such applications were alluded to in [19, 27, 6]).

Why BGV? Our implementation is based on the (ring-LWE-based) BGV cryptosystem [5], which at
present is one of three variants that seem the most likely to yield “somewhat practical” homomorphic en-
cryption. The other two are the NTRU-like cryptosystem of Lòpez-Alt et al. [21] and the ring-LWE-based
fixed-modulus cryptosystem of Brakerski [4]. (These two variants were not yet available when we started
our implementation effort.) These three different variants offer somewhat different implementation trade-
offs, but they all have similar performance characteristics. At present we do not know which of them will
end up being faster in practice, but the differences are unlikely to be very significant. Moreover, we note
that most of our optimizations for BGV are useful also for the other two variants.

Our Contributions. Our implementation is based on a variant of the BGV scheme [5, 7, 6] (based on
ring-LWE [22]), using the techniques of Smart and Vercauteren (SV) [27] and Gentry, Halevi and Smart
(GHS) [15], and we introduce many new optimizations. Some of our optimizations are specific to AES,
these are described in Section 4. Most of our optimization, however, are more general-purpose and can be
used for homomorphic evaluation of other circuits, these are described in Section 3.

Many of our general-purpose optimizations are aimed at reducing the number of FFTs and CRTs that
we need to perform, by reducing the number of times that we need to convert polynomials between coef-
ficient and evaluation representations. Since the cryptosystem is defined over a polynomial ring, many of
the operations involve various manipulation of integer polynomials, such as modular multiplications and
additions and Frobenius maps. Most of these operations can be performed more efficiently in evaluation

1

5. Homomorphic Evaluation of the AES Circuit

representation, when a polynomial is represented by the vector of values that it assumes in all the roots of
the ring polynomial (for example polynomial multiplication is just point-wise multiplication of the evalu-
ation values). On the other hand some operations in BGV-type cryptosystems (such as key switching and
modulus switching) seem to require coefficient representation, where a polynomial is represented by listing
all its coefficients.1 Hence a “naive implementation” of FHE would need to convert the polynomials back
and forth between the two representations, and these conversions turn out to be the most time-consuming
part of the execution. In our implementation we keep ciphertexts in evaluation representation at all times,
converting to coefficient representation only when needed for some operation, and then converting back.

We describe variants of key switching and modulus switching that can be implemented while keeping
almost all the polynomials in evaluation representation. Our key-switching variant has another advantage,
in that it significantly reduces the size of the key-switching matrices in the public key. This is particularly
important since the main limiting factor for evaluating deep circuits turns out to be the ability to keep the
key-switching matrices in memory. Other optimizations that we present are meant to reduce the number
of modulus switching and key switching operations that we need to do. This is done by tweaking some
operations (such as multiplication by constant) to get a slower noise increase, by “batching” some operations
before applying key switching, and by attaching to each ciphertext an estimate of the “noisiness” of this
ciphertext, in order to support better noise bookkeeping.

Our Implementation. Our implementation was based on the NTL C++ library running over GMP, we
utilized a machine which consisted of a processing unit of Intel Xeon CPUs running at 2.0 GHz with 18MB
cache, and most importantly with 256GB of RAM.2

Memory was our main limiting factor in the implementation. With this machine it took us just under
two days to compute a single block AES encryption using an implementation choice which minimizes
the amount of memory required; this is roughly two orders of magnitude faster than what could be done
with the Gentry-Halevi implementation [14]. The computation was performed on ciphertexts that could
hold 864 plaintext slots each; where each slot holds an element of F28 . This means that we can compute
b864/16c = 54 AES operations in parallel, which gives an amortize time per block of roughly forty minutes.
A second (byte-sliced) implementation, requiring more memory, completed an AES operation in around five
days; where ciphertexts could hold 720 different F28 slots (hence we can evaluate 720 blocks in parallel).
This results in an amortized time per block of roughly five minutes.

We note that there are a multitude of optimizations that one can perform on our basic implementation.
Most importantly, we believe that by using the “bootstrapping as optimization” technique from BGV [5] we
can speedup the AES performance by an additional order of magnitude. Also, there are great gains to be
had by making better use of parallelism: Unfortunately, the NTL library (which serves as our underlying
software platform) is not thread safe, which severely limits our ability to utilize the multi-core functionality
of modern processors (our test machine has 24 cores). We expect that by utilizing many threads we can
speed up some of our (higher memory) AES variants by as much as a 16x factor; just by letting each thread
compute a different S-box lookup.

Organization. In Section 2 we review the main features of BGV-type cryptosystems [6, 5], and briefly
survey the techniques for homomorphic computation on packed ciphertexts from SV and GHS [27, 15].

1The need for coefficient representation ultimately stems from the fact that the noise in the ciphertexts is small in coefficient
representation but not in evaluation representation.

2This machine was BlueCrystal Phase 2; and the authors would like to thank the University of Bristol’s Advanced Computing
Research Centre (https://www.acrc.bris.ac.uk/) for access to this facility.

2

5. Homomorphic Evaluation of the AES Circuit

Then in Section 3 we describe our “general-purpose” optimizations on a high level, with additional details
provided in Appendices A and B. A brief overview of AES and a high-level description and performance
numbers is provided in Section 4.

2 Background

2.1 Notations and Mathematical Background

For an integer q we identify the ring Z/qZ with the interval (−q/2, q/2] ∩ Z, and use [z]q to denote the
reduction of the integer z modulo q into that interval. Our implementation utilizes polynomial rings defined
by cyclotomic polynomials, A = Z[X]/Φm(X). The ring A is the ring of integers of a the mth cyclotomic

number field Q(ζm). We let Aq
def
= A/qA = Z[X]/(Φm(X), q) for the (possibly composite) integer q, and

we identify Aq with the set of integer polynomials of degree upto φ(m)− 1 reduced modulo q.

Coefficient vs. Evaluation Representation. Letm, q be two integers such that Z/qZ contains a primitive
m-th root of unity, and denote one such primitive m-th root of unity by ζ ∈ Z/qZ. Recall that the m’th
cyclotomic polynomial splits into linear terms modulo q, Φm(X) =

∏
i∈(Z/mZ)∗(X − ζi) (mod q).

We consider two ways of representing an element a ∈ Aq: Viewing a as a degree-(φ(m) − 1) polyno-
mial, a(X) =

∑
i<φ(m) aiX

i, the coefficient representation of a just lists all the coefficients in order a =〈
a0, a1, . . . , aφ(m)−1

〉
∈ (Z/qZ)φ(m). For the other representation we consider the values that the polyno-

mial a(X) assumes on all primitive m-th roots of unity modulo q, bi = a(ζi) mod q for i ∈ (Z/mZ)∗. The
bi’s in order also yield a vector b ∈ (Z/qZ)φ(m), which we call the evaluation representation of a. Clearly
these two representations are related via b = Vm ·a, where Vm is the Vandermonde matrix over the primitive
m-th roots of unity modulo q. We remark that for all i we have the equality (a mod (X−ζi)) = a(ζi) = bi,
hence the evaluation representation of a is just a polynomial Chinese-Remaindering representation.

In both representations, an element a ∈ Aq is represented by a φ(m)-vector of integers in Z/qZ. If q is
a composite then each of these integers can itself be represented either using the standard binary encoding
of integers or using Chinese-Remaindering relative to the factors of q. We usually use the standard binary
encoding for the coefficient representation and Chinese-Remaindering for the evaluation representation.
(Hence the latter representation is really a double CRT representation, relative to both the polynomial factors
of Φm(X) and the integer factors of q.)

2.2 BGV-type Cryptosystems

Our implementation uses a variant of the BGV cryptosystem due to Gentry, Halevi and Smart, specifically
the one described in [15, Appendix D] (in the full version). In this cryptosystem both ciphertexts and secret
keys are vectors over the polynomial ring A, and the native plaintext space is the space of binary polynomials
A2. (More generally it could be Ap for some fixed p ≥ 2, but in our case we will always use A2.)

At any point during the homomorphic evaluation there is some “current integer modulus q” and “current
secret key s”, that change from time to time. A ciphertext c is decrypted using the current secret key s
by taking inner product over Aq (with q the current modulus) and then reducing the result modulo 2 in
coefficient representation. Namely, the decryption formula is

a ← [[〈c, s〉 mod Φm(X)]q︸ ︷︷ ︸
noise

]2 . (1)

3

5. Homomorphic Evaluation of the AES Circuit

The polynomial [〈c, s〉 mod Φm(X)]q is called the “noise” in the ciphertext c. Informally, c is a valid
ciphertext with respect to secret key s and modulus q if this noise has “sufficiently small norm” relative
to q. The meaning of “sufficiently small norm” is whatever is needed to ensure that the noise does not wrap
around q when performing homomorphic operations, in our implementation we keep the norm of the noise
always below some pre-set bound (which is determined in Appendix C.2).

Following [22, 15], the specific norm that we use to evaluate the magnitude of the noise is the “canonical
embedding norm reduced mod q”, specifically we use the conventions as described in [15, Appendix D] (in
the full version). This is useful to get smaller parameters, but for the purpose of presentation the reader can
think of the norm as the Euclidean norm of the noise in coefficient representation. More details are given in
the Appendices. We refer to the norm of the noise as the noise magnitude.

The central feature of BGV-type cryptosystems is that the current secret key and modulus evolve as
we apply operations to ciphertexts. We apply five different operations to ciphertexts during homomorphic
evaluation. Three of them — addition, multiplication, and automorphism — are “semantic operations” that
we use to evolve the plaintext data which is encrypted under those ciphertexts. The other two operations
— key-switching and modulus-switching — are used for “maintenance”: These operations do not change
the plaintext at all, they only change the current key or modulus (respectively), and they are mainly used
to control the complexity of the evaluation. Below we briefly describe each of these five operations on a
high level. For the sake of self-containment, we also describe key generation and encryption in Appendix B.
More detailed description can be found in [15, Appendix D].

Addition. Homomorphic addition of two ciphertext vectors with respect to the same secret key and mod-
ulus q is done just by adding the vectors over Aq. If the two arguments were encrypting the plaintext
polynomials a1, a2 ∈ A2 then the sum will be an encryption of a1 + a2 ∈ A2. This operation has no effect
on the current modulus or key, and the norm of the noise is at most the sum of norms from the noise in the
two arguments.

Multiplication. Homomorphic multiplication is done via tensor product over Aq. In principle, if the two
arguments have dimension n over Aq then the product ciphertext has dimension n2, each entry in the output
computed as the product of one entry from the first argument and one entry from the second.3

This operation does not change the current modulus, but it changes the current key: If the two input
ciphertexts are valid with respect to the dimension-n secret key vector s, encrypting the plaintext polynomi-
als a1, a2 ∈ A2, then the output is valid with respect to the dimension-n2 secret key s′ which is the tensor
product of s with itself, and it encrypts the polynomial a1 · a2 ∈ A2. The norm of the noise in the product
ciphertext can be bounded in terms of the product of norms of the noise in the two arguments. For our choice
of norm function, the norm of the product is no larger than the product of the norms of the two arguments.

Key Switching. The public key of BGV-type cryptosystems includes additional components to enable
converting a valid ciphertext with respect to one key into a valid ciphertext encrypting the same plaintext
with respect to another key. For example, this is used to convert the product ciphertext which is valid with
respect to a high-dimension key back to a ciphertext with respect to the original low-dimension key.

To allow conversion from dimension-n′ key s′ to dimension-n key s (both with respect to the same
modulus q), we include in the public key a matrix W = W [s′ → s] over Aq, where the i’th column of W is
roughly an encryption of the i’th entry of s′ with respect to s (and the current modulus). Then given a valid
ciphertext c′ with respect to s′, we roughly compute c = W · c′ to get a valid ciphertext with respect to s.

3It was shown in [7] that over polynomial rings this operation can be implemented while increasing the dimension only to 2n−1
rather than to n2.

4

5. Homomorphic Evaluation of the AES Circuit

In some more detail, the BGV key switching transformation first ensures that the norm of the ciphertext
c′ itself is sufficiently low with respect to q. In [5] this was done by working with the binary encoding of
c′, and one of our main optimization in this work is a different method for achieving the same goal (cf.
Section 3.1). Then, if the i’th entry in s′ is s′i ∈ A (with norm smaller than q), then the i’th column of
W [s′ → s] is an n-vector wi such that [〈wi, s〉 mod Φm(X)]q = 2ei + s′i for a low-norm polynomial
ei ∈ A. Denoting e = (e1, . . . , en′), this means that we have sW = s′ + 2e over Aq. For any ciphertext
vector c′, setting c = W · c′ ∈ Aq we get the equation

[〈c, s〉 mod Φm(X)]q = [sWc′ mod Φm(X)]q = [
〈
c′, s′

〉
+ 2

〈
c′, e

〉
mod Φm(X)]q

Since c′, e, and [〈c′, s′〉 mod Φm(X)]q all have low norm relative to q, then the addition on the right-hand
side does not cause a wrap around q, hence we get [[〈c, s〉 mod Φm(X)]q]2 = [[〈c′, s′〉 mod Φm(X)]q]2, as
needed. The key-switching operation changes the current secret key from s′ to s, and does not change the
current modulus. The norm of the noise is increased by at most an additive factor of 2‖ 〈c′, e〉 ‖.

Modulus Switching. The modulus switching operation is intended to reduce the norm of the noise, to
compensate for the noise increase that results from all the other operations. To convert a ciphertext c with
respect to secret key s and modulus q into a ciphertext c′ encrypting the same thing with respect to the same
secret key but modulus q′, we roughly just scale c by a factor q′/q (thus getting a fractional ciphertext),
then round appropriately to get back an integer ciphertext. Specifically c′ is a ciphertext vector satisfying
(a) c′ = c (mod 2), and (b) the “rounding error term” τ def

= c′ − (q′/q)c has low norm. Converting c
to c′ is easy in coefficient representation, and one of our optimizations is a method for doing the same in
evaluation representation (cf. Section 3.2) This operation leaves the current key s unchanged, changes the
current modulus from q to q′, and the norm of the noise is changed as ‖n′‖ ≤ (q′/q)‖n‖+ ‖τ · s‖. Note that
if the key s has low norm and q′ is sufficiently smaller than q, then the noise magnitude decreases by this
operation.

A BGV-type cryptosystem has a chain of moduli, q0 < q1 · · · < qL−1, where fresh ciphertexts are
with respect to the largest modulus qL−1. During homomorphic evaluation every time the (estimated) noise
grows too large we apply modulus switching from qi to qi−1 in order to decrease it back. Eventually we get
ciphertexts with respect to the smallest modulus q0, and we cannot compute on them anymore (except by
using bootstrapping).

Automorphisms. In addition to adding and multiplying polynomials, another useful operation is convert-
ing the polynomial a(X) ∈ A to a(i)(X)

def
= a(Xi) mod Φm(X). Denoting by κi the transformation

κi : a 7→ a(i), it is a standard fact that the set of transformations {κi : i ∈ (Z/mZ)∗} forms a group
under composition (which is the Galois group Gal(Q(ζm)/Q)), and this group is isomorphic to (Z/mZ)∗.
In [5, 15] it was shown that applying the transformations κi to the plaintext polynomials is very useful, some
more examples of its use can be found in our Section 4.

Denoting by c(i), s(i) the vector obtained by applying κi to each entry in c, s, respectively, it was shown
in [5, 15] that if s is a valid ciphertext encrypting a with respect to key s and modulus q, then c(i) is a valid
ciphertext encrypting a(i) with respect to key s(i) and the same modulus q. Moreover the norm of noise
remains the same under this operation. We remark that we can apply key-switching to c(i) in order to get an
encryption of a(i) with respect to the original key s.

5

5. Homomorphic Evaluation of the AES Circuit

2.3 Computing on Packed Ciphertexts

Smart and Vercauteren observed [26, 27] that the plaintext space A2 can be viewed as a vector of “plaintext
slots”, by an application the polynomial Chinese Remainder Theorem. Specifically, if the ring polynomial
Φm(X) factors modulo 2 into a product of irreducible factors Φm(X) =

∏`−1
j=0 Fj(X) (mod 2), then a

plaintext polynomial a(X) ∈ A2 can be viewed as encoding ` different small polynomials, aj = a mod Fj .
Just like for integer Chinese Remaindering, addition and multiplication in A2 correspond to element-wise
addition and multiplication of the vectors of slots.

The effect of the automorphisms is a little more involved. When i is a power of two then the transforma-
tions κi : a 7→ a(i) is just applied to each slot separately. When i is not a power of two the transformation κi
has the effect of roughly shifting the values between the different slots. For example, for some parameters
we could get a cyclic shift of the vector of slots: If a encodes the vector (a0, a1, . . . , a`−1), then κi(a) (for
some i) could encode the vector (a`−1, a0, . . . , a`−2). This was used in [15] to devise efficient procedures
for applying arbitrary permutations to the plaintext slots.

We note that the values in the plaintext slots are not just bits, rather they are polynomials modulo the
irreducible Fj’s, so they can be used to represents elements in extension fields GF(2d). In particular, in
some of our AES implementations we used the plaintext slots to hold elements of GF(28), and encrypt one
byte of the AES state in each slot. Then we can use an adaption of the techniques from [15] to permute the
slots when performing the AES row-shift and column-mix.

3 General-Purpose Optimizations

Below we summarize our optimizations that are not tied directly to the AES circuit and can be used also in
homomorphic evaluation of other circuits. Underlying many of these optimizations is our choice of keeping
ciphertext and key-switching matrices in evaluation (double-CRT) representation. Our chain of moduli is
defined via a set of primes of roughly the same size, p0, . . . , pL−1, all chosen such that Z/piZ has a m’th
roots of unity. (In other words, m|pi − 1 for all i.) For i = 0, . . . , L − 1 we then define our i’th modulus
as qi =

∏i
j=0 pi. The primes p0 and pL−1 are special (p0 is chosen to ensure decryption works, and pL−1 is

chosen to control noise immediately after encryption), however all other primes pi are of size 217 ≤ pi ≤ 220

if L < 100, see Appendix C.
In the t-th level of the scheme we have ciphertexts consisting of elements in Aqt (i.e., polynomials

modulo (Φm(X), qt)). We represent an element c ∈ Aqt by a φ(m) × (t + 1) “matrix” of its evaluations
at the primitive m-th roots of unity modulo the primes p0, . . . , pt. Computing this representation from the
coefficient representation of c involves reducing c modulo the pi’s and then t + 1 invocations of the FFT
algorithm, modulo each of the pi (picking only the FFT coefficients corresponding to (Z/mZ)∗). To convert
back to coefficient representation we invoke the inverse FFT algorithm t + 1 times, each time padding the
φ(m)-vector of evaluation point with m − φ(m) zeros (for the evaluations at the non-primitive roots of
unity). This yields the coefficients of t + 1 polynomials modulo (Xm − 1, pi) for i = 0, . . . , t, we then
reduce each of these polynomials modulo (Φm(X), pi) and apply Chinese Remainder interpolation. We
stress that we try to perform these transformations as rarely as we can.

3.1 A New Variant of Key Switching

As described in Section 2, the key-switching transformation introduces an additive factor of 2 〈c′, e〉 in
the noise, where c′ is the input ciphertext and e is the noise component in the key-switching matrix. To
keep the noise magnitude below the modulus q, it seems that we need to ensure that the ciphertext c′

6

5. Homomorphic Evaluation of the AES Circuit

itself has low norm. In BGV [5] this was done by representing c′ as a fixed linear combination of small
vectors, i.e. c′ =

∑
i 2ic′i with c′i the vector of i’th bits in c′. Considering the high-dimension ciphertext

c∗ = (c′0|c′1|c′2| · · ·) and secret key s∗ = (s′|2s′|4s′| · · ·), we note that we have 〈c∗, s∗〉 = 〈c′, s′〉, and c∗

has low norm (since it consists of 0-1 polynomials). BGV therefore included in the public key the matrix
W = W [s∗ → s] (rather than W [s′ → s]), and had the key-switching transformation computes c∗ from c′

and sets c = W · c∗.
When implementing key-switching, there are two drawbacks to the above approach. First, this increases

the dimension (and hence the size) of the key switching matrix. This drawback is fatal when evaluating deep
circuits, since having enough memory to keep the key-switching matrices turns out to be the limiting factor
in our ability to evaluate these deep circuits. In addition, for this key-switching we must first convert c′

to coefficient representation (in order to compute the c′i’s), then convert each of the c′i’s back to evaluation
representation before multiplying by the key-switching matrix. In level t of the circuit, this seem to require
Ω(t log qt) FFTs.

In this work we propose a different variant: Rather than manipulating c′ to decrease its norm, we instead
temporarily increase the modulus q. We recall that for a valid ciphertext c′, encrypting plaintext a with
respect to s′ and q, we have the equality 〈c′, s′〉 = 2e′ + a over Aq, for a low-norm polynomial e′. This
equality, we note, implies that for every odd integer p we have the equality 〈c′, ps′〉 = 2e′′ + a, holding
over Apq, for the “low-norm” polynomial e′′ (namely e′′ = p · e′+ p−1

2 a). Clearly, when considered relative
to secret key ps and modulus pq, the noise in c′ is p times larger than it was relative to s and q. However,
since the modulus is also p times larger, we maintain that the noise has norm sufficiently smaller than the
modulus. In other words, c′ is still a valid ciphertext that encrypts the same plaintext a with respect to secret
key ps and modulus pq. By taking p large enough, we can ensure that the norm of c′ (which is independent
of p) is sufficiently small relative to the modulus pq.

We therefore include in the public key a matrix W = W [ps′ → s] modulo pq for a large enough odd
integer p. (Specifically we need p ≈ q

√
m.) Given a ciphertext c′, valid with respect to s and q, we apply

the key-switching transformation simply by setting c = W ·c′ over Apq. The additive noise term 〈c′, e〉 that
we get is now small enough relative to our large modulus pq, thus the resulting ciphertext c is valid with
respect to s and pq. We can now switch the modulus back to q (using our modulus switching routine), hence
getting a valid ciphertext with respect to s and q.

We note that even though we no longer break c′ into its binary encoding, it seems that we still need to
recover it in coefficient representation in order to compute the evaluations of c′ mod p. However, since we
do not increase the dimension of the ciphertext vector, this procedure requires only O(t) FFTs in level t (vs.
O(t log qt) = O(t2) for the original BGV variant). Also, the size of the key-switching matrix is reduced by
roughly the same factor of log qt.

Our new variant comes with a price tag, however: We use key-switching matrices relative to a larger
modulus, but still need the noise term in this matrix to be small. This means that the LWE problem under-
lying this key-switching matrix has larger ratio of modulus/noise, implying that we need a larger dimension
to get the same level of security than with the original BGV variant. In fact, since our modulus is more than
squared (from q to pq with p > q), the dimension is increased by more than a factor of two. This translates
to more than doubling of the key-switching matrix, partly negating the size and running time advantage that
we get from this variant.

We comment that a hybrid of the two approaches could also be used: we can decrease the norm of c′

only somewhat by breaking it into digits (as opposed to binary bits as in [5]), and then increase the modulus
somewhat until it is large enough relative to the smaller norm of c′. We speculate that the optimal setting in
terms of runtime is found around p ≈ √q, but so far did not try to explore this tradeoff.

7

5. Homomorphic Evaluation of the AES Circuit

3.2 Modulus Switching in Evaluation Representation

Given an element c ∈ Aqt in evaluation (double-CRT) representation relative to qt =
∏t
j=0 pj , we want

to modulus-switch to qt−1 – i.e., scale down by a factor of pt; we call this operation Scale(c, qt, qt−1) The
output should be c′ ∈ A, represented via the same double-CRT format (with respect to p0, . . . , pt−1), such
that (a) c′ ≡ c (mod 2), and (b) the “rounding error term” τ = c′ − (c/pt) has a very low norm. As pt is

odd, we can equivalently require that the element c† def
= pt · c′ satisfy

(i) c† is divisible by pt,

(ii) c† ≡ c (mod 2), and

(iii) c† − c (which is equal to pt · τ) has low norm.

Rather than computing c′ directly, we will first compute c† and then set c′ ← c†/pt. Observe that once we
compute c† in double-CRT format, it is easy to output also c′ in double-CRT format: given the evaluations
for c† modulo pj (j < t), simply multiply them by p−1t mod pj . The algorithm to output c† in double-CRT
format is as follows:

1. Set c̄ to be the coefficient representation of c mod pt. (Computing this requires a single “small FFT”
modulo the prime pt.)

2. Add or subtract pt from every odd coefficient of c̄, thus obtaining a polynomial δ with coefficients in
(−pt, pt] such that δ ≡ c̄ ≡ c (mod pt) and δ ≡ 0 (mod 2).

3. Set c† = c− δ, and output it in double-CRT representation.

Since we already have c in double-CRT representation, we only need the double-CRT representation
of δ, which requires t more “small FFTs” modulo the pj’s.

As all the coefficients of c† are within pt of those of c, the “rounding error term” τ = (c† − c)/pt has
coefficients of magnitude at most one, hence it has low norm.

The procedure above uses t + 1 small FFTs in total. This should be compared to the naive method of
just converting everything to coefficient representation modulo the primes (t + 1 FFTs), CRT-interpolating
the coefficients, dividing and rounding appropriately the large integers (of size≈ qt), CRT-decomposing the
coefficients, and then converting back to evaluation representation (t+ 1 more FFTs). The above approach
makes explicit use of the fact that we are working in a plaintext space modulo 2; in Appendix D we present
a technique which works when the plaintext space is defined modulo a larger modulus.

3.3 Dynamic Noise Management

As described in the literature, BGV-type cryptosystems tacitly assume that each homomorphic operation
operation is followed a modulus switch to reduce the noise magnitude. In our implementation, however, we
attach to each ciphertext an estimate of the noise magnitude in that ciphertext, and use these estimates to
decide dynamically when a modulus switch must be performed.

Each modulus switch consumes a level, and hence a goal is to reduce, over a computation, the number of
levels consumed. By paying particular attention to the parameters of the scheme, and by carefully analyzing
how various operations affect the noise, we are able to control the noise much more carefully than in prior
work. In particular, we note that modulus-switching is really only necessary just prior to multiplication
(when the noise magnitude is about to get squared), in other times it is acceptable to keep the ciphertexts at
a higher level (with higher noise).

8

5. Homomorphic Evaluation of the AES Circuit

3.4 Randomized Multiplication by Constants

Our implementation of the AES round function uses just a few multiplication operations (only seven per
byte!), but it requires a relatively large number of multiplications of encrypted bytes by constants. Hence it
becomes important to try and squeeze down the increase in noise when multiplying by a constant. To that
end, we encode a constant polynomial in A2 as a polynomial with coefficients in {−1, 0, 1} rather than in
{0, 1}. Namely, we have a procedure Randomize(α) that takes a polynomial α ∈ A2 and replaces each
non-zero coefficients with a coefficients chosen uniformly from {−1, 1}. By Chernoff bound, we expect
that for α with h nonzero coefficients, the canonical embedding norm of Randomize(α) to be bounded by
O(
√
h) with high probability (assuming that h is large enough for the bound to kick in). This yields a better

bound on the noise increase than the trivial bound of h that we would get if we just multiply by α itself.
(In Appendix A.5 we present a heuristic argument that we use to bound the noise, which yields the same
asymptotic bounds but slightly better constants.)

4 Homomorphic Evaluation of AES

Next we describe our homomorphic implementation of AES-128. We implemented three distinct implemen-
tation possibilities; we first describe the “packed implementation”, in which the entire AES state is packed
in just one ciphertext. Two other implementations (of byte-slice and bit-slice AES) are described later in
Section 4.2. The “packed” implementation uses the least amount of memory (which turns out to be the
main constraint in our implementation), and also the fastest running time for a single evaluation. The other
implementation choices allow more SIMD parallelism, on the other hand, so they can give better amortized
running time when evaluating AES on many blocks in parallel.

A Brief Overview of AES. The AES-128 cipher consists of ten applications of the same keyed round
function (with different round keys). The round function operates on a 4 × 4 matrix of bytes, which are
sometimes considered as element of F28 . The basic operations that are performed during the round function
are AddKey, SubBytes, ShiftRows, MixColumns. The AddKey is simply an XOR operation of the current
state with 16 bytes of key; the SubBytes operation consists of an inversion in the field F28 followed by
a fixed F2-linear map on the bits of the element (relative to a fixed polynomial representation of F28); the
ShiftRows rotates the entries in the row i of the 4×4 matrix by i−1 places to the left; finally the MixColumns
operations pre-multiplies the state matrix by a fixed 4× 4 matrix.

Our Packed Representation of the AES state. For our implementation we chose the native plaintext
space of our homomorphic encryption so as to support operations on the finite field F28 . To this end we
choose our ring polynomial as Φm(X) that factors modulo 2 into degree-d irreducible polynomials such
that 8|d. (In other words, the smallest integer d such that m|(2d − 1) is divisible by 8.) This means that our
plaintext slots can hold elements of F2d , and in particular we can use them to hold elements of F28 which
is a sub-field of F2d . Since we have ` = φ(m)/d plaintext slots in each ciphertext, we can represent upto
b`/16c complete AES state matrices per ciphertext.

Moreover, we choose our parameter m so that there exists an element g ∈ Z∗m that has order 16 in
both Z∗m and the quotient group Z∗m/ 〈2〉. This condition means that if we put 16 plaintext bytes in slots
t, tg, tg2, tg3, . . . (for some t ∈ Z∗m), then the conjugation operation X 7→ Xg implements a cyclic right
shift over these sixteen plaintext bytes.

9

5. Homomorphic Evaluation of the AES Circuit

In the computation of the AES round function we use several constants. Some constants are used in
the S-box lookup phase to implement the AES bit-affine transformation, these are denoted γ and γ2j for
j = 0, . . . , 7. In the row-shift/col-mix part we use a constant Cslct that has 1 in slots corresponding to t · gi
for i = 0, 4, 8, 12, and 0 in all the other slots of the form t · gi. (Here slot t is where we put the first AES
byte.) We also use ’X’ to denote the constant that has the element X in all the slots.

4.1 Homomorphic Evaluation of the Basic Operations

We now examine each AES operation in turn, and describe how it is implemented homomorphically. For
each operation we denote the plaintext polynomial underlying a given input ciphertext c by a, and the
corresponding content of the ` plaintext slots are denoted as an `-vector (αi)

`
i=1, with each αi ∈ F28 .

4.1.1 AddKey and SubBytes

The AddKey is just a simple addition of ciphertexts, which yields a 4 × 4 matrix of bytes in the input to
the SubBytes operation. We place these 16 bytes in plaintext slots tgi for i = 0, 1, . . . , 15, using column-
ordering to decide which byte goes in what slot, namely we have

a ≈ [α00α10α20α30α01α11α21α31α02α12α22α32α03α13α23α33],

encrypting the input plaintext matrix

A =
(
αij
)
i,j

=

α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33

 .

During S-box lookup, each plaintext byte αij should be replaced by βij = S(αij), where S(·) is a fixed
permutation on the bytes. Specifically, S(x) is obtained by first computing y = x−1 in F28 (with 0 mapped
to 0), then applying a bitwise affine transformation z = T (y) where elements in F28 are treated as bit strings
with representation polynomial G(X) = x8 + x4 + x3 + x+ 1.

We implement F28 inversion followed by the F2 affine transformation using the Frobenius automor-
phisms, X −→ X2j . Recall that for a power of two k = 2j , the transformation κk(a(X)) = (a(Xk) mod
Φm(X)) is applied separately to each slot, hence we can use it to transform the vector (αi)

`
i=1 into (αki)

`
i=1.

We note that applying the Frobenius automorphisms to ciphertexts has almost no influence on the noise
magnitude, and hence it does not consume any levels.4

Inversion over F28 is done using essentially the same procedure as Algorithm 2 from [25] for comput-
ing β = α−1 = α254. This procedure takes only three Frobenius automorphisms and four multiplications,
arranged in a depth-3 circuit (see details below.) To apply the AES F2 affine transformation, we use the fact
that any F2 affine transformation can be computed as a F28 affine transformation over the conjugates. Thus
there are constants γ0, γ1, . . . , γ7, δ ∈ F28 such that the AES affine transformation TAES(·) can be expressed
as TAES(β) = δ+

∑7
j=0 γj · β2

j
over F28 . We therefore again apply the Frobenius automorphisms to com-

pute eight ciphertexts encrypting the polynomials κk(b) for k = 1, 2, 4, . . . , 128, and take the appropriate
linear combination (with coefficients the γj’s) to get an encryption of the vector (TAES(α−1i))`i=1. For our
parameters, a multiplication-by-constant operation consumes roughly half a level in terms of added noise.

4It does increase the noise magnitude somewhat, because we need to do key switching after these automorphisms. But this is
only a small influence, and we will ignore it here.

10

5. Homomorphic Evaluation of the AES Circuit

One subtle implementation detail to note here, is that although our plaintext slots all hold elements
of the same field F28 , they hold these elements with respect to different polynomial encodings. The AES
affine transformation, on the other hand, is defined with respect to one particular fixed polynomial encoding.
This means that we must implement in the i’th slot not the affine transformation TAES(·) itself but rather
the projection of this transformation onto the appropriate polynomial encoding: When we take the affine
transformation of the eight ciphertexts encrypting bj = κ

2
j (b), we therefore multiply the encryption of bj

not by a constant that has γj in all the slots, but rather by a constant that has in slot i the projection of γj to
the polynomial encoding of slot i.

Below we provide a pseudo-code description of our S-box lookup implementation, together with an
approximation of the levels that are consumed by these operations. (These approximations are somewhat
under-estimates, however.)

Level
Input: ciphertext c t

// Compute c254 = c−1

1. c2 ← c� 2 t // Frobenius X 7→ X2

2. c3 ← c× c2 t+ 1 // Multiplication
3. c12 ← c3 � 4 t+ 1 // Frobenius X 7→ X4

4. c14 ← c12 × c2 t+ 2 // Multiplication
5. c15 ← c12 × c3 t+ 2 // Multiplication
6. c240 ← c15 � 16 t+ 2 // Frobenius X 7→ X16

7. c254 ← c240 × c14 t+ 3 // Multiplication

// Affine transformation over F2

8. c′
2j
← c254 � 2j for j = 0, 1, 2, . . . , 7 t+ 3 // Frobenius X 7→ X2j

9. c′′ ← γ +
∑7

j=0 γj × c′
2j

t+ 3.5 // Linear combination over F28

4.1.2 ShiftRows and MixColumns

As commonly done, we interleave the ShiftRows/MixColumns operations, viewing both as a single linear
transformation over vectors from (F28)16. As mentioned above, by a careful choice of the parameter m and
the placement of the AES state bytes in our plaintext slots, we can implement a rotation-by-i of the rows of
the AES matrix as a single automorphism operationsX 7→ Xgi (for some element g ∈ (Z/mZ)∗). Given the
ciphertext c′′ after the SubBytes step, we use these operations (in conjunction with `-SELECT operations, as
described in [15]) to compute four ciphertexts corresponding to the appropriate permutations of the 16 bytes
(in each of the `/16 different input blocks). These four ciphertexts are combined via a linear operation (with
coefficients 1, X , and (1 + X)) to obtain the final result of this round function. Below is a pseudo-code of
this implementation and an approximation for the levels that it consumes (starting from t − 3.5). We note
that the permutations are implemented using automorphisms and multiplication by constant, thus we expect
them to consume roughly 1/2 level.

Level
Input: ciphertext c′′ t+ 3.5

10. c∗j ← πj(c
′′) for j = 1, 2, 3, 4 t+ 4.0 // Permutations

11. Output X · c∗1 + (X + 1) · c∗2 + c∗3 + c∗4 t+ 4.5 // Linear combination

11

5. Homomorphic Evaluation of the AES Circuit

4.1.3 The Cost of One Round Function

The above description yields an estimate of 5 levels for implementing one round function. This is however,
an underestimate. The actual number of levels depends on details such as how sparse the scalars are with
respect to the embedding via Φm in a given parameter set, as well as the accumulation of noise with respect
to additions, Frobenius operations etc. Running over many different parameter sets we find the average
number of levels per round for this method varies between 5.0 and 6.0.

We mention that the byte-slice and bit-slice implementations, given in Section 4.2 below, can consume
less levels per round function, since they do not need to permute slots inside a single ciphertext. Specifically,
for our byte-sliced implementation, we only need 4.5-5.0 levels per round on average. However, since we
need to manipulate many more ciphertexts, the implementation takes much more time per evaluation and
requires much more memory. On the other hand it offers wider parallelism, so yields better amortized time
per block. Our bit-sliced implementation should theoretical consume the least number of levels (by purely
counting multiplication gates), but the noise introduced by additions means the average number of levels
consumed per round varies from 5.0 upto 10.0.

4.2 Byte- and Bit-Slice Implementations

In the byte sliced implementation we use sixteen distinct ciphertexts to represent a single state matrix. (But
since each ciphertext can hold ` plaintext slots, then these 16 ciphertexts can hold the state of ` different
AES blocks). In this representation there is no interaction between the slots, thus we operate with pure `-fold
SIMD operations. The AddKey and SubBytes steps are exactly as above (except applied to 16 ciphertexts
rather than a single one). The permutations in the ShiftRows/MixColumns step are now “for free”, but the
scalar multiplication in MixColumns still consumes another level in the modulus chain.

Using the same estimates as above, we expect the number of levels per round to be roughly four (as
opposed to the 4.5 of the packed implementation). In practice, again over many parameter sets, we find the
average number of levels consumed per round is between 4.5 and 5.0.

For the bit sliced implementation we represent the entire round function as a binary circuit, and we use
128 distinct ciphertexts (one per bit of the state matrix). However each set of 128 ciphertexts is able to
represent a total of ` distinct blocks. The main issue here is how to create a circuit for the round function
which is as shallow, in terms of number of multiplication gates, as possible. Again the main issue is the
SubBytes operation as all operations are essentially linear. To implement the SubBytes we used the “depth-
16” circuit of Boyar and Peralta [3], which consumes four levels. The rest of the round function can be
represented as a set of bit-additions, Thus, implementing this method means that we consumes a minimum
of four levels on computing an entire round function. However, the extensive additions within the Boyar–
Peralta circuit mean that we actually end up consuming a lot more. On average this translates into actually
consuming between 5.0 and 10.0 levels per round.

4.3 Performance Details

As remarked in the introduction, we implemented the above variant of evaluating AES homomorphically on
a very large memory machine; namely a machine with 256 GB of RAM. Firstly parameters were selected,
as in Appendix C, to cope with 60 levels of computation, and a public/private key pair was generated; along
with the key-switching data for multiplication operations and conjugation with-respect-to the Galois group.

As input to the actual computation was an AES plaintext block and the eleven round keys; each of which
was encrypted using our homomorphic encryption scheme. Thus the input consisted of eleven packed

12

5. Homomorphic Evaluation of the AES Circuit

ciphertexts. Producing the encrypted key schedule took around half an hour. To evaluate the entire ten
rounds of AES took just over 36 hours; however each of our ciphertexts could hold 864 plaintext slots of
elements in F28 , thus we could have processed 54 such AES blocks in this time period. This would result in
a throughput of around forty minutes per AES block.

We note that as the algorithm progressed the operations became faster. The first round of the AES
function took 7 hours, whereas the penultimate round took 2 hours and the last round took 30 minutes.
Recall, the last AES round is somewhat simpler as it does not involve a MixColumns operation.

Whilst our other two implementation choices (given in Section 4.2 below) may seem to yield better
amortized per-block timing, the increase in memory requirements and data actually makes them less attrac-
tive when encrypting a single block. For example just encrypting the key schedule in the Byte-Sliced variant
takes just under 5 hours (with 50 levels), with an entire encryption taking 65 hours (12 hours for the first
round, with between 4 and 5 hours for both the penultimate and final rounds). This however equates to an
amortized time of just over five minutes per block.

The Bit-Sliced variant requires over 150 hours to just encrypt the key schedule (with 60 levels), and
evaluating a single round takes so long that our program is timed out before even a single round is evaluated.

Acknowledgments

We thank Jean-Sebastien Coron for pointing out to us the efficient implementation from [25] of the AES
S-box lookup.

References

[1] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. In CRYPTO, volume 5677 of Lecture
Notes in Computer Science, pages 595–618. Springer, 2009.

[2] Sanjeev Arora and Rong Ge. New algorithms for learning in the presence of errors. In ICALP, volume
6755 of Lecture Notes in Computer Science, pages 403–415. Springer, 2011.

[3] Joan Boyar and René Peralta. A depth-16 circuit for the AES S-box. Manuscript, http://eprint.
iacr.org/2011/332, 2011.

[4] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP.
Manuscript, http://eprint.iacr.org/2012/078, 2012.

[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption without
bootstrapping. In Innovations in Theoretical Computer Science (ITCS’12), 2012. Available at http:
//eprint.iacr.org/2011/277.

[6] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS’11. IEEE Computer Society, 2011.

[7] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE and secu-
rity for key dependent messages. In Advances in Cryptology - CRYPTO 2011, volume 6841 of Lecture
Notes in Computer Science, pages 505–524. Springer, 2011.

13

5. Homomorphic Evaluation of the AES Circuit

[8] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully homomorphic
encryption over the integers with shorter public keys. In Advances in Cryptology - CRYPTO 2011,
volume 6841 of Lecture Notes in Computer Science, pages 487–504. Springer, 2011.

[9] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and modulus
switching for fully homomorphic encryption over the integers. In Advances in Cryptology - EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 446–464. Springer, 2012.

[10] Ivan Damgård and Marcel Keller. Secure multiparty aes. In Proc. of Financial Cryptography 2010,
volume 6052 of LNCS, pages 367–374, 2010.

[11] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. Manuscript, 2011.

[12] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In EUROCRYPT, volume 4965 of
Lecture Notes in Computer Science, pages 31–51. Springer, 2008.

[13] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
STOC, pages 169–178. ACM, 2009.

[14] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In
EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 129–148. Springer, 2011.

[15] Craig Gentry, Shai Halevi, and Nigel Smart. Fully homomorphic encryption with polylog overhead.
In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 465–482. Springer, 2012.
Full version at http://eprint.iacr.org/2011/566.

[16] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness of the
learning with errors assumption. In Innovations in Computer Science - ICS ’10, pages 230–240. Ts-
inghua University Press, 2010.

[17] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party computation using
garbled circuits. In USENIX Security Symposium, 2011.

[18] C. Orlandi J.B. Nielsen, P.S. Nordholt and S. Sheshank. A new approach to practical active-secure
two-party computation. Manuscript, 2011.

[19] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption be practi-
cal? In CCSW, pages 113–124. ACM, 2011.

[20] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for lwe-based encryption. In CT-RSA,
volume 6558 of Lecture Notes in Computer Science, pages 319–339. Springer, 2011.

[21] Adriana Lòpez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on
the cloud via multikey fully homomorphic encryption. In STOC. ACM, 2012.

[22] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 1–23, 2010.

[23] Daniele Micciancio and Oded Regev. Lattice-based cryptography, pages 147–192. Springer, 2009.

14

5. Homomorphic Evaluation of the AES Circuit

[24] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Steven C. Williams. Secure two-party compu-
tation is practical. In Proc. ASIACRYPT 2009, volume 5912 of LNCS, pages 250–267, 2009.

[25] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In CHES,
volume 6225 of Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

[26] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In Public Key Cryptography - PKC’10, volume 6056 of Lecture Notes in Computer
Science, pages 420–443. Springer, 2010.

[27] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Manuscript at
http://eprint.iacr.org/2011/133, 2011.

A More Details

Following [22, 5, 15, 27] we utilize rings defined by cyclotomic polynomials, A = Z[X]/Φm(X). We let
Aq denote the set of elements of this ring reduced modulo various (possibly composite) moduli q. The ring
A is the ring of integers of a the mth cyclotomic number field K.

A.1 Plaintext Slots

In our scheme plaintexts will be elements of A2, and the polynomial Φm(X) factors modulo 2 into ` ir-
reducible factors, Φm(X) = F1(X) · F2(X) · · ·F`(X) (mod 2), all of degree d = φ(m)/`. Just as in
[5, 15, 27] each factor corresponds to a “plaintext slot”. That is, we view a polynomial a ∈ A2 as represent-
ing an `-vector (a mod Fi)

`
i=1.

It is standard fact that the Galois group Gal = Gal(Q(ζm)/Q) consists of the mappings κk : a(X) 7→
a(xk) mod Φm(X) for all k co-prime with m, and that it is isomorphic to (Z/mZ)∗. As noted in [15], for
each i, j ∈ {1, 2, . . . , `} there is an element κk ∈ Gal which sends an element in slot i to an element in slot
j. Namely, if b = κi(a) then the element in the j’th slot of b is the same as that in the i’th slot of a. In
addition Gal contains the Frobenius elements, X −→ X2i , which also act as Frobenius on the individual
slots separately.

For the purpose of implementing AES we will be specifically interested in arithmetic in F28 (represented
as F28 = F2[X]/G(X) with G(X) = X8 + X4 + X3 + X + 1). We choose the parameters so that d is
divisible by 8, so F2d includes F2d as a subfield. This lets us think of the plaintext space as containing
`-vectors over F2n .

A.2 Canonical Embedding Norm

Following [22], we use as the “size” of a polynomial a ∈ A the l∞ norm of its canonical embedding. Recall
that the canonical embedding of a ∈ A into Cφ(m) is the φ(m)-vector of complex numbers σ(a) = (a(ζim))i
where ζm is a complex primitive m-th root of unity and the indexes i range over all of (Z/mZ)∗. We call
the norm of σ(a) the canonical embedding norm of a, and denote it by

‖a‖can∞ = ‖σ(a)‖∞.

We will make use of the following properties of ‖ · ‖can∞ :

15

5. Homomorphic Evaluation of the AES Circuit

• For all a, b ∈ A we have ‖a · b‖can∞ ≤ ‖a‖can∞ · ‖b‖can∞ .

• For all a ∈ A we have ‖a‖can∞ ≤ ‖a‖1.

• There is a ring constant cm (depending only on m) such that ‖a‖∞ ≤ cm · ‖a‖can∞ for all a ∈ A.

The ring constant cm is defined by cm = ‖CRT−1m ‖∞ where CRTm is the CRT matrix for m, i.e. the
Vandermonde matrix over the complex primitive m-th roots of unity. Asymptotically the value cm can grow
super-polynomially with m, but for the “small” values of m one would use in practice values of cm can be
evaluated directly. See [11] for a discussion of cm.

Canonical Reduction. When working with elements in Aq for some integer modulus q, we sometimes
need a version of the canonical embedding norm that plays nice with reduction modulo q. Following [15],
we define the canonical embedding norm reduced modulo q of an element a ∈ A as the smallest canonical
embedding norm of any a′ which is congruent to a modulo q. We denote it as

|a|canq
def
= min{ ‖a′‖can∞ : a′ ∈ A, a′ ≡ a (mod q) }.

We sometimes also denote the polynomial where the minimum is obtained by [a]canq , and call it the canonical
reduction of a modulo q. Neither the canonical embedding norm nor the canonical reduction is used in the
scheme itself, it is only in the analysis of it that we will need them. We note that (trivially) we have
|a|canq ≤ ‖a‖can∞ .

A.3 Double CRT Representation

As noted in Section 2, we usually represent an element a ∈ Aq via double-CRT representation, with respect
to both the polynomial factor of Φm(X) and the integer factors of q. Specifically, we assume that Z/qZ
contains a primitive m-th root of unity (call it ζ), so Φm(X) factors modulo q to linear terms Φm(X) =∏
i∈(Z/mZ)∗(X − ζj) (mod q). We also denote q’s prime factorization by q =

∏t
i=0 pi. Then a polynomial

a ∈ Aq is represented as the (t + 1) × φ(m) matrix of its evaluation at the roots of Φm(X) modulo pi for
i = 0, . . . , t:

dble-CRTt(a) =
(
a
(
ζj
)

mod pi
)
0≤i≤t,j∈(Z/mZ)∗ .

The double CRT representation can be computed using t+1 invocations of the FFT algorithm modulo the pi,
picking only the FFT coefficients which correspond to elements in (Z/mZ)∗. To invert this representation
we invoke the inverse FFT algorithm t+1 times on a vector of length m consisting of the thinned out values
padded with zeros, then apply the Chinese Remainder Theorem, and then reduce modulo Φm(X) and q.

Addition and multiplication in Aq can be computed as component-wise addition and multiplication of
the entries in the two tables (modulo the appropriate primes pi),

dble-CRTt(a+ b) = dble-CRTt(a) + dble-CRTt(b)

dble-CRTt(a · b) = dble-CRTt(a) · dble-CRTt(b).

Also, for an element of the Galois group κk ∈ Gal (which maps a(X) ∈ A to a(Xk) mod Φm(X)), we can
evaluate κk(a) on the double-CRT representation of a just by permuting the columns in the matrix, sending
each column j to column j · k mod m.

16

5. Homomorphic Evaluation of the AES Circuit

A.4 Sampling From Aq

At various points we will need to sample from Aq with different distributions, as described below. We denote
choosing the element a ∈ A according to distributionD by a← D. The distributions below are described as
over φ(m)-vectors, but we always consider them as distributions over the ring A, by identifying a polynomial
a ∈ A with its coefficient vector.

The uniform distribution Uq: This is just the uniform distribution over (Z/qZ)φ(m), which we identify with
(Z ∩ (−q/2, q/2])φ(m)). Note that it is easy to sample from Uq directly in double-CRT representation.

The “discrete Gaussian” DGq(σ2): LetN (0, σ2) denote the normal (Gaussian) distribution on real numbers
with zero-mean and variance σ2, we use drawing from N (0, σ2) and rounding to the nearest integer as
an approximation to the discrete Gaussian distribution. Namely, the distribution DGqt(σ2) draws a real
φ-vector according to N (0, σ2)φ(m), rounds it to the nearest integer vector, and outputs that integer vector
reduced modulo q (into the interval (−q/2, q/2]).

Sampling small polynomials, ZO(p) andHWT (h): These distributions produce vectors in {0,±1}φ(m).
For a real parameter ρ ∈ [0, 1], ZO(p) draws each entry in the vector from {0,±1}, with probability

ρ/2 for each of −1 and +1, and probability of being zero 1− ρ.
For an integer parameter h ≤ φ(m), the distribution HWT (h) chooses a vector uniformly at random

from {0,±1}φ(m), subject to the conditions that it has exactly h nonzero entries.

A.5 Canonical embedding norm of random polynomials

In the coming sections we will need to bound the canonical embedding norm of polynomials that are pro-
duced by the distributions above, as well as products of such polynomials. In some cases it is possible to
analyze the norm rigorously using Chernoff and Hoeffding bounds, but to set the parameters of our scheme
we instead use a heuristic approach that yields better constants:

Let a ∈ A be a polynomial that was chosen by one of the distributions above, hence all the (nonzero)
coefficients in a are IID (independently identically distributed). For a complex primitive m-th root of unity
ζm, the evaluation a(ζm) is the inner product between the coefficient vector of a and the fixed vector zm =
(1, ζm, ζ

2
m, . . .), which has Euclidean norm exactly

√
φ(m). Hence the random variable a(ζm) has variance

V = σ2φ(m), where σ2 is the variance of each coefficient of a. Specifically, when a ← Uq then each
coefficient has variance q2/12, so we get variance VU = q2φ(m)/12. When a← DGq(σ2) we get variance
VG ≈ σ2φ(m), and when a ← ZO(ρ) we get variance VZ = ρφ(m). When choosing a ← HWT (h) we
get a variance of VH = h (but not φ(m), since a has only h nonzero coefficients).

Moreover, the random variable a(ζm) is a sum of many IID random variables, hence by the law of large
numbers it is distributed similarly to a complex Gaussian random variable of the specified variance.5 We
therefore use 6

√
V (i.e. six standard deviations) as a high-probability bound on the size of a(ζm). Since the

evaluation of a at all the roots of unity obeys the same bound, we use six standard deviations as our bound
on the canonical embedding norm of a. (We chose six standard deviations since erfc(6) ≈ 2−55, which is
good enough for us even when using the union bound and multiplying it by φ(m) ≈ 216.)

In many cases we need to bound the canonical embedding norm of a product of two such “random
polynomials”. In this case our task is to bound the magnitude of the product of two random variables, both
are distributed close to Gaussians, with variances σ2a, σ

2
b , respectively. For this case we use 16σaσb as our

5The mean of a(ζm) is zero, since the coefficients of a are chosen from a zero-mean distribution.

17

5. Homomorphic Evaluation of the AES Circuit

bound, since erfc(4) ≈ 2−25, so the probability that both variables exceed their standard deviation by more
than a factor of four is roughly 2−50.

B The Basic Scheme

We now define our leveled HE scheme on L levels; including the Modulus-Switching and Key-Switching
operations and the procedures for KeyGen,Enc,Dec, and for Add,Mult, Scalar-Mult, and Automorphism.

Recall that a ciphertext vector c in the cryptosystem is a valid encryption of a ∈ A with respect to
secret key s and modulus q if [[〈c, s〉]q]2 = a, where the inner product is over A = Z[X]/Φm(X), the
operation [·]q denotes modular reduction in coefficient representation into the interval (−q/2,+q/2], and
we require that the “noise” [〈c, s〉]q is sufficiently small (in canonical embedding norm reduced mod q). In
our implementation a “normal” ciphertext is a 2-vector c = (c0, c1), and a “normal” secret key is of the
form s = (1,−s), hence decryption takes the form

a← [c0 − c1 · s]q mod 2. (2)

B.1 Our Moduli Chain

We define the chain of moduli for our depth-L homomorphic evaluation by choosing L “small primes”
p0, p1, . . . , pL−1 and the t’th modulus in our chain is defined as qt =

∏t
j=0 pj . (The sizes will be determined

later.) The primes pi’s are chosen so that for all i, Z/piZ contains a primitive m-th root of unity. Hence we
can use our double-CRT representation for all Aqt .

This choice of moduli makes it easy to get a level-(t− 1) representation of a ∈ A from its level-t repre-
sentation. Specifically, given the level-t double-CRT representation dble-CRTt(a) for some a ∈ Aqt , we can
simply remove from the matrix the row corresponding to the last small prime pt, thus obtaining a level-(t−1)
representation of a mod qt−1 ∈ Aqt−1 . Similarly we can get the double-CRT representation for lower levels
by removing more rows. By a slight abuse of notation we write dble-CRTt

′
(a) = dble-CRTt(a) mod qt′

for t′ < t.
Recall that encryption produces ciphertext vectors valid with respect to the largest modulus qL−1 in our

chain, and we obtain ciphertext vectors valid with respect to smaller moduli whenever we apply modulus-
switching to decrease the noise magnitude. As described in Section 3.3, our implementation dynamically
adjust levels, performing modulus switching when the dynamically-computed noise estimate becomes too
large. Hence each ciphertext in our scheme is tagged with both its level t (pinpointing the modulus qt relative
to which this ciphertext is valid), and an estimate ν on the noise magnitude in this ciphertext. In other words,
a ciphertext is a triple (c, t, ν) with 0 ≤ t ≤ L− 1, c a vector over Aqt , and ν a real number which is used
as our noise estimate.

B.2 Modulus Switching

The operation SwitchModulus(c) takes the ciphertext c = ((c0, c1), t, ν) defined modulo qt and produces a
ciphertext c′ = ((c′0, c

′
1), t−1, ν ′) defined modulo qt−1, Such that [c0− s · c1]qt ≡ [c′0− s · c′1]qt−1 (mod 2),

and ν ′ is smaller than ν. This procedure makes use of the function Scale(x, q, q′) that takes an element
x ∈ Aq and returns an element y ∈ Aq′ such that in coefficient representation it holds that y ≡ x (mod 2),
and y is the closest element to (q′/q) · x that satisfies this mod-2 condition.

18

5. Homomorphic Evaluation of the AES Circuit

To maintain the noise estimate, the procedure uses the pre-set ring-constant cm (cf. Appendix A.2) and
also a pre-set constant Bscale which is meant to bound the magnitude of the added noise term from this
operation. It works as follows:

SwitchModulus((c0, c1), t, ν):
1. If t < 1 then abort; // Sanity check
2. ν ′ ← qt−1

qt
· ν +Bscale; // Scale down the noise estimate

3. If ν ′ > qt−1/2cm then abort; // Another sanity check
4. c′i ← Scale(ci, qt, qt−1) for i = 0, 1; // Scale down the vector
5. Output ((c′0, c

′
1), t− 1, ν ′).

The constant Bscale is set as Bscale = 2
√
φ(m)/3 · (8

√
h + 3), where h is the Hamming weight of the

secret key. (In our implementation we use h = 64, so we getBscale ≈ 77
√
φ(m).) To justify this choice, we

apply to the proof of the modulus switching lemma from [15, Lemma 13] (in the full version), relative to the
canonical embedding norm. In that proof it is shown that when the noise magnitude in the input ciphertext
c = (c0, c1) is bounded by ν, then the noise magnitude in the output vector c′ = (c′0, c

′
1) is bounded by

ν ′ = qt−1

qt
· ν + ‖ 〈s, τ〉 ‖can∞ , provided that the last quantity is smaller than qt−1/2.

Above τ is the “rounding error” vector, namely τ def
= (τ0, τ1) = (c′0, c

′
1) −

qt−1

qt
(c0, c1). Heuristically

assuming that τ behaves as if its coefficients are chosen uniformly in [−1,+1], the evaluation τi(ζ) at an
m-th root of unity ζm is distributed close to a Gaussian complex with variance φ(m)/3. Also, s was drawn
from HWT (h) so s(ζm) is distributed close to a Gaussian complex with variance h. Hence we expect
τ1(ζ)s(ζ) to have magnitude at most 16

√
φ(m)/3 · h (recall that we use h = 64). We can similarly bound

τ0(ζm) by 6
√
φ(m)/3, and therefore the evaluation of 〈s, τ〉 at ζm is bounded in magnitude (whp) by:

16
√
φ(m)/3 · h + 6

√
φ(m)/3 = 2

√
φ(m)/3 ·

(
8
√
h+ 3

)
≈ 77

√
φ(m) = Bscale (3)

B.3 Key Switching

After some homomorphic evaluation operations we have on our hands not a “normal” ciphertext which is
valid relative to “normal” secret key, but rather an “extended ciphertext” ((d0, d1, d2), qt, ν) which is valid
with respect to an “extended secret key” s′ = (1,−s,−s′). Namely, this ciphertext encrypts the plaintext
a ∈ A via

a =
[[
d0 − s · d1 − s′ · d2

]
qt

]
2

and the magnitude of the noise
[
d0−s·d1−d2 ·s′

]
qt

is bounded by ν. In our implementation, the component
s is always the same element s ∈ A that was drawn from HWT (h) during key generation, but s′ can vary
depending on the operation. (See the description of multiplication and automorphisms below.)

To enable that translation, we use some “key switching matrices” that are included in the public key. (In
our implementation these “matrices” have dimension 2 × 1, i.e., the consist of only two elements from A.)
As explained in Section 3.1, we save on space and time by artificially “boosting” the modulus we use from
qt up to P · qt for some “large” modulus P . We note that in order to represent elements in APqt using our
dble-CRT representation we need to choose P so that Z/PZ also has primitive m-th roots of unity. (In fact
in our implementation we pick P to be a prime.)

19

5. Homomorphic Evaluation of the AES Circuit

The key-switching “matrix”. Denote by Q = P · qL−2 the largest modulus relative to which we need
to generate key-switching matrices. To generate the key-switching matrix from s′ = (1,−s,−s′) to s =
(1,−s) (note that both keys share the same element s), we choose two element, one uniform and the other
from our “discrete Gaussian”,

as,s′ ← UQ and es,s′ ← DGQ(σ2),

where the variance σ is a global parameter (that we later set as σ = 3.2). The “key switching matrix” then
consists of the single column vector

W [s′ → s] =

(
bs,s′

as,s′

)
, where bs,s′

def
=
[
s · as,s′ + 2es,s′ + P s′

]
Q
. (4)

Note that W above is defined modulo Q = PqL−2 , but we need to use it relative to Qt = Pqt for whatever
the current level t is. Hence before applying the key switching procedure at level t, we reduceW moduloQt
to getWt

def
= [W]Qt . It is important to note that sinceQt dividesQ thenWt is indeed a key-switching matrix.

Namely it is of the form (b, a)T with a ∈ UQt and b = [s · a + 2es,s′ + P s′]Qt (with respect to the same
element es,s′ ∈ A from above).

The SwitchKey procedure. Given the extended ciphertext c = ((d0, d1, d2), t, ν) and the key-switching
matrix Wt = (b, a)T , the procedure SwitchKeyWt

(c) proceeds as follows:6

SwitchKey(b,a)((d0, d1, d2), t, ν):

1. Set
(
c′0
c′1

)
←
[(

Pd0 b
Pd1 a

)(
1
d2

)]
Qt

; // The actual key-switching operation

2. c′′i ← Scale(c′i, Qt, qt) for i = 0, 1; // Scale the vector back down to qt
3. ν ′ ← ν +BKs · qt/P +Bscale; // The constant BKs is determined below
4. Output ((c′′0, c

′′
1), t, ν ′).

To argue correctness, observe that although the “actual key switching operation” from above looks
superficially different from the standard key-switching operation c′ ← W · c, it is merely an optimization
that takes advantage of the fact that both vectors s′ and s share the element s. Indeed, we have the equality
over AQt :

c′0 − s · c′1 = [(P · d0) + d2 · bs,s′ − s ·
(
(P · d1) + d2 · as,s′

)
= P · (d0 − s · d1 − s′d2) + 2 · d2 · εs,s′ ,

so as long as both sides are smaller than Qt we have the same equality also over A (without the mod-Qt
reduction), which means that we get

[c′0 − s · c′1]Qt = [P · (d0 − s · d1 − s′d2) + 2 · d2 · εs,s′]Qt ≡ [d0 − s · d1 − s′d2]Qt (mod 2).

To analyze the size of the added term 2d2εs,s′ , we can assume heuristically that d2 behaves like a uniform
polynomial drawn from Uqt , hence d2(ζm) for a complex root of unity ζm is distributed close to a complex
Gaussian with variance q2t φ(m)/12. Similarly εs,s′(ζm) is distributed close to a complex Gaussian with

6For simplicity we describe the SwitchKey procedure as if it always switches back to mod-qt, but in reality if the noise estimate
is large enough then it can switch directly to qt−1 instead.

20

5. Homomorphic Evaluation of the AES Circuit

variance σ2φ(m), so 2d2(ζ)ε(ζ) can be modeled as a product of two Gaussians, and we expect that with
overwhelming probability it remains smaller than 2 · 16 ·

√
q2t φ(m)/12 · σ2φ(m) = 16√

3
· σqtφ(m). This

yields a heuristic bound 16/
√

3 · σφ(m) · qt = BKs · qt on the canonical embedding norm of the added
noise term, and if the total noise magnitude does not exceed Qt/2cm then also in coefficient representation
everything remains below Qt/2. Thus our constant BKs is set as

16σφ(m)√
3

≈ 9σφ(m) = BKs (5)

Finally, dividing by P (which is the effect of the Scale operation), we obtain the final ciphertext that we
require, and the noise magnitude is divided by P (except for the added Bscale term).

B.4 Key-Generation, Encryption, and Decryption

The procedures below depend on many parameters, h, σ,m, the primes pi and P , etc. These parameters will
be determined later.

KeyGen(): Given the parameters, the key generation procedure chooses a low-weight secret key and then
generates an LWE instance relative to that secret key. Namely, we choose

s← HWT (h), a← UqL−1 , and e← DGqL−1(σ2)

Then sets the secret key as s and the public key as (a, b) where b = [a · s+ 2e]qL−1 .
In addition, the key generation procedure adds to the public key some key-switching “matrices”, as

described in Appendix B.3. Specifically the matrix W [s2 → s] for use in multiplication, and some matrices
W [κi(s) → s] for use in automorphisms, for κi ∈ Gal whose indexes generates (Z/mZ)∗ (including in
particular κ2).

Encpk(m): To encrypt an element m ∈ A2, we choose one “small polynomial” (with 0,±1 coefficients) and
two Gaussian polynomials (with variance σ2),

v ← ZO(0.5) and e0, e1 ← DGqL−1(σ2)

Then we set c0 = b·v+2·e0+m, c1 = a·v+2·e1, and set the initial ciphertext as c′ = (c0, c1, L−1, Bclean),
where Bclean is a parameter that we determine below.

The noise magnitude in this ciphertext (Bclean) is a little larger than what we would like, so before we
start computing on it we do one modulus-switch. That is, the encryption procedure sets c← SwitchModulus(c′)
and outputs c. We can deduce a value for Bclean as follows:∣∣c0 − s · c1

∣∣can
qt
≤ ‖c0 − s · c1‖can∞
= ‖((a · s+ 2 · e) · v + 2 · e0 + m− (a · v + 2 · e1) · s‖can∞
= ‖m + 2 · (e · v + e0 − e1 · s)‖can∞
≤ ‖m‖can∞ + 2 · (‖e · v‖can∞ + ‖e0‖can∞ + ‖e1 · s‖can∞)

Using our complex Gaussian heuristic from Appendix A.5, we can bound the canonical embedding norm of
the randomized terms above by

‖e · v‖can∞ ≤ 16σφ(m)/
√

2, ‖e0‖can∞ ≤ 6σ
√
φ(m), ‖e1 · s‖can∞ ≤ 16σ

√
h · φ(m)

21

5. Homomorphic Evaluation of the AES Circuit

Also, the norm of the input message m is clearly bounded by φ(m), hence (when we substitute our param-
eters h = 64 and σ = 3.2) we get the bound

φ(m) + 32σφ(m)/
√

2 + 12σ
√
φ(m) + 32σ

√
h · φ(m) ≈ 74φ(m) + 858

√
φ(m) = Bclean (6)

Our goal in the initial modulus switching from qL−1 to qL−2 is to reduce the noise from its initial level of
Bclean = Θ(φ(m)) to our base-line bound of B = Θ(

√
φ(m)) which is determined in Equation (12) below.

Decpk(c): Decryption of a ciphertext (c0, c1, t, ν) at level t is performed by setting m′ ← [c0 − s · c1]qt ,
then converting m′ to coefficient representation and outputting m′ mod 2. This procedure works when
cm · ν < qt/2, so this procedure only applies when the constant cm for the field A is known and relatively
small (which as we mentioned above will be true for all practical parameters). Also, we must pick the
smallest prime q0 = p0 large enough, as described in Appendix C.2.

B.5 Homomorphic Operations

Add(c, c′): Given two ciphertexts c = ((c0, c1), t, ν) and c′ = ((c′0, c
′
1), t

′, ν ′), representing messages
m,m′ ∈ A2, this algorithm forms a ciphertext ca = ((a0, a1), ta, νa) which encrypts the message ma =
m + m′.

If the two ciphertexts do not belong to the same level then we reduce the larger one modulo the smaller
of the two moduli, thus bringing them to the same level. (This simple modular reduction works as long as
the noise magnitude is smaller than the smaller of the two moduli, if this condition does not hold then we
need to do modulus switching rather than simple modular reduction.) Once the two ciphertexts are at the
same level (call it t′′), we just add the two ciphertext vectors and two noise estimates to get

ca =
((

[c0 + c′0]qt′′ , [c1 + c′1]qt′′
)
, t′′, ν + ν ′

)
.

Mult(c, c′): Given two ciphertexts representing messages m,m′ ∈ A2, this algorithm forms a ciphertext
encrypts the message m ·m′.

We begin by ensuring that the noise magnitude in both ciphertexts is smaller than the pre-set constant
B (which is our base-line bound and is determined inEquation (12) below), performing modulus-switching
as needed to ensure this condition. Then we bring both ciphertexts to the same level by reducing modulo
the smaller of the two moduli (if needed). Once both ciphertexts have small noise magnitude and the same
level we form the extended ciphertext (essentially performing the tensor product of the two) and apply
key-switching to get back a normal ciphertext. A pseudo-code description of this procedure is given below.

Mult(c, c′):

1. While ν(c) > B do c← SwitchModulus(c); // ν(c) is the noise estimate in c
2. While ν(c′) > B do c′ ← SwitchModulus(c′); // ν(c′) is the noise estimate in c′

3. Bring c, c′ to the same level t by reducing modulo the smaller of the two moduli
Denote after modular reduction c = ((c0, c1), t, ν) and c′ = ((c′0, c

′
1), t, ν

′)
4. Set (d0, d1, d2)← (c0 · c′0 , c1 · c′0 + c0 · c′1 , − c1 · c′1);

Denote c′′ = ((d0, d1, d2), t, ν · ν ′)
5. Output SwitchKeyW [s2→s](c

′′) // Convert to “normal” ciphertext

22

5. Homomorphic Evaluation of the AES Circuit

We stress that the only place where we force modulus switching is before the multiplication operation.
In all other operations we allow the noise to grow, and it will be reduced back the first time it is input to a
multiplication operation. We also note that we may need to apply modulus switching more than once before
the noise is small enough.

Scalar-Mult(c, α): Given a ciphertext c = (c0, c1, t, ν) representing the message m, and an element α ∈ A2

(represented as a polynomial modulo 2 with coefficients in {−1, 0, 1}), this algorithm forms a ciphertext
cm = (a0, a1, tm, νm) which encrypts the message mm = α ·m. This procedure is needed in our imple-
mentation of homomorphic AES, and is of more general interest in general computation over finite fields.

The algorithm makes use of a procedure Randomize(α) which takes α and replaces each non-zero co-
efficients with a coefficients chosen at random from {−1, 1}. To multiply by α, we set β ← Randomize(α)
and then just multiply both c0 and c1 by β. Using the same argument as we used in Appendix A.5 for the
distribution HWT (h), here too we can bound the norm of β by ‖β‖can∞ ≤ 6

√
Wt(α) where Wt(α) is the

number of nonzero coefficients of α. Hence we multiply the noise estimate by 6
√

Wt(α), and output the
resulting ciphertext cm = (c0 · β, c1 · β, t, ν · 6

√
Wt(α)).

Automorphism(c, κ): In the main body we explained how permutations on the plaintext slots can be real-
ized via using elements κ ∈ Gal; we also require the application of such automorphism to implement the
Frobenius maps in our AES implementation.

For each κ that we want to use, we need to include in the public key the “matrix” W [κ(s) → s]. Then,
given a ciphertext c = (c0, c1, t, ν) representing the message m, the function Automorphism(c, κ) produces
a ciphertext c′ = (c′0, c

′
1, t, ν

′) which represents the message κ(m). We first set an “extended ciphertext” by
setting

d0 = κ(c0), d1 ← 0, and d2 ← κ(c1)

and then apply key switching to the extended ciphertext ((d0, d1, d2), t, ν) using the “matrix” W [κ(s)→ s].

C Security Analysis and Parameter Settings

Below we derive the concrete parameters for use in our implementation. We begin in Appendix C.1 by
deriving a lower-bound on the dimension N of the LWE problem underlying our key-switching matrices,
as a function of the modulus and the noise variance. (This will serve as a lower-bound on φ(m) for our
choice of the ring polynomial Φm(X).) Then in Appendix C.2 we derive a lower bound on the size of
the largest modulus Q in our implementation, in terms of the noise variance and the dimension N . Then
in Appendix C.3 we choose a value for the noise variance (as small as possible subject to some nominal
security concerns), solve the somewhat circular constraints on N and Q, and set all the other parameters.

C.1 Lower-Bounding the Dimension

Below we apply to the LWE-security analysis of Lindner and Peikert [20], together with a few (arguably
justifiable) assumptions, to analyze the dimension needed for different security levels. The analysis below
assumes that we are given the modulus Q and noise variance σ2 for the LWE problem (i.e., the noise is
chosen from a discrete Gaussian distribution modulo Q with variance σ2 in each coordinate). The goal is to
derive a lower-bound on the dimension N required to get any given security level. The first assumption that
we make, of course, is that the Lindner-Peikert analysis — which was done in the context of standard LWE
— applies also for our ring-LWE case. We also make the following extra assumptions:

23

5. Homomorphic Evaluation of the AES Circuit

• We assume that (once σ is not too tiny), the security depends on the ratio Q/σ and not on Q and σ
separately. Nearly all the attacks and hardness results in the literature support this assumption, with
the exception of the Arora-Ge attack [2] (that works whenever σ is very small, regardless of Q).

• The analysis in [20] devised an experimental formula for the time that it takes to get a particular quality
of reduced basis (i.e., the parameter δ of Gama and Nguyen [12]), then provided another formula for
the advantage that the attack can derive from a reduced basis at a given quality, and finally used a
computer program to solve these formulas for some given values of N and δ. This provides some
time/advantage tradeoff, since obtaining a smaller value of δ (i.e., higher-quality basis) takes longer
time and provides better advantage for the attacker.

For our purposes we made the assumption that the best runtime/advantage ratio is achieved in the
high-advantage regime. Namely we should spend basically all the attack running time doing lattice
reduction, in order to get a good enough basis that will break security with advantage (say) 1/2. This
assumption is consistent with the results that are reported in [20].

• Finally, we assume that to get advantage of close to 1/2 for an LWE instance with modulus Q and
noise σ, we need to be able to reduce the basis well enough until the shortest vector is of size roughly
Q/σ. Again, this is consistent with the results that are reported in [20].

Given these assumptions and the formulas from [20], we can now solve the dimension/security tradeoff
analytically. Because of the first assumption we might as well simplify the equations and derive our lower
bound on N for the case σ = 1, where the ratio Q/σ is equal to Q. (In reality we will use σ ≈ 4 and
increase the modulus by the same 2 bits).

Following Gama-Nguyen [12], recall that a reduced basis B = (b1|b2| . . . |bm) for a dimension-M ,
determinant-D lattice (with ‖b1‖ ≤ ‖b2‖ ≤ · · · ‖bM‖), has quality parameter δ if the shortest vector in that
basis has norm ‖b1‖ = δM · D1/M . In other words, the quality of B is defined as δ = ‖b1‖1/M/D1/M2

.
The time (in seconds) that it takes to compute a reduced basis of quality δ for a random LWE instance was
estimated in [20] to be at least

log(time) ≥ 1.8/ log(δ)− 110. (7)

For a randomQ-ary lattice of rankN , the determinant is exactlyQN whp, and therefore a quality-δ basis has
‖b1‖ = δM ·QN/M . By our second assumption, we should reduce the basis enough so that ‖b1‖ = Q, so we
needQ = δM ·QN/M . The LWE attacker gets to choose the dimensionM , and the best choice for this attack
is obtained when the right-hand-side of the last equality is minimized, namely for M =

√
N logQ/ log δ.

This yields the condition

logQ = log(δMQN/M) = M log δ + (N/M) logQ = 2
√
N logQ log δ,

which we can solve for N to get N = logQ/4 log δ. Finally, we can use Equation (7) to express log δ as a
function of log(time), thus getting N = logQ · (log(time) + 110)/7.2. Recalling that in our case we used
σ = 1 (so Q/σ = Q), we get our lower-bound on N in terms of Q/σ. Namely, to ensure a time/advantage
ratio of at least 2k, we need to set the rank N to be at least

N ≥ log(Q/σ)(k + 110)

7.2
(8)

For example, the above formula says that to get 80-bit security level we need to set N ≥ log(Q/σ) · 26.4,
for 100-bit security level we need N ≥ log(Q/σ) · 29.1, and for 128-bit security level we need N ≥
log(Q/σ) · 33.1. We comment that these values are indeed consistent with the values reported in [20].

24

5. Homomorphic Evaluation of the AES Circuit

C.1.1 LWE with Sparse Key

The analysis above applies to “generic” LWE instance, but in our case we use very sparse secret keys (with
only h = 64 nonzero coefficients, all chosen as ±1). This brings up the question of whether one can get
better attacks against LWE instances with a very sparse secret (much smaller than even the noise). We
note that Goldwasser et al. proved in [16] that LWE with low-entropy secret is as hard as standard LWE
with weaker parameters (for large enough moduli). Although the specific parameters from that proof do not
apply to our choice of parameter, it does indicate that weak-secret LWE is not “fundamentally weaker” than
standard LWE. In terms of attacks, the only attack that we could find that takes advantage of this sparse key
is by applying the reduction technique of Applebaum et al. [1] to switch the key with part of the error vector,
thus getting a smaller LWE error.

In a sparse-secret LWE we are given a random N -by-M matrix A (modulo Q), and also an M -vector
y = [sA + e]Q. Here the N -vector s is our very sparse secret, and e is the error M -vector (which is also
short, but not sparse and not as short as s).

Below let A1 denotes the first N columns of A, A2 the next N columns, then A3, A4, etc. Similarly
e1, e2, . . . are the corresponding parts of the error vector and y1,y2, . . . the corresponding parts of y. As-
suming that A1 is invertible (which happens with high probability), we can transform this into an LWE
instance with respect to secret e1, as follows:

We have y1 = sA1 + e1, or alternatively A−11 y1 = s+A−11 e1. Also, for i > 1 we have yi = sAi + ei,
which together with the above gives AiA−11 y1 − yi = AiA

−1
1 e1 − ei. Hence if we denote

B1
def
= A−11 , and for i > 1 Bi

def
= AiA1−1,

and similarly z1 = A−11 y1, and for i > 1 zi
def
= AiA

−1
1 yi,

and then set B def
= (Bt

1|Bt
2|Bt

3| . . .) and z
def
= (z1|z2|z3| . . .), and also f = (s|e2|e3| . . .) then we get the

LWE instance
z = et1B + f

with secret et1. The thing that makes this LWE instance potentially easier than the original one is that the
first part of the error vector f is our sparse/small vector s, so the transformed instance has smaller error than
the original (which means that it is easier to solve).

Trying to quantify the effect of this attack, we note that the optimal M value in the attack from Ap-
pendix C.1 above is obtained at M = 2N , which means that the new error vector is f = (s|e2), which has
Euclidean norm smaller than e = (e1|e2) by roughly a factor of

√
2 (assuming that ‖s‖ � ‖e1‖ ≈ ‖e2‖).

Maybe some further improvement can be obtained by using a smaller value for M , where the shorter error
may outweigh the “non optimal” value of M . However, we do not expect to get major improvement this
way, so it seems that the very sparse secret should only add maybe one bit to the modulus/noise ratio.

C.2 The Modulus Size

In this section we assume that we are given the parameter N = φ(m) (for our polynomial ring modulo
Φm(X)). We also assume that we are given the noise variance σ2, the number of levels in the modulus
chain L, an additional “slackness parameter” ξ (whose purpose is explained below), and the number of
nonzero coefficients in the secret key h. Our goal is to devise a lower bound on the size of the largest
modulus Q used in the public key, so as to maintain the functionality of the scheme.

25

5. Homomorphic Evaluation of the AES Circuit

Controlling the Noise. Driving the analysis in this section is a bound on the noise magnitude right after
modulus switching, which we denote below by B. We set our parameters so that starting from ciphertexts
with noise magnitude B, we can perform one level of fan-in-two multiplications, then one level of fan-in-ξ
additions, followed by key switching and modulus switching again, and get the noise magnitude back to the
same B.

• Recall that in the “reduced canonical embedding norm”, the noise magnitude is at most multiplied
by modular multiplication and added by modular addition, hence after the multiplication and addition
levels the noise magnitude grows from B to as much as ξB2.

• As we’ve seen in Appendix B.3, performing key switching scales up the noise magnitude by a factor of
P and adds another noise term of magnitude upto BKs · qt (before doing modulus switching to scale it
back down). Hence starting from noise magnitude ξB2, the noise grows to magnitude PξB2+BKs ·qt
(relative to the modulus Pqt).

Below we assume that after key-switching we do modulus switching directly to a smaller modulus.

• After key-switching we can switch to the next modulus qt−1 to decrease the noise back to our boundB.
Following the analysis from Appendix B.2, switching moduli from Qt to qt−1 decreases the noise
magnitude by a factor of qt−1/Qt = 1/(P · pt), and then add a noise term of magnitude Bscale.

Starting from noise magnitude PξB2 +BKs · qt before modulus switching, the noise magnitude after
modulus switching is therefore bounded whp by

P · ξB2 +BKs · qt
P · pt

+Bscale =
ξB2

pt
+
BKs · qt−1

P
+Bscale

Using the analysis above, our goal next is to set the parameters B,P and the pt’s (as functions of N, σ, L, ξ
and h) so that in every level t we get ξB2

pt
+ BKs·qt−1

P + Bscale ≤ B. Namely we need to satisfy at every
level t the quadratic inequality (in B)

ξ

pt
B2 − B +

(
BKs · qt−1

P
+Bscale︸ ︷︷ ︸

denote this by Rt−1

)
≤ 0 . (9)

Observe that (assuming that all the primes pt are roughly the same size), it suffices to satisfy this inequality
for the largest modulus t = L−2, sinceRt−1 increases with larger t’s. Noting thatRL−3 > Bscale, we want
to get this term to be as close to Bscale as possible, which we can do by setting P large enough. Specifically,
to make it as close as RL−3 = (1 + 2−n)Bscale it is sufficient to set

P ≈ 2n
BKsqL−3
Bscale

≈ 2n
9σNqL−3

77
√
N

≈ 2n−3qL−3 · σ
√
N, (10)

Below we set (say) n = 8, which makes it close enough to use just RL−3 ≈ Bscale for the derivation below.
Clearly to satisfy Inequality (9) we must have a positive discriminant, which means 1−4 ξ

pL−2
RL−3 ≥ 0,

or pL−2 ≥ 4ξRL−3. Using the value RL−3 ≈ Bscale, this translates into setting

p1 ≈ p2 · · · ≈ pL−2 ≈ 4ξ ·Bscale ≈ 308ξ
√
N (11)

Finally, with the discriminant positive and all the pi’s roughly the same size we can satisfy Inequality (9) by
setting

B ≈ 1

2ξ/pL−2
=
pL−2
2ξ

≈ 2Bscale ≈ 154
√
N. (12)

26

5. Homomorphic Evaluation of the AES Circuit

The Smallest Modulus. After evaluating our L-level circuit, we arrive at the last modulus q0 = p0 with
noise bounded by ξB2. To be able to decrypt, we need this noise to be smaller than q0/2cm, where cm is
the ring constant for our polynomial ring modulo Φm(X). For our setting, that constant is always below 40,
so a sufficient condition for being able to decrypt is to set

q0 = p0 ≈ 80ξB2 ≈ 220.9ξN (13)

The Encryption Modulus. Recall that freshly encrypted ciphertext have noiseBclean (as defined in Equa-
tion (6)), which is larger than our baseline boundB from above. To reduce the noise magnitude after the first
modulus switching down toB, we therefore set the ratio pL−1 = qL−1/qL−2 so thatBclean/pL−1+Bscale ≤
B. This means that we set

pL−1 =
Bclean

B −Bscale
≈ 74N + 858

√
N

77
√
N

≈
√
N + 11 (14)

The Largest Modulus. Having set all the parameters, we are now ready to calculate the resulting bound
on the largest modulus, namely QL−2 = qL−2 · P . Using Equations (11), and (13), we get

qt = p0 ·
t∏
i=1

pi ≈ (220.9ξN) ·
(
308ξ
√
N
)t

= 220.9 · 308t · ξt+1 ·N t/2+1. (15)

Now using Equation (10) we have

P ≈ 25qL−3σ
√
N ≈ 225.9 · 308L−3 · ξL−2 ·N (L−3)/2+1 · σ

√
N

≈ 2 · 308L · ξL−2σNL/2

and finally

QL−2 = P · qL−2 ≈ (2 · 308L · ξL−2σNL/2) · (220.9 · 308L−2 · ξL−1 ·NL/2)

≈ σ · 216.5L+5.4 · ξ2L−3 ·NL (16)

C.3 Putting It Together

We now have in Equation (8) a lower bound on N in terms of Q, σ and the security level k, and in Equa-
tion (16) a lower bound on Q with respect to N, σ and several other parameters. We note that σ is a free
parameter, since it drops out when substituting Equation (16) in Equation (8). In our implementation we
used σ = 3.2, which is the smallest value consistent with the analysis in [23].

For the other parameters, we set ξ = 8 (to get a small “wiggle room” without increasing the parameters
much), and set the number of nonzero coefficients in the secret key at h = 64 (which is already included in
the formulas from above, and should easily defeat exhaustive-search/birthday type of attacks). Substituting
these values into the equations above we get

p0 ≈ 223.9N, pi ≈ 211.3
√
N for i = 1, . . . , L− 2

P ≈ 211.3L−5NL/2, and QL−2 ≈ 222.5L−3.6σNL.

27

5. Homomorphic Evaluation of the AES Circuit

Substituting the last value of QL−2 into Equation (8) yields

N >
(L(logN + 23)− 8.5)(k + 110)

7.2
(17)

Targeting k = 80-bits of security and solving for several different depth parameters L, we get the results in
the table below, which also lists approximate sizes for the primes pi and P .

L N log2(p0) log2(pi) log2(pL−1) log2(P)

10 9326 37.1 17.9 7.5 177.3
20 19434 38.1 18.4 8.1 368.8
30 29749 38.7 18.7 8.4 564.2
40 40199 39.2 18.9 8.6 762.2
50 50748 39.5 19.1 8.7 962.1
60 61376 39.8 19.2 8.9 1163.5
70 72071 40.0 19.3 9.0 1366.1
80 82823 40.2 19.4 9.1 1569.8
90 93623 40.4 19.5 9.2 1774.5

Choosing Concrete Values. Having obtained lower-bounds on N = φ(m) and other parameters, we now
need to fix precise cyclotomic fields Q(ζm) to support the algebraic operations we need. We have two
situations we will be interested in for our experiments. The first corresponds to performing arithmetic on
bytes in F28 (i.e. n = 8), whereas the latter corresponds to arithmetic on bits in F2 (i.e. n = 1). We therefore
need to find an odd value of m, with φ(m) ≈ N and m dividing 2d − 1, where we require that d is divisible
by n. Values of m with a small number of prime factors are preferred as they give rise to smaller values of
cm. We also look for parameters which maximize the number of slots ` we can deal with in one go, and
values for which φ(m) is close to the approximate value for N estimated above. When n = 1 we always
select a set of parameters for which the ` value is at least as large as that obtained when n = 8.

n = 8 n = 1
L m N = φ(m) (d, `) cK m N = φ(m) (d, `) cK
10 11441 10752 (48,224) 3.60 11023 10800 (45,240) 5.13
20 34323 21504 (48,448) 6.93 34323 21504 (48,448) 6.93
30 31609 31104 (72,432) 5.15 32377 32376 (57,568) 1.27
40 54485 40960 (64,640) 12.40 42799 42336 (21,2016) 5.95
50 59527 51840 (72,720) 21.12 54161 52800 (60,880) 4.59
60 68561 62208 (72,864) 36.34 85865 63360 (60,1056) 12.61
70 82603 75264 (56,1344) 36.48 82603 75264 (56,1344) 36.48
80 92837 84672 (56,1512) 38.52 101437 85672 (42,2016) 19.13
90 124645 98304 (48,2048) 21.07 95281 94500 (45,2100) 6.22

D Scale(c, qt, qt−1) in dble-CRT Representation

Let qi =
∏i
j=0 pj , where the pj’s are primes that split completely in our cyclotomic field A. We are given

a c ∈ Aqt represented via double-CRT – that is, it is represented as a “matrix” of its evaluations at the
primitive m-th roots of unity modulo the primes p0, . . . , pt. We want to modulus switch to qt−1 – i.e., scale

28

5. Homomorphic Evaluation of the AES Circuit

down by a factor of pt. Let’s recall what this means: we want to output c′ ∈ A, represented via double-CRT
format (as its matrix of evaluations modulo the primes p0, . . . , pt−1), such that

1. c′ = c mod 2.

2. c′ is very close (in terms of its coefficient vector) to c/pt.

In the main body we explained how this could be performed in dble-CRT representation. This made explicit
use of the fact that the two ciphertexts need to be equivalent modulo two. If we wished to replace two with
a general prime p, then things are a bit more complicated. For completeness, although it is not required in
our scheme, we present a methodology below. In this case, the conditions on c† are as follows:

1. c† = c · pt mod p.

2. c† is very close to c.

3. c† is divisible by pt.

As before, we set c′ ← c†/pt. (Note that for p = 2, we trivially have c · pt = c mod p, since pt will be odd.)
This causes some complications, because we set c† ← c+ δ, where δ = −c̄ mod pt (as before) but now

δ = (pt − 1) · c mod p. To compute such a δ, we need to know c mod p. Unfortunately, we don’t have
c mod p. One not-very-satisfying way of dealing with this problem is the following. Set ĉ← [pt]p·c mod qt.
Now, if c encrypted m, then ĉ encrypts [pt]p ·m, and ĉ’s noise is [pt]p < p/2 times as large. It is obviously
easy to compute ĉ’s double-CRT format from c’s. Now, we set c† so that the following is true:

1. c† = ĉ mod p.

2. c† is very close to ĉ.

3. c† is divisible by pt.

This is easy to do. The algorithm to output c† in double-CRT format is as follows:

1. Set c̄ to be the coefficient representation of ĉ mod pt. (Computing this requires a single “small FFT”
modulo the prime pt.)

2. Set δ to be the polynomial with coefficients in (−pt · p/2, pt · p/2] such that δ = 0 mod p and
δ = −c̄ mod pt.

3. Set c† = ĉ+ δ, and output c†’s double-CRT representation.

(a) We already have ĉ’s double-CRT representation.

(b) Computing δ’s double-CRT representation requires t “small FFTs” modulo the pj’s.

E Other Optimizations

Some other optimizations that we encountered during our implementation work are discussed next. Not all
of these optimizations are useful for our current implementation, but they may be useful in other contexts.

29

5. Homomorphic Evaluation of the AES Circuit

Three-way Multiplications. Sometime we need to multiply several ciphertexts together, and if their num-
ber is not a power of two then we do not have a complete binary tree of multiplications, which means that at
some point in the process we will have three ciphertexts that we need to multiply together.

The standard way of implementing this 3-way multiplication is via two 2-argument multiplications, e.g.,
x · (y · z). But it turns out that here it is better to use “raw multiplication” to multiply these three ciphertexts
(as done in [7]), thus getting an “extended” ciphertext with four elements, then apply key-switching (and
later modulus switching) to this ciphertext. This takes only six ring-multiplication operations (as opposed
to eight according to the standard approach), three modulus switching (as opposed to four), and only one
key switching (applied to this 4-element ciphertext) rather than two (which are applied to 3-element ex-
tended ciphertexts). All in all, this three-way multiplication takes roughly 1.5 times a standard two-element
multiplication.

We stress that this technique is not useful for larger products, since for more than three multiplicands
the noise begins to grow too large. But with only three multiplicands we get noise of roughly B3 after the
multiplication, which can be reduced to noise ≈ B by dropping two levels, and this is also what we get by
using two standard two-element multiplications.

Commuting Automorphisms and Multiplications. Recalling that the automorphisms X 7→ Xi com-
mute with the arithmetic operations, we note that some ordering of these operations can sometimes be
better than others. For example, it may be better perform the multiplication-by-constant before the auto-
morphism operation whenever possible. The reason is that if we perform the multiply-by-constant after the
key-switching that follows the automorphism, then added noise term due to that key-switching is multiplied
by the same constant, thereby making the noise slightly larger. We note that to move the multiplication-by-
constant before the automorphism, we need to multiply by a different constant.

Switching to higher-level moduli. We note that it may be better to perform automorphisms at a higher
level, in order to make the added noise term due to key-switching small with respect to the modulus. On
the other hand operations at high levels are more expensive than the same operations at a lower level. A
good rule of thumb is to perform the automorphism operations one level above the lowest one. Namely,
if the naive strategy that never switches to higher-level moduli would perform some Frobenius operation
at level qi, then we perform the key-switching following this Frobenius operation at level Qi+1, and then
switch back to level qi+1 (rather then using Qi and qi).

Commuting Addition and Modulus-switching. When we need to add many terms that were obtained
from earlier operations (and their subsequent key-switching), it may be better to first add all of these terms
relative to the large modulus Qi before switching the sum down to the smaller qi (as opposed to switching
all the terms individually to qi and then adding).

Reducing the number of key-switching matrices. When using many different automorphisms κi : X 7→
Xi we need to keep many different key-switching matrices in the public key, one for every value of i that
we use. We can reduces this memory requirement, at the expense of taking longer to perform the automor-
phisms. We use the fact that the Galois group Gal that contains all the maps κi (which is isomorphic to
(Z/mZ)∗) is generated by a relatively small number of generators. (Specifically, for our choice of parame-
ters the group (Z/mZ)∗ has two or three generators.) It is therefore enough to store in the public key only
the key-switching matrices corresponding to κgj ’s for these generators gj of the group Gal. Then in order

30

5. Homomorphic Evaluation of the AES Circuit

to apply a map κi we express it as a product of the generators and apply these generators to get the effect of
κi. (For example, if i = g21 · g2 then we need to apply κg1 twice followed by a single application of κg2 .)

31

5. Homomorphic Evaluation of the AES Circuit

Fully Homomorphic Encryption without Modulus Switching

from Classical GapSVP

Zvika Brakerski∗

Abstract

We present a new tensoring technique for LWE-based fully homomorphic encryption. While
in all previous works, the ciphertext noise grows quadratically (B → B2 · poly(n)) with every
multiplication (before “refreshing”), our noise only grows linearly (B → B · poly(n)).

We use this technique to construct a scale-invariant fully homomorphic encryption scheme,
whose properties only depend on the ratio between the modulus q and the initial noise level B,
and not on their absolute values.

Our scheme has a number of advantages over previous candidates: It uses the same modulus
throughout the evaluation process (no need for “modulus switching”), and this modulus can
take arbitrary form. In addition, security can be classically reduced from the worst-case hard-
ness of the GapSVP problem (with quasi-polynomial approximation factor), whereas previous
constructions could only exhibit a quantum reduction from GapSVP.

∗Stanford University, zvika@stanford.edu. Supported by a Simons Postdoctoral Fellowship and by DARPA.

6. FHE without Modulus Switching

1 Introduction

Fully homomorphic encryption has been the focus of extensive study since the first candidate
scheme was introduced by Gentry [Gen09b]. In a nutshell, fully homomorphic encryption allows to
perform arbitrary computation on encrypted data. It can thus be used, for example, to outsource
a computation to a remote server without compromising data privacy.

The first generation of fully homomorphic schemes [Gen09b, DGHV10, SV10, BV11a, CMNT11,
GH11] that started with Gentry’s seminal work, all followed a similar and fairly complicated
methodology, often relying on relatively strong computational assumptions. A second genera-
tion of schemes started with the work of Brakerski and Vaikuntanathan [BV11b], who established
full homomorphism in a simpler way, based on the learning with errors (LWE) assumption. Using
known reductions [Reg05, Pei09], the security of their construction is based on the (often quantum)
hardness of approximating some short vector problems in worst-case lattices. Their scheme was
then improved by Brakerski, Gentry and Vaikuntanathan [BGV12], as we describe below.

In LWE-based schemes such as [BV11b, BGV12], ciphertexts are represented as vectors in Zq, for
some modulus q. The decryption process is essentially computing an inner product of the ciphertext
and the secret key vector, which produces a noisy version of the message (the noise is added at
encryption for security purposes). The noise increases with every homomorphic operation, and
correct decryption is guaranteed if the final noise magnitude is below q/4. Homomorphic addition
roughly doubles the noise, while homomorphic multiplication roughly squares it.

In the [BV11b] scheme, after L levels of multiplication (e.g. evaluating a depth L multiplication

tree), the noise grows from an initial magnitude of B, to B2L . Hence, to enable decryption, a very

large modulus q ≈ B2L was required. This affected both efficiency and security (the security of the
scheme depends inversely on the ratio q/B, so bigger q for the same B means less security).

The above was improved by [BGV12], who suggested to scale down the ciphertext vector after
every multiplication (they call this “modulus switching”, see below).1 That is, to go from a vector
c over Zq, into the vector c/w over Zq/w (for some scaling factor w). Scaling “switches” the
modulus q to a smaller q/w, but also reduces the noise by the same factor (from B to B/w). To see
why this change of scale is effective, consider scaling by a factor B after every multiplication (as
indeed suggested by [BGV12]): After the first multiplication, the noise goes up to B2, but scaling
brings it back down to B, at the cost of reducing the modulus to q/B. With more multiplications,
the noise magnitude always goes back to B, but the modulus keeps reducing. After L levels
of multiplication-and-scaling, the noise magnitude is still B, but the modulus is down to q/BL.
Therefore it is sufficient to use q ≈ BL+1, which is significantly lower than before. However, this
process results in a complicated homomorphic evaluation process that “climbs down the ladder of
moduli”.

The success of the scaling methodology teaches us that perspective matters: scaling does not
change the ratio between the modulus and noise, but it still manages the noise better by changing
the perspective in which we view the ciphertext. In this work, we suggest to work in an invariant
perspective where only the ratio q/B matters (and not the absolute values of q,B as in previ-
ous works). We derive a scheme that is superior to the previous best known in simplicity, noise
management and security. Details follow.

1A different scaling technique was already suggested in [BV11b] as a way to simplify decryption and improve
efficiency, but not to manage noise.

1

6. FHE without Modulus Switching

1.1 Our Results

As explained above, we present a scale invariant scheme, by finding an invariant perspective. The
idea is very natural based on the outlined motivation: if we scale down the ciphertext by a factor
of q, we get a fractional ciphertext modulo 1, with noise magnitude B/q. In this perspective, all
choices of q,B with the same B/q ratio will look the same. It turns out that in this perspective,
homomorphic multiplication does not square the noise, but rather multiplies it by a polynomial
factor p(n) that depends only on the security parameter.2 After L levels of multiplication, the noise
will grow from B/q to (B/q) · p(n)L, which means that we only need to use q ≈ B · p(n)L.

Interestingly, the idea of working modulo 1 goes back to the early works of Ajtai and Dwork [AD97],
and Regev [Reg03], and to the first formulation of LWE [Reg05]. In a sense, we are “going back to
the roots” and showing that these early ideas are instrumental in the construction of homomorphic
encryption.

For technical reasons, we don’t implement the scheme over fractions, but rather mimic the
invariant perspective over Zq (see Section 1.2 for more details). Perhaps surprisingly, the resulting
scheme is exactly Regev’s original LWE-based scheme, with additional auxiliary information for the
purpose of homomorphic evaluation. The properties of our scheme are summarized in the following
theorem:

Theorem. There exists a homomorphic encryption scheme for depth L circuits, based on the
DLWEn,q,χ assumption (n-dimensional decision-LWE modulo q, with noise χ), so long as

q/B ≥ (O(n log q))L+O(1) ,

where B is a bound on the values of χ.

The resulting scheme has a number of interesting properties:

1. Scale invariance. Homomorphic properties only depend on q/B (as explained above).

2. No modulus switching. We work with a single modulus q. We don’t need to switch moduli
as in [BV11b, BGV12]. This leads to a simpler description of the scheme (and hopefully better
implementations).

3. No restrictions on the modulus. Our modulus q can take any form (so long as it satisfies
the size requirement). This is achieved by putting the message bit in the most significant bit
of the ciphertext, rather than least significant as in previous homomorphic schemes (this can
be interpreted as making the message scale invariant). We note that for odd q, the least and
most significant bit representations are interchangeable.

In particular, in our scheme q can be a power of 2, which can simplify implementation of
arithmetics.3 In previous schemes, such q could not be used for binary message spaces.4

This, again, is going back to the roots: Early schemes such as [Reg05], and in a sense also
[AD97, GGH97], encoded ciphertexts in the most significant bits. Switching to least significant
bit encoding was (perhaps ironically) motivated by improving homomorphism.

2More accurately, a polynomial p(n, log q), but w.l.o.g q ≤ 2n.
3On the downside, such q might reduce efficiency when using ring-LWE (see below) due to FFT embedding issues.
4[GHS11a] gain on efficiency by using moduli that are “almost” a power of 2.

2

6. FHE without Modulus Switching

4. No restrictions on the secret key distribution. While [BGV12] requires that the secret
key is drawn from the noise distribution (LWE in Hermite normal form), our scheme works
under any secret key distribution for which the LWE assumption holds.

5. Classical Reduction from GapSVP. One of the appeals of LWE-based cryptography is
the known quantum (Regev [Reg05]) and classical (Peikert [Pei09]) reductions from the worst
case hardness of lattice problems. Specifically to GapSVPγ , which is the problem of deciding,
given an n dimensional lattice and a number d, between the following two cases: either the
lattice has a vector shorter than d, or it doesn’t have any vector shorter than γ(n) · d. The
value of γ depends on the ratio q/B (essentially γ = (q/B) · Õ(n)), and the smaller γ is, the
better the reduction (GapSVP2Ω(n) is an easy problem).

Peikert’s classical reduction requires that q ≈ 2n/2, which makes his reduction unusable for
previous homomorphic schemes, since γ becomes exponential. For example, in [BGV12],
q/B = q/q1/(L+1) = q1−1/(L+1) which translates to γ ≈ 2n/2 for the required q.5

In our scheme, this problem does not arise. We can instantiate our scheme with any q while
hardly affecting the ratio q/B. We can therefore set q ≈ 2n/2 and get a classical reduction from

GapSVPnO(logn) , which is currently solvable only in 2Ω̃(n) time. (This is mostly of theoretical
interest, though, since efficiency considerations will favor the smallest possible q.)

Using our scheme as a building block we achieve:

1. Fully homomorphic encryption using bootstrapping. Using Gentry’s bootstrapping
theorem, we present a leveled fully homomorphic scheme based on the classical worst case
GapSVPnO(logn) problem. As usual, an additional circular security assumption is required to
get a non-leveled scheme.

2. Leveled fully homomorphic encryption without bootstrapping. Very similarly to
[BGV12], our scheme can be used to achieve leveled homomorphism without bootstrapping.

3. Increased efficiency using ring-LWE (RLWE). RLWE (defined in [LPR10]) is a version
of LWE that works over polynomial rings rather than the integers. Its hardness is quantumly
related to short vector problems in ideal lattices.

RLWE is a stronger assumption than LWE, but it can dramatically improve the efficiency of
schemes [BV11a, BGV12, GHS11b]. Our methods are readily portable to the RLWE world.

In summary, our construction carries conceptual significance in its simplicity and in a number
of theoretical aspects. Its practical usefulness compared to other schemes is harder to quantify,
though, since it will vary greatly with the specific implementation and optimizations chosen.

1.2 Our Techniques

Our starting point is Regev’s public key encryption scheme. There, the encryption of a message
m ∈ {0, 1} is an integer vector c such that ⟨c, s⟩ =

⌊ q
2

⌋
·m+e+ qI, for an integer I and for |e| ≤ E,

for some bound E < q/4. The secret key vector s is also over the integers. We can assume w.l.o.g

5Peikert suggests to classically base small-q LWE on a new lattice problem that he introduces.

3

6. FHE without Modulus Switching

that the elements of c, s are in the segment (−q/2, q/2]. (We note that previous homomorphic
constructions used a different variant of Regev’s scheme, where ⟨c, s⟩ = m+ 2e+ qI.)

In this work, we take the invariant perspective on the scheme, and consider the fractional
ciphertext c̃ = c/q. It holds that ⟨c̃, s⟩ = 1

2
· m + ẽ + I, where I ∈ Z and |ẽ| ≤ E/q = ϵ. The

elements of c are now rational numbers in (−1/2, 1/2]. Note that the secret key does not change
and is still over Z.

Additive homomorphism is immediate: if c1 encryptsm1 and c2 encryptsm2, then cadd = c1+c2
encrypts [m1 +m2]2. The noise grows from ϵ to ≈ 2ϵ. Multiplicative homomorphism is achieved
by tensoring the input ciphertexts:

cmult = 2 · c1 ⊗ c2 .

The tensored ciphertext can be decrypted using a tensored secret key because⟨
2 · c1 ⊗ c2︸ ︷︷ ︸

cmult

, s⊗ s
⟩
= 2 · ⟨c1, s⟩ · ⟨c2, s⟩ .

A “key switching” mechanism developed in [BV11b] and generalized in [BGV12] allows to switch
back from a tensored secret key into a “normal” one without much additional noise. The details of
this mechanism are immaterial for this discussion. We focus on the noise growth in the tensored
ciphertext.

We want to show that 2 · ⟨c1, s⟩ · ⟨c2, s⟩ ≈ 1
2
m1m2 + e′ + I ′, for a small e′. To do this, we let

I1, I2 ∈ Z be integers such that ⟨c1, s⟩ = 1
2
m1 + e1 + I1, and likewise for c2. It can be verified that

|I1| , |I2| are bounded by ≈ ∥s∥1. We therefore get:

2 · ⟨c1, s⟩ · ⟨c2, s⟩ = 2 · (1
2
m1 + e1 + I1) · (1

2
m2 + e2 + I2)

= 1
2
m1m2 + 2(e1I2 + e2I1) + e1m2 + e2m1 + 2e1e2 + (m1I2 +m2I1 + 2I1I2)︸ ︷︷ ︸

∈Z

.

Interestingly, the cross-term e1e2 that was responsible for the squaring of the noise in previous
schemes, is now practically insignificant since ϵ2 ≪ ϵ. The significant noise term in the above
expression is 2(e1I2 + e2I1), which is bounded by O(∥s∥1) · ϵ. All that is left to show now is that
∥s∥1 is independent of B, q and only depends on n (recall that we allow dependence on log q ≤ n).

On the face of it, ∥s∥1 ≈ n · q, since the elements of s are integers in the segment (−q/2, q/2].
In order to reduce the norm, we use binary decomposition (which was used in [BV11b, BGV12] for
different purposes). Let s(j) denote the binary vector that contains the jth bit from each element
of s. Namely s =

∑
j 2

js(j). Then

⟨c, s⟩ =
∑
j

2j
⟨
c, s(j)

⟩
=

⟨
(c, 2c, . . .), (s(0), s(1), . . .)

⟩
.

This means that we can convert a ciphertext c that corresponds to a secret key s in Z, into a
modified ciphertext (c, 2c, . . .) that corresponds to a binary secret key (s(0), s(1), . . .). The norm of
the binary key is at most its dimension, which is polynomial in n as required.6

6Reducing the norm of s was also an issue in [BGV12]. There it was resolved by using LWE in Hermite normal
form, where s is sampled from the noise distribution and thus ∥s∥1 ≈ n ·B. This suffices when B must be very small,
as in [BGV12], but not in our setting.

4

6. FHE without Modulus Switching

We point out that an alternative solution to the norm problem follows by using the dual-Regev
scheme of [GPV08] as the basic building block. There, the secret key is natively binary and of
low norm. (In addition, as noticed in previous works, working with dual-Regev naturally implies a
weak form of homomorphic identity based encryption.) However, the ciphertexts and some other
parameters will need to grow.

Finally, working with fractional ciphertexts brings about issues of precision in representation
and other problems. We thus implement our scheme over Z with appropriate scaling: Each rational
number x in the above description will be represented by the integer y = ⌊qx⌉ (which determines
x up to an additive factor of 1/2q). The addition operation x1 + x2 is mimicked by y1 + y2 ≈
⌊q(x1 + x2)⌉. To mimic multiplication, we take ⌊(y1 · y2)/q⌉ ≈ ⌊x1 · x2 · q⌉. Our tensored ciphertext

for multiplication will thus be defined as
⌊
2
q · c1 ⊗ c2

⌉
, where c1, c2 are integer vectors and the

tensoring operation is over the integers. In this representation, encryption and decryption become
identical to Regev’s original scheme.

1.3 Paper Organization

Section 2 defines notational conventions (we define Zq is a slightly unconventional way, the reader
is advised to take notice), introduces the LWE assumption and defines homomorphic encryption
and related terms. Section 3 introduces our building blocks: Regev’s encryption scheme, binary
decomposition of vectors and the key switching mechanism. Finally, in Section 4 we present and
analyze our scheme, and discuss several possible optimizations.

2 Preliminaries

For an integer q, we define the set Zq , (−q/2, q/2] ∩ Z. We stress that in this work, Zq is not
synonymous with the ring Z/qZ. In particular, all arithmetics is performed over Z (or Q when
division is used) and not over any sub-ring. For any x ∈ Q, we let y = [x]q denote the unique value

y ∈ (−q/2, q/2] such that y = x (mod q) (i.e. y is congruent to x modulo q).7

We use ⌊x⌉ to indicate rounding x to the nearest integer, and ⌊x⌋, ⌈x⌉ (for x ≥ 0) to indicate
rounding down or up. All logarithms are to base 2.

Probability. We use x
$← D to denote that x is sampled from a distribution D. Similarly,

x
$← S denotes that x is uniform over a set S. We define B-bounded distributions as ones whose

magnitudes never exceed B:8

Definition 2.1. A distribution χ over the integers is B-bounded (denoted |χ| ≤ B) if it is only
supported on [−B,B].

A function is negligible if it vanishes faster than any inverse polynomial. Two distributions are
statistically indistinguishable if the total variation distance between them is negligible, and compu-
tationally indistinguishable if no polynomial test distinguishes them with non-negligible advantage.

7For example, if x = 2, y = −3 ∈ Z7, then x · y = −6 ̸∈ Z7, however [x · y]7 = 1 ∈ Z7.
8This definition is simpler and slightly different from previous works.

5

6. FHE without Modulus Switching

Vectors, Matrices and Tensors. We denote scalars in plain (e.g. x) and vectors in bold low-
ercase (e.g. v), and matrices in bold uppercase (e.g. A). For the sake of brevity, we use (x,y) to

refer to the vector
[
xT ∥yT

]T
.

The ℓi norm of a vector is denoted by ∥v∥i. Inner product is denoted by ⟨v,u⟩, recall that
⟨v,u⟩ = vT · u. Let v be an n dimensional vector. For all i = 1, . . . , n, the ith element in v is
denoted v[i]. When applied to vectors, operators such as [·]q , ⌊·⌉ are applied element-wise.

The tensor product of two vectors v,w of dimension n, denoted v ⊗w, is the n2 dimensional
vector containing all elements of the form v[i]w[j]. Note that

⟨v ⊗w,x⊗ y⟩ = ⟨v,x⟩ · ⟨w,y⟩ .

2.1 Learning With Errors (LWE)

The LWE problem was introduced by Regev [Reg05] as a generalization of “learning parity with
noise”. For positive integers n and q ≥ 2, a vector s ∈ Zn

q , and a probability distribution χ on Z,
let As,χ be the distribution obtained by choosing a vector a

$← Zn
q uniformly at random and a

noise term e
$← χ, and outputting (a, [⟨a, s⟩+ e]q) ∈ Zn

q × Zq. Decisional LWE (DLWE) is defined
as follows.

Definition 2.2 (DLWE). For an integer q = q(n) and an error distribution χ = χ(n) over Z, the
(average-case) decision learning with errors problem, denoted DLWEn,m,q,χ, is to distinguish (with

non-negligible advantage) m samples chosen according to As,χ (for uniformly random s
$← Zn

q), from
m samples chosen according to the uniform distribution over Zn

q ×Zq. We denote by DLWEn,q,χ the
variant where the adversary gets oracle access to As,χ, and is not a-priori bounded in the number
of samples.

There are known quantum (Regev [Reg05]) and classical (Peikert [Pei09]) reductions between
DLWEn,m,q,χ and approximating short vector problems in lattices. Specifically, these reductions take
χ to be (discretized versions of) the Gaussian distribution, which is statistically indistinguishable
from B-bounded, for an appropriate B. Since the exact distribution χ does not matter for our
results, we state a corollary of the results of [Reg05, Pei09] (in conjunction with the search to
decision reduction of Micciancio and Mol [MM11] and Micciancio and Peikert [MP11]) in terms of
the bound B. These results also extend to additional forms of q (see [MM11, MP11]).

Corollary 2.1 ([Reg05, Pei09, MM11, MP11]). Let q = q(n) ∈ N be either a prime power q = pr, or
a product of co-prime numbers q =

∏
qi such that for all i, qi = poly(n), and let B ≥ ω(log n) ·

√
n.

Then there exists an efficiently sampleable B-bounded distribution χ such that if there is an efficient
algorithm that solves the (average-case) DLWEn,q,χ problem. Then:

• There is an efficient quantum algorithm that solves GapSVP
Õ(n·q/B)

(and SIVP
Õ(n·q/B)

) on

any n-dimensional lattice.

• If in addition q ≥ Õ(2n/2), then there is an efficient classical algorithm for GapSVPÕ(n·q/B)
on any n-dimensional lattice.

In both cases, if one also considers distinguishers with sub-polynomial advantage, then we require
B ≥ Õ(n) and the resulting approximation factor is slightly larger Õ(n

√
n · q/B).

6

6. FHE without Modulus Switching

Recall that GapSVPγ is the (promise) problem of distinguishing, given a basis for a lattice and
a parameter d, between the case where the lattice has a vector shorter than d, and the case where
the lattice doesn’t have any vector shorter than γ · d. SIVP is the search problem of finding a set
of “short” vectors. We refer the reader to [Reg05, Pei09] for more information.

The best known algorithms for GapSVPγ ([Sch87, MV10]) require at least 2Ω̃(n/ log γ) time. The

scheme we present in this work reduces from γ = nO(logn), for which the best known algorithms
run in time 2Ω̃(n).

As a final remark, we mention that Peikert also shows a classical reduction in the case of small
values of q, but this reduction is from a newly defined “ζ-to-γ decisional shortest vector problem”,
which is not as extensively studied as GapSVP.

2.2 Homomorphic Encryption and Bootstrapping

We now define homomorphic encryption and introduce Gentry’s bootstrapping theorem. Our defi-
nitions are mostly taken from [BV11b, BGV12].

A homomorphic (public-key) encryption scheme HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval) is
a quadruple of ppt algorithms as follows (n is the security parameter):

• Key generation (pk, evk, sk)←HE.Keygen(1n): Outputs a public encryption key pk, a public
evaluation key evk and a secret decryption key sk.9

• Encryption c←HE.Encpk(m): Using the public key pk, encrypts a single bit message m ∈
{0, 1} into a ciphertext c.

• Decryption m←HE.Decsk(c): Using the secret key sk, decrypts a ciphertext c to recover
the message m ∈ {0, 1}.

• Homomorphic evaluation cf←HE.Evalevk(f, c1, . . . , cℓ): Using the evaluation key evk, ap-
plies a function f : {0, 1}ℓ → {0, 1} to c1, . . . , cℓ, and outputs a ciphertext cf .

As in previous works, we represent f as an arithmetic circuit over GF(2) with addition and
multiplication gates. Thus it is customary to “break” HE.Eval into homomorphic addition
cadd←HE.Addevk(c1, c2) and homomorphic multiplication cmult←HE.Multevk(c1, c2).

A homomorphic encryption scheme is said to be secure if it is semantically secure (note that
the adversary is given both pk and evk).

Homomorphism w.r.t depth-bounded circuits and full homomorphism are defined next:

Definition 2.3 (L-homomorphism). A scheme HE is L-homomorphic, for L = L(n), if for any
depth L arithmetic circuit f (over GF(2)) and any set of inputs m1, . . . ,mℓ, it holds that

Pr [HE.Decsk(HE.Evalevk(f, c1, . . . , cℓ)) ̸= f(m1, . . . ,mℓ)] = negl(n) ,

where (pk, evk, sk)←HE.Keygen(1n) and ci←HE.Encpk(mi).

Definition 2.4 (compactness and full homomorphism). A homomorphic scheme is compact if its
decryption circuit is independent of the evaluated function. A compact scheme is fully homomorphic
if it is L-homomorphic for any polynomial L. The scheme is leveled fully homomorphic if it takes
1L as additional input in key generation.

9We adopt the terminology of [BV11b] that treats the evaluation key as a separate entity from the public key.

7

6. FHE without Modulus Switching

Gentry’s bootstrapping theorem shows how to go from L-homomorphism to full homomorphism:

Theorem 2.2 (bootstrapping [Gen09b, Gen09a]). If there exists an L-homomorphic scheme whose
decryption circuit depth is less than L, then there exists a leveled fully homomorphic encryption
scheme.

Furthermore, if the aforementioned L-homomorphic scheme is also weak circular secure (re-
mains secure even against an adversary who gets encryptions of the bits of the secret key), then
there exists a fully homomorphic encryption scheme.

3 Building Blocks

In this section, we present building blocks from previous works that are used in our construction.
Specifically, like all LWE-based fully homomorphic schemes, we rely on Regev’s [Reg05] basic
public-key encryption scheme (Section 3.1). We also use the key-switching methodology of [BV11b,
BGV12] (Section 3.2).

3.1 Regev’s Encryption Scheme

Let q = q(n) be an integer function and let χ = χ(n) be a distribution ensemble over Z. The
scheme Regev is defined as follows:

• Regev.SecretKeygen(1n): Sample s
$← Zn

q . Output sk = s.

• Regev.PublicKeygen(s): Let N , (n + 1) · (log q + O(1)). Sample A
$← ZN×n

q and e
$← χN .

Compute b:= [A · s+ e]q, and define

P:= [b∥ −A] ∈ ZN×(n+1)
q .

Output pk = P.

• Regev.Encpk(m): To encrypt a message m ∈ {0, 1} using pk = P, sample r ∈ {0, 1}N and output
ciphertext

c:=
[
PT · r+

⌊q
2

⌋
·m

]
q
∈ Zn+1

q ,

where m , (m, 0, . . . , 0) ∈ {0, 1}n+1.

• Regev.Decsk(c): To decrypt c ∈ Zn+1
q using secret key sk = s, compute

m:=

[⌊
2 ·

[⟨c, (1, s)⟩]q
q

⌉]
2

.

Correctness. We analyze the noise magnitude at encryption and decryption. We start with a
lemma regarding the noise magnitude of properly encrypted ciphertexts:

Lemma 3.1 (encryption noise). Let q, n,N, |χ| ≤ B be parameters for Regev. Let s ∈ Zn be any
vector and m ∈ {0, 1} be some bit. Set P←Regev.PublicKeygen(s) and c←Regev.EncP(m). Then
for some e with |e| ≤ N ·B it holds that

⟨c, (1, s)⟩ =
⌊q
2

⌋
·m+ e (mod q) .

8

6. FHE without Modulus Switching

Proof. By definition

⟨c, (1, s)⟩ =
⟨
PT · r+

⌊q
2

⌋
·m, (1, s)

⟩
(mod q)

=
⌊q
2

⌋
·m+ rTP · (1, s) (mod q)

=
⌊q
2

⌋
·m+ rTb− rTAs (mod q)

=
⌊q
2

⌋
·m+ ⟨r, e⟩ (mod q) .

The lemma follows since |⟨r, e⟩| ≤ N ·B.

We proceed to state the correctness of decryption for low-noise ciphertexts. The proof easily
follows by assignment into the definition of Regev.Dec and is omitted.

Lemma 3.2 (decryption noise). Let s ∈ Zn be some vector, and let c ∈ Zn+1
q be such that

⟨c, (1, s)⟩ =
⌊q
2

⌋
·m+ e (mod q) ,

with m ∈ {0, 1} and |e| < ⌊q/2⌋ /2. Then

Regev.Decs(c) = m .

Security. The following lemma states the security of Regev. The proof is standard (see e.g. [Reg05])
and is omitted.

Lemma 3.3. Let n, q, χ be some parameters such that DLWEn,q,χ holds. Then for any m ∈ {0, 1}, if
s←Regev.SecretKeygen(1n), P←Regev.PublicKeygen(s), c←Regev.EncP(m), it holds that the joint

distribution (P, c) is computationally indistinguishable from uniform over ZN×(n+1)
q × Zn+1

q .

3.2 Vector Decomposition and Key Switching

We show how to decompose vectors in a way that preserves inner product and how to generate and
use key switching parameters. Our notation is generally adopted from [BGV12].

Vector Decomposition. We often break vectors into their bit representations as defined below:

• BitDecompq(x): For x ∈ Zn, let wi ∈ {0, 1}n be such that x =
∑⌈log q⌉−1

i=0 2i ·wi (mod q). Output
the vector

(w0, . . . ,w⌈log q⌉−1) ∈ {0, 1}n·⌈log q⌉ .

• PowersOfTwoq(y): For y ∈ Zn, output[
(y, 2 · y, . . . , 2⌈log q⌉−1 · y)

]
q
∈ Zn·⌈log q⌉

q .

We will usually omit the subscript q when it is clear from the context.

Claim 3.4. For all q ∈ Z and x,y ∈ Zn, it holds that

⟨x,y⟩ = ⟨BitDecompq(x),PowersOfTwoq(y)⟩ (mod q) .

9

6. FHE without Modulus Switching

Key Switching. In the functions below, q is an integer and χ is a distribution over Z:

• SwitchKeyGenq,χ(s, t): For a “source” key s ∈ Zns and “target” key t ∈ Znt , we define a set of
parameters that allow to switch ciphertexts under s into ciphertexts under (1, t).

Let n̂s , ns · ⌈log q⌉ be the dimension of PowersOfTwoq(s). Sample a uniform matrix As:t
$←

Zn̂s×nt
q and a noise vector e

$← χn̂s . The function’s output is a matrix

Ps:t = [bs:t∥ −As:t] ∈ Zn̂s×(nt+1)
q ,

where
bs:t:=

[
As:t · t+ es:t + PowersOfTwoq(s)

]
q
∈ Zn̂s

q .

This is similar, although not identical, to encrypting PowersOfTwoq(s) (the difference is that
PowersOfTwoq(s) contains non-binary values).

• SwitchKeyq(Ps:t, cs): To switch a ciphertext from a secret key s to (1, t), output

ct:=
[
PT

s:t · BitDecompq(cs)
]
q
.

Again, we usually omit the subscripts when they are clear from the context. Correctness and
security are stated below, the proofs are by definition.

Lemma 3.5 (correctness). Let s ∈ Zns, t ∈ Znt and cs ∈ Zns
q be any vectors. Let Ps:t←SwitchKeyGen(s, t)

and set ct←SwitchKey(Ps:t, cs). Then

⟨cs, s⟩ = ⟨ct, (1, t)⟩ − ⟨BitDecompq(cs), es:t⟩ (mod q) .

Lemma 3.6 (security). Let s ∈ Zns be any vector. If we generate t←Regev.SecretKeygen(1n) and

P←SwitchKeyGenq,χ(s, t), then P is computationally indistinguishable from uniform over Zn̂s×(nt+1)
q ,

assuming DLWEn,q,χ.

4 A Scale Invariant Homomorphic Encryption Scheme

We present our scale invariant L-homomorphic scheme as outlined in Section 1.2. Homomorphic
properties are discussed in Section 4.1, implications and optimizations are discussed in Section 4.2.

Let q = q(n) be an integer function, let L = L(n) be a polynomial and let χ = χ(n) be a
distribution ensemble over Z. The scheme SI-HE is defined as follows:

• SI-HE.Keygen(1L, 1n): Sample L+1 vectors s0, . . . , sL←Regev.SecretKeygen(1n), and compute a
Regev public key for the first one: P0←Regev.PublicKeygen(s0). For all i ∈ [L], define

s̃i−1:=BitDecomp((1, si−1))⊗ BitDecomp((1, si−1)) ∈ {0, 1}((n+1)⌈log q⌉)2 .

and compute
P(i−1):i←SwitchKeyGen (s̃i−1, si) .

Output pk = P0, evk = {P(i−1):i}i∈[L] and sk = sL.

10

6. FHE without Modulus Switching

• SI-HE.Encpk(m): Identical to Regev’s, output c←Regev.Encpk(m).

• SI-HE.Evalevk(·): As usual, we describe homomorphic addition and multiplication over GF(2),
which allows to evaluate depth L arithmetic circuits in a gate-by-gate manner. The convention
for a gate at level i of the circuit is that the operand ciphertexts are decryptable using si−1, and
the output of the homomorphic operation is decryptable using si.

Since evk contains key switching parameters from s̃i−1 to si, homomorphic addition and mul-
tiplication both first produce an intermediate output c̃ that corresponds to s̃i−1, and then use
key switching to obtain the final output.10

− SI-HE.Addevk(c1, c2): Assume w.l.o.g that both input ciphertexts are encrypted under the
same secret key si−1. First compute

c̃add:=PowersOfTwo(c1 + c2)⊗ PowersOfTwo((1, 0, . . . , 0)) ,

then output
cadd←SwitchKey(P(i−1):i, c̃add) ∈ Zn+1

q .

Let us explain what we did: We first added the ciphertext vectors (as expected) to obtain
c1 + c2. This already implements the homomorphic addition, but provides an output that
corresponds to si−1 and not si as required. We thus generate c̃add by tensoring with a “trivial”
ciphertext. The result corresponds to s̃i−1, and allows to finally use key switching to obtain
an output corresponding to si. We use powers-of-two representation in order to control the
norm of the secret key (as we explain in Section 1.2).

− SI-HE.Multevk(c1, c2): Assume w.l.o.g that both input ciphertexts are encrypted under the
same secret key si−1. First compute

c̃mult:=

⌊
2

q
·
(
PowersOfTwo(c1)⊗ PowersOfTwo(c2)

)⌉
,

then output
cmult←SwitchKey(P(i−1):i, c̃mult) ∈ Zn+1

q .

As we explain in Section 1.2, The tensored ciphertext c̃mult mimics tensoring in the “invari-
ant perspective”, which produces an encryption of the product of the plaintexts under the
tensored secret key s̃i−1. We then switch keys to obtain an output corresponding to si.

• Decryption SI-HE.Decsk(c): Assume w.l.o.g that c is a ciphertext that corresponds to sL (=sk).
Then decryption is again identical to Regev’s, output

m←Regev.Decsk(c) .

10The final key switching replaces the more complicated “refresh” operation of [BGV12].

11

6. FHE without Modulus Switching

Security. The security of the scheme follows in a straightforward way, very similarly to the proof
of [BV11b, Theorem 4.1] as we sketch below.

Lemma 4.1. Let n, q, χ be some parameters such that DLWEn,q,χ holds, and let L = L(n) be polyno-
mially bounded. Then for any m ∈ {0, 1}, if (pk, evk, sk)←SI-HE.Keygen(1L, 1n), c←SI-HE.Encpk(m),
it holds that the joint distribution (pk, evk, c) is computationally indistinguishable from uniform.

Proof sketch. We consider the distribution (pk, evk, c) = (P0,P0:1, . . . ,PL−1:L, c) and apply a hy-
brid argument.

First, we argue that PL−1:L is indistinguishable from uniform, based on Lemma 3.6 (note that sL
is only used to generate PL−1:L). We then proceed to replace all Pi−1:i with uniform in descending
order, based on the same argument. Finally, we are left with (P0, c) (and a multitude of uniform
elements), which are exactly a public key and ciphertext of Regev’s scheme. We invoke Lemma 3.3
to argue that (P0, c) are indistinguishable from uniform, which completes the proof of our lemma.

We remark that generally one has to be careful when using a super-constant number of hybrids,
but in our case, as in [BV11b], this causes no problem.

4.1 Homomorphic Properties of SI-HE

The following theorem summarizes the homomorphic properties of our scheme.

Theorem 4.2. The scheme SI-HE with parameters n, q, |χ| ≤ B,L for which

q/B ≥ (O(n log q))L+O(1) ,

is L-homomorphic.

The theorem is proven using the following lemma, which bounds the growth of the noise in gate
evaluation.

Lemma 4.3. Let q, n, |χ| ≤ B,L be parameters for SI-HE, and let (pk, evk, sk)←SI-HE.Keygen(1L, 1n).
Let c1, c2 be such that

⟨c1, (1, si−1)⟩ =
⌊q
2

⌋
·m1 + e1 (mod q)

⟨c2, (1, si−1)⟩ =
⌊q
2

⌋
·m1 + e2 (mod q) , (1)

with |e1| , |e2| ≤ E < ⌊q/2⌋ /2. Define cadd←SI-HE.Addevk(c1, c2), cmult←SI-HE.Multevk(c1, c2).
Then

⟨cadd, (1, si)⟩ =
⌊q
2

⌋
·
(
[m1 +m2]2

)
+ eadd (mod q)

⟨cmult, (1, si)⟩ =
⌊q
2

⌋
·m1m2 + emult (mod q) ,

where
|eadd| , |emult| ≤ O(n log q) ·max

{
E, (n log2 q) ·B

}
.

We remark that, as usual, homomorphic addition increases noise much more moderately than
multiplication, but the coarse bound we show in the lemma is sufficient for our purposes.

Next we show how to use Lemma 4.3 to prove Theorem 4.2. The proof of Lemma 4.3 itself is
deferred to Section 4.3.

12

6. FHE without Modulus Switching

Proof of Theorem 4.2. Consider the evaluation of a depth L circuit. Let Ei be a bound on the
noise in the ciphertext after the evaluation of the ith level of gates.

By Lemma 3.1, E0 = N · B = O(n log q) · B. Lemma 4.3 guarantees that starting from the
point where E ≥ (n log2 q) · B, it will hold that Ei+1 = O(n log q) · Ei. We get that EL =
(O(n log q))L+O(1) ·B.

By Lemma 3.2, decryption will succeed if EL < ⌊q/2⌋ /2 and the theorem follows.

4.2 Implications and Optimizations

Fully Homomorphic Encryption using Bootstrapping. Fully homomorphic encryption fol-
lows using the bootstrapping theorem (Theorem 2.2). In order to use bootstrapping, we need to
bound the depth of the decryption circuit. The following lemma has been proven in a number of
previous works (e.g. [BV11b, Lemma 4.5]):

Lemma 4.4. For all c, the function fc(s) = SI-HE.Decs(c) can be implemented by a circuit of
depth O(log n+ log log q).

An immediate corollary follows from Theorem 2.2, Theorem 4.2 and Lemma 4.4:

Corollary 4.5. Let n, q, χ,B be such that |χ| ≤ B and q/B ≥ (n log q)O(logn+log log q). Then there
exists a (leveled) fully homomorphic encryption scheme based on the DLWEn,q,χ assumption.

Furthermore, if SI-HE is weak circular secure, then the same assumption implies full (non
leveled) homomorphism.

Finally, we can classically reduce security from GapSVP using Corollary 2.1, by choosing q =
Õ(2n/2) and B = q/(n log q)O(logn+log log q) = q/nO(logn):

Corollary 4.6. There exists a (leveled) fully-homomorphic encryption scheme based on the classical
worst case hardness of the GapSVPnO(logn) problem.

(Leveled) Fully Homomorphic Encryption without Bootstrapping. Following [BGV12],
our scheme implies a leveled fully homomorphic encryption without bootstrapping. Plugging our
scheme into the [BGV12] framework, we obtain a (leveled) fully homomorphic encryption without
bootstrapping, based on the classical worst case hardness of GapSVP2n

ϵ , for any ϵ > 0.

Optimizations. So far, we chose to present our scheme in the cleanest possible way. However,
there are a few techniques that can somewhat improve performance. While the asymptotic advan-
tage of some of these methods is not great, a real life implementation can benefit from them.

1. Our tensored secret key s̃i−1 is obtained by tensoring a vector with itself. Such a vector
can be represented by only

(
ns

2

)
(as opposed to our n2

s), saving a factor of (almost) 2 in the
representation length.

2. When B ≪ q, some improvement can be achieved by using LWE in Hermite normal form.
It is known (see e.g. [ACPS09]) that the hardness of LWE remains essentially the same if

we sample s
$← χn (instead of uniformly in Zn

q). Sampling our keys this way, we only need
O(n logB) bits to represent BitDecomp(s), and its norm goes down accordingly.

13

6. FHE without Modulus Switching

We can therefore reduce the size of the evaluation key (which depends quadratically on
the bit length of the secret key), and more importantly, we can prove a tighter version of
Lemma 4.3. When using Hermite normal form, the noise grows from E to O(n logB) ·
max{E, (n logB log q) ·B}. Therefore, L-homomorphism is achieved whenever

q/B ≥ (O(n logB))L+O(1) · log q .

3. The least significant bits of the ciphertext can sometimes be truncated without much harm,
which can lead to significant saving in ciphertext and key length, especially when B/q is
large: Let c be an integer ciphertext vector and define c′ =

⌊
2−i · c

⌉
. Then c′, which can be

represented with n · i fewer bits than c, implies a good approximation for c since∣∣⟨c, s⟩ − ⟨2i · c′, s⟩∣∣ ≤ 2i−1 ∥s∥1 .

This means that 2i · c′ can be used instead of c, at the cost of an additive increase in the
noise magnitude.

Consider a case where q,B ≫ q/B (which occurs when we artificially increase q in order
for the classical reduction to work). Recall that ∥s∥1 ≈ n log q and consider truncating with
i ≈ log(B/(n log q)). Then the additional noise incurred by using c′ instead of c is only
an insignificant ≈ B. The number of bits required to represent each element in c′ however
now becomes log q − i ≈ log(q/B) + log(n log q). In conclusion, we hardly lose anything in
ciphertext length compared to the case of working with smaller q,B to begin with (with
similar q/B ratio). The ciphertext length can, therefore, be made invariant to the absolute
values of q,B, and depend only on their ratio. This of course applies also to the vectors in
evk.

4.3 Proof of Lemma 4.3

We start with the analysis for addition, which is simpler and will also serve as good warm-up
towards the analysis for multiplication.

Analysis for Addition. By Lemma 3.5, it holds that

⟨cadd, (1, si)⟩ = ⟨c̃add, s̃i⟩+ ⟨BitDecomp(c̃), ei−1:i⟩︸ ︷︷ ︸
,δ1

(mod q) .

where ei−1:i ∼ χ(n+1)2·(⌈log q⌉)3 . That is, δ1 is the noise inflicted by the key switching process.
We bound |δ1| using the bound on χ:

|δ1| = |⟨BitDecomp(c̃add), ei−1:i⟩| ≤ (n+ 1)2 · (⌈log q⌉)3 ·B = O(n2 log3 q) ·B .

Next, we expand the term ⟨c̃add, s̃i⟩, by breaking an inner product of tensors into a product of
inner products (one of which is trivially equal to 1):

⟨c̃add, s̃i⟩ =
⟨
PowersOfTwo(c1 + c2)⊗ PowersOfTwo((1, 0, . . . , 0)),

BitDecomp((1, si−1))⊗ BitDecomp((1, si−1))
⟩

=
⟨
PowersOfTwo(c1 + c2),BitDecomp((1, si−1))

⟩
· 1

=
⟨
(c1 + c2), (1, si−1)

⟩
(mod q)

=
⟨
c1, (1, si−1)

⟩
+

⟨
c2, (1, si−1)

⟩
(mod q) .

14

6. FHE without Modulus Switching

We can now plug in what we know about c1, c2 from Eq. (1) in the lemma statement:

⟨c̃add, s̃i⟩ =
⌊q
2

⌋
·m1 + e1 +

⌊q
2

⌋
·m2 + e2 (mod q)

=
⌊q
2

⌋
· [m1 +m2]2−m̃+ e1 + e2︸ ︷︷ ︸

,δ2

, (mod q)

where m̃ ∈ {0, 1} is defined as:

m̃ ,
{

0, if q is even,
1
2 · (m1 +m2 − [m1 +m2]2), if q is odd,

and |δ2| ≤ 1 + 2E.
Putting it all together,

⟨cadd, (1, si)⟩ =
⌊q
2

⌋
· [m1 +m2]2 + δ1 + δ2︸ ︷︷ ︸

=eadd

(mod q) .

Where the bound on eadd is

|eadd| = |δ1 + δ2| ≤ O(n2 log3 q) ·B +O(1) · E ≤ O(n log q) ·max
{
E, (n log2 q) ·B

}
.

This finishes the argument for addition.

Analysis for Multiplication. The analysis for multiplication starts very similarly to addition:

⟨cmult, (1, si)⟩ = ⟨c̃mult, s̃i⟩+ ⟨BitDecomp(c̃mult), ei−1:i⟩︸ ︷︷ ︸
,δ1

(mod q) ,

and as before
|δ1| = O(n2 log3 q) ·B .

Let us now focus on ⟨c̃mult, s̃i⟩. We want to use the properties of tensoring to break the inner
product into two smaller inner products, as we did before. This time, however, c̃mult is a rounded
tensor:

⟨c̃, s̃i⟩ =
⟨⌊

2

q
· (PowersOfTwo(c1)⊗ PowersOfTwo(c2))

⌉
, s̃i−1

⟩
(mod q) .

We start by showing that the rounding does not add much noise. Intuitively this is because
s̃i−1 is a binary vector and thus has low norm. We define

δ2 ,
⟨⌊

2

q
· (PowersOfTwo(c1)⊗ PowersOfTwo(c2))

⌉
, s̃i−1

⟩
−

⟨2
q
· (PowersOfTwo(c1)⊗ PowersOfTwo(c2)), s̃i−1

⟩
,

and for convenience we also define

c′ ,
⌊
2

q
· (PowersOfTwo(c1)⊗ PowersOfTwo(c2))

⌉
− 2

q
· (PowersOfTwo(c1)⊗ PowersOfTwo(c2)) .

15

6. FHE without Modulus Switching

By definition, δ2 = ⟨c′, s̃i−1⟩. Now, since ∥c′∥∞ ≤ 1/2 and ∥s̃i−1∥1 ≤ ((n+ 1) ⌈log q⌉)2 =
O(n2 log2 q), it follows that

|δ2| ≤
∥∥c′∥∥∞ · ∥s̃i−1∥1 = O(n2 log2 q) .

We can now break the inner product using the properties of tensoring:

⟨c̃mult, s̃i−1⟩ − δ2 =
2

q
·
⟨
PowersOfTwo(c1),BitDecomp((1, si−1))

⟩
·
⟨
PowersOfTwo(c2),BitDecomp((1, si−1))

⟩
. (2)

Note that we keep c1, c2 in powers-of-two form. This is deliberate and will be useful later (essentially
because we want our ciphertext to relate to low-norm secrets).

Going back to Eq. (1) from the lemma statement, it follows (using Claim 3.4) that

⟨PowersOfTwo(c1),BitDecomp(1, si−1)⟩ =
⌊q
2

⌋
·m1 + e1 (mod q)

⟨PowersOfTwo(c2),BitDecomp(1, si−1)⟩ =
⌊q
2

⌋
·m2 + e2 (mod q) .

Let I1, I2 ∈ Z be such that

⟨PowersOfTwo(c1),BitDecomp(1, si−1)⟩ =
⌊q
2

⌋
·m1 + e1 + q · I1

⟨PowersOfTwo(c2),BitDecomp(1, si−1)⟩ =
⌊q
2

⌋
·m2 + e2 + q · I2 . (3)

Let us bound the absolute value of I1 (obviously the same bound also holds for I2):

|I1| =

∣∣⟨PowersOfTwo(c1),BitDecomp(1, si−1)⟩ −
⌊ q
2

⌋
·m1 − e1

∣∣
q

≤ |⟨PowersOfTwo(c1),BitDecomp(1, si−1)⟩|
q

+ 1

≤
∥PowersOfTwo(c1)∥∞

q
· ∥BitDecomp(1, si−1)∥1 + 1

≤ 1

2
· ∥BitDecomp(1, si−1)∥1 + 1

≤ 1

2
· (n+ 1) ⌈log q⌉+ 1

= O(n log q) . (4)

Plugging Eq. (3) into Eq. (2), we get

⟨c̃mult, s̃i−1⟩ − δ2 =
2

q
·
(⌊q

2

⌋
·m1 + e1 + q · I1

)
·
(⌊q

2

⌋
·m2 + e2 + q · I2

)
=

⌊q
2

⌋
·m1 ·m2 + δ3 + q · (m1I2 +m2I1 + 2I1I2) ,

where δ3 is defined as

δ3 ,
{

2e2 · I1 + 2e1 · I2 + (e1m2 + e2m1) +
2e1·e2

q , if q is even,

(2e2 −m2) · I1 + (2e1 −m1) · I2 + q−1
q · (e1m2 + e2m1)− m1·m2

2q + 2e1·e2
q , if q is odd.

16

6. FHE without Modulus Switching

In particular (recall that E < ⌊q/2⌋ /2 ≤ q/4):

|δ3| ≤ 2(2E + 1)O(n log q) + 2E +
1 + 2E2

q
= O(n log q) · E .

Putting everything together, we get that

⟨cmult, (1, si)⟩ =
⌊q
2

⌋
·m1m2 + δ1 + δ2 + δ3︸ ︷︷ ︸

=emult

(mod q) ,

where
|emult| = |δ1 + δ2 + δ3| ≤ O(n log q) · E +O(n2 log3 q) ·B ,

and the lemma follows.

Acknowledgments

We thank Vinod Vaikuntanathan for fruitful discussions and advice, and Dan Boneh for his com-
ments on an earlier version of this manuscript. We thank the reviewers of CRYPTO 2012 for their
constructive comments. In addition, we thank various readers for pointing out typos in earlier
versions of this manuscript.

References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai
Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages
595–618. Springer, 2009.

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-
case equivalence. In Frank Thomson Leighton and Peter W. Shor, editors, STOC, pages
284–293. ACM, 1997.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. ITCS, 2012. See also http://eprint.iacr.org/

2011/277.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In CRYPTO, volume 6841, page 501,
2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Ostrovsky [Ost11], pages 97–106. References are to full
version: http://eprint.iacr.org/2011/344.

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully
homomorphic encryption over the integers with shorter public keys. In Rogaway
[Rog11], pages 487–504.

17

6. FHE without Modulus Switching

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In EUROCRYPT, pages 24–43, 2010. Full
Version in http://eprint.iacr.org/2009/616.pdf.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. http://crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Eliminating decryption errors in
the ajtai-dwork cryptosystem. In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294
of Lecture Notes in Computer Science, pages 105–111. Springer, 1997.

[GH11] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In Ostrovsky [Ost11], pages 107–109.

[GHS11a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Better bootstrapping in fully homo-
morphic encryption. IACR Cryptology ePrint Archive, 2011:680, 2011.

[GHS11b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with
polylog overhead. IACR Cryptology ePrint Archive, 2011:566, 2011.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, STOC, pages 197–206.
ACM, 2008.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, pages 1–23, 2010. Draft of full version was
provided by the authors.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample com-
plexity of lwe search-to-decision reductions. In Rogaway [Rog11], pages 465–484.

[MP11] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. IACR Cryptology ePrint Archive, 2011:501, 2011. To appear in Eurocrypt
2012.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time
algorithm for most lattice problems based on voronoi cell computations. In Leonard J.
Schulman, editor, STOC, pages 351–358. ACM, 2010.

[Ost11] Rafail Ostrovsky, editor. IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011. IEEE, 2011.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In STOC, pages 333–342, 2009.

[RAD78] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms.
In Foundations of Secure Computation, pages 169–177. Academic Press, 1978.

18

6. FHE without Modulus Switching

[Reg03] Oded Regev. New lattice based cryptographic constructions. In Lawrence L. Larmore
and Michel X. Goemans, editors, STOC, pages 407–416. ACM, 2003. Full version in
[Reg04].

[Reg04] Oded Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899–942,
2004.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM, 2005. Full
version in [Reg09].

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009.

[Rog11] Phillip Rogaway, editor. Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume
6841 of Lecture Notes in Computer Science. Springer, 2011.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci., 53:201–224, 1987.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Phong Q. Nguyen and David Pointcheval, editors,
Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science, pages
420–443. Springer, 2010.

19

6. FHE without Modulus Switching

When Homomorphism Becomes a Liability

Zvika Brakerski∗

Abstract

We show that an encryption scheme cannot have a simple decryption function and be homo-
morphic at the same time, even with added noise. Specifically, if a scheme can homomorphically
evaluate the majority function, then its decryption cannot be weakly-learnable (in particular,
linear), even if large decryption error is allowed. (In contrast, without homomorphism, such
schemes do exist and are presumed secure, e.g. based on LPN.)

An immediate corollary is that known schemes that are based on the hardness of decoding in
the presence of low hamming-weight noise cannot be fully homomorphic. This applies to known
schemes such as LPN-based symmetric or public key encryption.

Using these techniques, we show that the recent candidate fully homomorphic encryption,
suggested by Bogdanov and Lee (ePrint ’11, henceforth BL), is insecure. In fact, we show two
attacks on the BL scheme: One that uses homomorphism, and another that directly attacks a
component of the scheme.

∗Stanford University, zvika@stanford.edu. Supported by a Simons Postdoctoral Fellowship and by DARPA.

7. When Homomorphism Becomes a Liability

1 Introduction

An encryption scheme is called homomorphic if there is an efficient transformation that given
Enc(m) for some message m, and a function f , produces Enc(f(m)) using only public information.
A scheme that is homomorphic w.r.t all efficient f is called fully homomorphic (FHE). Homomorphic
encryption is a useful tool in both theory and practice and is extensively researched in recent years
(see [Vai11] for survey), and a few candidates for full homomorphism are known.

Most of these candidates [Gen09, Gen10, SV10, BV11a, BV11b, GH11, BGV12, GHS12, Bra12]
are based (either explicitly or implicitly) on lattice assumptions (the hardness of approximating
short vectors in certain lattices). In particular, the learning with errors (LWE) assumption proved
to be very useful in the design of such schemes. The one notable exception is [vDGHV10], but even
that could be thought of as working over an appropriately defined lattice over the integers.

An important open problem is, therefore, to diversify and base fully homomorphic encryption
on different assumptions (so as to not put all the eggs in one basket). One appealing direction is to
try to use the learning parity with noise (LPN) problem, which is very similar in syntax to LWE:
Making a vast generalization, LWE can be interpreted as a decoding problem for a linear code,
where the noise comes from a family of low norm vectors. Namely, each coordinate in the code
suffers from noise, but this noise is relatively small (this requires that the code is defined over a
large alphabet). The LPN assumption works over the binary alphabet and requires that the noise
has low hamming weight, namely that only a small number of coordinates are noisy, but in these
coordinates the noise amplitude can be large. While similar in syntax, a direct connection between
these two types of assumptions is not known.

While an LPN-based construction is not known, recently Bogdanov and Lee [BL11] presented
a candidate, denoted by BL throughout this manuscript, that is based on a different low hamming-
weight decoding problem: They consider a carefully crafted code over a large alphabet and assume
that decoding in the presence of low-hamming-weight noise is hard.

In this work, we show that not only that BL’s construction is insecure, but rather the entire
approach of constructing code based homomorphic encryption analogously to the LWE construction
cannot work. We stress that we don’t show that FHE cannot be based on LPN (or other code
based assumptions), but rather that the decryption algorithm of such scheme cannot take the
näıve form. (In particular this applies to the attempt to add homomorphism to schemes such as
[Ale03, GRS08, ACPS09].)

1.1 Our Results

Our main result shows that encryption schemes with learnable decryption functions cannot be ho-
momorphic, even if large decryption error is allowed. In particular, such schemes cannot evaluate
the majority function. This extends the result of Kearns and Valiant [KV94] (slightly extended by
Klivans and Sherstov [KS09]) that learnability breaks security for schemes with negligible decryp-
tion error. In other words, homomorphic capabilities can sometimes make noisy learning become
no harder than noiseless learning.

We use a simplified notion of learning, which essentially requires that given polynomially many
labeled samples (from an arbitrary distribution), the learner’s hypothesis correctly computes the
label for the next sample with probability, say, 0.9. We show that this notion, that we call sc-
learning, is equivalent to weak learning defined in [KV94]. This allows us to prove the following
theorem (in Section 3).

1

7. When Homomorphism Becomes a Liability

Theorem A. An encryption scheme whose decryption function is sc- or weakly-learnable, and
whose decryption error is 1/2−1/poly(n), cannot homomorphically evaluate the majority function.

Since it is straightforward to show that linear functions are learnable (as well as, e.g., low degree
polynomials), the theorem applies to known LPN based schemes such as [Ale03, GRS08, ACPS09].
This may not seem obvious at first: The decryption circuit of the aforementioned schemes is
(commonly assumed to be) hard to learn, and their decryption error is negligible, so they seem to
be out of the scope of our theorem. However, looking more closely, the decryption circuits consist
of an inner product computation with the secret key, followed by additional post-processing. One
can verify that if the post processing is not performed, then correct decryption is still achieved with
probability > 1/2+1/poly. Thus we can apply our theorem and rule out majority-homomorphism.

Similar logic rules out the homomorphism of the BL candidate-FHE. While Theorem A does not
apply directly (since the decryption of BL is not learnable out of the box), we show that it contains
a sub-scheme which is linear (and thus learnable) and has sufficient homomorphic properties to
render it insecure.

Theorem B. There is a successful polynomial time CPA attack on the BL scheme.

We further present a different attack on the BL scheme, targeting one of its building blocks.
This allows us to not only distinguish between two messages like the successful CPA attack above,
but rather decrypt any ciphertext with probability 1− o(1).

Theorem C. There is a polynomial time algorithm that decrypts the BL scheme.

The BL scheme and the two breaking algorithms are presented in Section 4.

1.2 Our Techniques

Consider a simplified case of Theorem A, where the scheme’s decryption function is learnable
given t labeled samples, and the decryption error is (say) 1/(10(t + 1)). The proof in this case
is straightforward: Generate t labeled samples by just encrypting random messages. Then use
the learner’s output hypothesis to decrypt the challenge ciphertext. We can only fail if either the
learner fails (which happens with probability 0.1) or if one of the samples we draw (including the
challenge) are not correctly decryptable, in which case our labeling is wrong and therefore the
learner provides no guarantee (which again happens with at most 0.1 probability). The union
bound implies that we can decrypt a random ciphertext with probability 0.8, which immediately
breaks the scheme. Note that we did not use the homomorphism of the scheme at all, indeed this
simplified version is universally true even without assuming homomorphism, and is very similar
to the arguments in [KV94, KS09]. However, some subtleties arise since we allow a non-negligible
fraction of “dysfunctional” keys that induce a much higher error rate than others.

The next step is to allow decryption error 1/2− ϵ, which requires use of homomorphism. The
idea is to use the homomorphism in order to reduce the decryption error and get back to the
previous case (in other words, reducing the noise in a noisy learning problem). Consider a scheme
that encrypts each message many times (say k), and then applies homomorphic majority on the
ciphertexts. The security of this scheme directly reduces from that of the original scheme, and it
has the same decryption function. However, now the decryption error drops exponentially with k.
This is because in order to get an error in the new scheme, at least k/2 out of the k encryptions

2

7. When Homomorphism Becomes a Liability

need to have errors. Since the expected number is (1/2− ϵ)k, the Chernoff bound implies the result
by choosing k appropriately.

To derive Theorem B, we need to show that linear functions are learnable:1 Assume that the
decryption function is an inner product between the ciphertext and the secret key (both being n-
dimensional vectors over a field F). We will learn these functions by taking O(n) labeled samples.
Then, given the challenge, we will try to represent it as a linear combination of the samples we
have. If we succeed, then the appropriate linear combination of the labels will be the value of the
function on the challenge. We show that this process fails only with small constant probability
(intuitively, since we take O(n) sample vectors from a space of dimension at most n).

We then show that BL uses a sub-structure that is both linearly decryptable and allows for
homomorphism of (some sort of) majority. Theorem B thus follows similarly to Theorem A.

For Theorem C, we need to dive into the guts of the BL scheme. We notice that BL use
homomorphic majority evaluation in one of the lower abstraction levels of their scheme. This
allows us to break this abstraction level using only linear algebra (in a sense, the homomorphic
evaluation is already “built in”). A complete break of BL follows.

1.3 Other Related Work

An independent work by Gauthier, Otmani and Tillich [GOT12] shows an interesting direct attack
on BL’s hardness assumption (we refer to it as the “GOT attack”). Their attack is very different
from ours and takes advantage of the resemblance of BL’s codes and Reed-Solomon codes as we
explain below.

BL’s construction relies on a special type of error correcting code. Essentially, they start with
a Reed-Solomon code, and replace a small fraction of the rows of the generating matrix with a
special structure. The homomorphic properties are only due to this small fraction of “significant”
rows, and the secret key is chosen so as to nullify the effect of the other rows.

The GOT attack uses the fact that under some transformation (component-wise multiplication),
the dimension of Reed-Solomon codes can grow by at most a factor of two. However, if a code
contains “significant” rows, then the dimension can grow further. This allows to measure the
number of significant rows in a given code. One can thus identify the significant rows by trying to
remove one row at a time from the code and checking if the dimension drops. If yes then that row
is significant. Once all significant rows have been identified, the secret key can be retrieved in a
straightforward manner.

However, it is fairly easy to immunize BL’s scheme against the GOT attack. As we explained
above, the neutral rows do not change the properties of the encryption scheme, so they may as well
be replaced by random rows. Since the dimension of random codes grows very rapidly under the
GOT transformation, their attack will not work in such case.

Our attack, on the other hand, relies on certain functional properties that BL use to make their
scheme homomorphic. Thus a change in the scheme that preserves these homomorphic properties
cannot help to overcome our attack. In light of our attack, it is interesting to investigate whether
the GOT attack can be extended to the more general case.

1We believe this was known before, but since we could not find an appropriate reference, we provide a proof.

3

7. When Homomorphism Becomes a Liability

2 Preliminaries

We denote scalars using plain lowercase (x), vectors using bold lowercase (x for column vector, xT

for row vector), and matrices using bold uppercase (X). We let 1 denote the all-one vector (the
dimension will be clear from the context). We let Fq denote a finite field of cardinality q ∈ N, with
efficient operations (we usually don’t care about any other property of the field).

2.1 Properties of Encryption Schemes

A public key encryption scheme is a tuple of algorithms (Gen,Enc,Dec), such that: Gen(1n) is the
key generation algorithm that produces a pair of public and secret keys (pk, sk); Encpk(m) is a
randomized encryption function that takes a message m and produces a ciphertext. In the context
of this work, messages will only come from some predefined field F; Decsk(c) is the decryption
function that decrypts a ciphertext c and produces the message. Optimally, Decsk(Encpk(·)) is the
identity function, but in some schemes there are decryption errors.

The probability of decryption error is taken over the randomness used to generate the keys for
the scheme, and over the randomness used in the encryption function (we assume the decryption is
deterministic). Since in our case the error rates are high (approaching 1/2), the effect of bad keys
is different from that of bad encryption randomness, and we thus measure the two separately. We
allow a small fraction of the keys (one percent, for the sake of convenience) to have arbitrarily large
decryption error, and define the decryption error ϵ to be the maximal error over the 99% best keys.
While the constant 1% is arbitrary and chosen so as to not over-clutter notation, we will discuss
after presenting our results how they generalize to other values. The formal definition follows.

Definition 2.1. An encryption scheme is said to have decryption error < ϵ if with probability at
least 0.99 over the key generation it holds that

max
m
{Pr[Decsk(Encpk(m)) ̸= m]} < ϵ ,

where the probability is taken over the random coins of the encryption function.

We use the standard definition of security against chosen plaintext attacks (CPA): The attacker
receives a public key and chooses two values m0,m1. The attacker then receives a ciphertext
c = Encpk(mb), where b ∈ {0, 1} is a random bit that is unknown to the attacker. The attacker
needs to decide on a guess b′ ∈ {0, 1} as to the value of b. We say that the scheme is broken if
there is a polynomial time attacker for which Pr[b′ = b] ≥ 1/2+ 1/poly(n) (where n is the security
parameter). Recall that this notion is equivalent to the notion of semantic security [GM82].

In addition, we will say that a scheme is completely broken if there exists an adversary that
upon receiving the public key and Encpk(m) for arbitrary value of m, returns m with probability
1− o(1).

While we discuss homomorphic properties of encryption schemes, we will only use homomor-
phism w.r.t the majority function. We define the notion of k-majority-homomorphism below.

Definition 2.2. A public-key encryption scheme is k-majority-homomorphic (where k is a function
of the security parameter) if there exists a function MajEval such that with probability 0.99 over the
key generation, for any sequence of ciphertexts output by Encpk(·): c1, . . . , ck, it holds that

Decsk(MajEvalpk(c1, . . . , ck)) = Majority(Decsk(c1), . . . ,Decsk(ck)) .

4

7. When Homomorphism Becomes a Liability

Again we allow some “slackness” by allowing some of the keys to not abide the homomorphism.
We note that Definition 2.2 above is a fairly strong notion of homomorphism in two aspects:

First, it requires that homomorphism holds even for ciphertexts with decryption error. Second,
we do not allow MajEval to introduce error for “good” key pairs. Indeed, known homomorphic
encryption schemes have these properties, but it is interesting to try to bypass our negative results
by finding schemes that do not have them.

Schemes with linear decryption, as defined below, have a special role in our attack on BL.

Definition 2.3. An encryption scheme is n-linearly decryptable if its secret key is of the form
sk = s ∈ Fn, for some field F, and its decryption function is

Decsk(c) = ⟨s, c⟩ .

2.2 Spanning Distributions over Low Dimensional Spaces

We will use a lemma that shows that any distribution over a low dimensional space is easy to span
in the following sense: Given sufficiently many samples from the distribution (a little more than
the dimension of the support), we are guaranteed that any new vector falls in the span of previous
samples. This lemma will allow us to derive a (distribution-free) learner for linear functions (see
Section 2.3).

We speculate that this lemma is already known, since it is fairly general and very robust to the
definition of dimension (e.g. it also applies to non-linear spaces).

Lemma 2.1. Let S be a distribution over a linear space S of dimension s. For all k, define

δk , Pr
v1,...,vk

$←S
[vk ̸∈ Span {v1, . . . ,vk−1}] .

Then δk ≤ s/k.

Proof. Notice that by symmetry δi ≥ δi+1 for all i. Let Di denote the (random variable) dimension
of Span {v1, . . . ,vi}. Note that always Di ≤ s.

Let Ei denote the event vi ̸∈ Span {v1, . . . ,vi−1}, note that δi = Pr[Ei]. By definition,

Dk =

k∑
i=1

1Ei .

Therefore

s ≥ E[Dk] = E

[
k∑

i=1

1Ei

]
=

k∑
i=1

Pr[Ei] =
k∑

i=1

δi ≥ k · δk ,

and the lemma follows.

2.3 Learning

In this work we use two equivalent notions of learning: weak-learning as defined in [KV94], and
an equivalent simplified notion that we call single-challenge-learning (sc-learning for short). The
latter will be more convenient for our proofs, but we show that the two are equivalent. We will
also show that linear functions are sc-learnable.

5

7. When Homomorphism Becomes a Liability

Notions of Learning. We start by introducing the notion of weak-learnability.

Definition 2.4 (weak-learning [KV94]). Let F = {Fn}n∈N be an ensemble of binary functions.
A weak learner for F with parameters (t, ϵ, δ) is a polynomial time algorithm A such that for
any function f ∈ Fn and for any distribution D over the inputs to f , the following holds. Let

x1, . . . , xt+1
$← D, and let h (“the hypothesis”) be the output of A(1n, (x1, f(x1)), . . . , (xt, f(xt))).

Then

Pr
x1,...,xt

[
Pr
xt+1

[h(xt+1) ̸= f(xt+1)] > ϵ

]
≤ δ .

We say that F is weakly learnable if there exists a weak learner for F with parameters t =
poly(n), ϵ ≤ 1/2− 1/poly(n), δ ≤ 1− 1/poly(n). (We also require that the output hypothesis h is
polynomial time computable.)

We next define our notion of (t, η)-sc-learning, which essentially corresponds to the ability to
launch a t-query CPA attack on an (errorless) encryption scheme, and succeed with probability η.
(The initials “sc” stand for “single challenge”, reflecting the fact that a CPA attacker only receives
a single challenge ciphertext.)

Definition 2.5 (sc-learning). Let F = {Fn}n∈N be an ensemble of functions. A (t, η)-sc-learner for
F is a polynomial time algorithm A such that for any function f ∈ Fn and for any distribution D
over the inputs to f , the following holds. Let x1, . . . , xt+1

$← D, and let h (“the hypothesis”) be the
output of A(1n, (x1, f(x1)), . . . , (xt, f(xt))). Then Pr[h(xt+1) ̸= f(xt+1)] ≤ η, where the probability
is taken over the entire experiment.

We say that F is (t, η)-sc-learnable it has a polynomial time (t, η)-sc-learner for it. We say
that a binary F is sc-learnable if t = poly(n) and η ≤ 1/2− 1/poly(n). (We also require that the
output hypothesis h is polynomial time computable.)

Since sc-learning only involves one challenge, we do not define the “confidence” and “accuracy”
parameters (δ, ϵ) separately as in the definition of weak-learning.

We note that both definitions allow for improper learning (namely, the hypothesis h does not
need to “look like” an actual decryption function).

Equivalence Between Notions. The equivalence of the two notions is fairly straightforward.
Applying boosting [Sch90] shows that sc-learning, like weak-learning, can be amplified.

Claim 2.2. If F is sc-learnable then it is weak-learnable.

Proof. This follows by a Markov argument: Consider a (t, η)-sc-learner for F (recall that η ≤
1/2− 1/poly(n)) and let δ = 1− 1/poly(n) be such that η/δ ≤ 1/2− poly(n) (such δ must exist).
Then letting ϵ , η/δ finishes the argument.

The opposite direction will give us very strong amplification of learning by applying boosting.

Claim 2.3. If F is weak-learnable then it is (poly(n, 1/η), η)-sc-learnable for all η.

Proof. Let F be weak-learnable. Then by boosting [Sch90] it is also PAC learnable [Val84]. Namely
there is a learner with parameters (poly(n, 1/ϵ, 1/δ), ϵ, δ) for any inversely polynomial ϵ, δ. Setting
ϵ = δ = η/2, the claim follows.

6

7. When Homomorphism Becomes a Liability

Learning Linear Functions. The following corollary (of Lemma 2.1) shows an sc-learner for
the class of linear functions.2

Corollary 2.4. Let Fn be a class of n-dimensional linear functions over a field F. Then F = {Fn}n
is (10n, 1/10)-sc-learnable.

Proof. The learner A is given t = 10n samples vi , (xi, f(xi)) ∈ Fn+1. Using Gaussian elimination,
A will find s ∈ Fn such that (−s, 1) ∈ Ker{vi}i∈[t] (note that such must exist). Finally A will output
the hypothesis h(x) = ⟨s,x⟩.

Correctness follows using Lemma 2.1. We let the distribution S be the distribution (x, f(x))

where x
$← D, and let k = t+1. Note that for any linear function f : Fn → F, the set {(x, f(x))}x∈Fn

is an n-dimensional linear subspace of Fn+1.
Therefore, with probability 1−1/10, it holds that (xt+1, f(xt+1)) ∈ Span{vi}i∈[t] which implies

that ⟨(−s, 1), (xt+1, f(xt+1))⟩ = 0, or in other words f(xt+1) = ⟨s,xt+1⟩ = h(xt+1).

3 Homomorphism is a Liability When Decryption is Learnable

This section features our main result. We show that schemes with learnable decryption circuits are
very limited in terms of their homomorphic properties, regardless of decryption error. This extends
the previous results of [KV94, KS09] showing that the decryption function cannot be learnable if
the decryption error is negligible.

We start by showing that a scheme with (t, 1/10)-sc-learnable decryption function (i.e. efficient
learning with probability 1/10 using t samples, see Definition 2.5) cannot have decryption error
smaller than Ω(1/t) and be secure (regardless of homomorphism). We proceed to show that if the
scheme can homomorphically evaluate the majority function, then the above amplifies dramatically
and security cannot be guaranteed for any reasonable decryption error (1/2 − ϵ error for any
noticeable ϵ). Using Claim 2.3 (boosting), this implies that the above hold for any scheme with
weakly-learnable (or sc-learnable) decryption. We then discuss the role of key generation error
compared to encryption error.

For the sake of simplicity, we focus on the public key setting. However, our proofs easily
extend also to symmetric encryption, since our attacks only use the public key in order to generate
ciphertexts for known messages.

Learnable Decryption without Homomorphism. We start by showing that a scheme whose
decryption circuit is (t, 1/10)-sc-learnable has to have decryption error ϵ = Ω(1/t), otherwise it is
insecure. This is a parameterized and slightly generalized version of the claims of [KV94, KS09],
geared towards schemes with high decryption error and possibly bad keys. The basic idea is
straightforward: We use the public key to generate t ciphertexts to be used as labeled samples for
our learner, and then use its output hypothesis to decrypt the challenge ciphertext. The above
succeeds so long as all samples in the experiment decrypt correctly, which by the union bound is
at least 1− t · ϵ. A formal statement and proof follows.

Lemma 3.1. An encryption scheme whose decryption function is (t, 1/10)-sc-learnable for a poly-
nomial t and whose decryption error < 1/(10(t+ 1)) is insecure.

2The learner works even when the function class is not binary, which is only an advantage. The binary case follows
by considering distributions supported only over the pre-images of 0, 1.

7

7. When Homomorphism Becomes a Liability

Proof. Consider a key pair (pk, sk) for the scheme, and consider the following CPA adversary.
The adversary first generates t labeled samples of the form (Encpk(m),m), for random messages

m
$← {0, 1} (where 0, 1 serve as generic names for an arbitrary pair of elements in the scheme’s

message space). These samples are fed into the aforementioned learner, let h denote the learner’s
output hypothesis. The adversary lets m0 = 0, m1 = 1, and given the challenge ciphertext
c = Encpk(mb), it outputs b

′ = h(c).
To analyze, we define D to be the (inefficient) distribution c = Encpk(m)|(Decsk(c) = m), for

a randomly chosen m
$← {0, 1}. Namely, the distribution D first samples m

$← {0, 1}, and then
outputs a random correctly decryptable encryption of m. By Definition 2.5, if the learner gets t
samples from this distribution, it outputs a hypothesis that correctly labels the (t+1) sample, with
all but 1/10 probability.

While we cannot efficiently sample from D (without the secret key), we show that the samples
(and challenge) that we feed to our learner are in fact statistically close to samples from D. Consider
a case where (pk, sk) are such that the decryption error is indeed smaller than ϵ = 1/(10(t + 1)).
In such case, our adversary samples from a distribution of statistical distance at most ϵ from D,
and the challenge ciphertext is drawn from the same distribution. It follows that the set of (t+ 1)
samples that we consider during the experiment (containing the labeled samples and the challenge),
agree with D with all but (t+ 1) · ϵ = 1/10 probability.

Using the union bound on all aforementioned “bad” events (the key pair not conforming with
decryption error as per Definition 2.1, the samples not agreeing with D, and the learner failing),
we get that Pr[b′ = b] ≥ 1− 0.01− 1/10− 1/10 > 0.7 and the lemma follows.

Using Claim 2.3, we derive the following corollary.

Corollary 3.2. An encryption scheme whose decryption function is weakly-learnable must have
decryption error 1/poly(n) for some polynomial.

We note that this corollary does not immediately follow from [KV94, KS09] if a noticeable
fraction of the keys can be “bad” (since they do not use boosting).

Plugging our learner for linear functions (Corollary 2.4) into Lemma 3.1 implies the following,
which will be useful for the next section.

Corollary 3.3. There exists a constant α > 0 such that any n-linearly decryptable scheme with
decryption error < α/n is insecure.

Learnable Decryption with Majority Homomorphism. Lemma 3.1 and Corollary 3.2 by
themselves are not very restrictive. Specifically, they are not directly applicable to attacking any
known scheme. Indeed, known schemes with linear decryption (e.g. LPN based) have sufficiently
high decryption error (or, viewed differently, adding the error makes the underlying decryption
hard to learn). We now show that if homomorphism is required as a property of the scheme, then
decryption error cannot save us.

The following theorem states that majority-homomorphic schemes (see Definition 2.2) cannot
have learnable decryption for any reasonable decryption error.

Theorem 3.4. An encryption scheme whose decryption circuit is (t, 1/10)-sc-learnable for a poly-
nomial t and whose decryption error < (1/2− ϵ) cannot be O(log t/ϵ2)-majority-homomorphic.

8

7. When Homomorphism Becomes a Liability

Let us first outline the proof of Theorem 3.4 before formalizing it. Our goal is the same as in the
proof of Lemma 3.1, to generate t labeled samples, which will enable to break security. However,
unlike above, taking t random encryptions will surely introduce decryption errors. We thus use
the majority homomorphism: We generate a good encryption of m, i.e. one that is decryptable
with high probability, by generating O(log t/ϵ2) random encryptions of m, and apply majority
homomorphically. Chernoff’s bound guarantees that with high probability, more than half of the
ciphertexts are properly decryptable, and therefore the output of the majority evaluation is with
high probability a decryptable encryption of m. At this point, we can apply the same argument as
in the proof of Lemma 3.1. The formal proof follows.

Proof. Consider an encryption scheme (Gen,Enc,Dec) as in the theorem statement. We will con-
struct a new scheme (Gen′ = Gen,Enc′,Dec′ = Dec) (with the same key generation and decryption
algorithms) whose security relates to that of (Gen,Enc,Dec). Then we will use Lemma 3.1 to render
the latter scheme insecure.

The new encryption algorithm Enc′pk(m) works as follows: To encrypt a message m, invoke
the original encryption Encpk(m) for (say) k = 10(ln(t + 1) + ln(10))/ϵ2 times, thus generating k
ciphertexts. Apply MajEval to those k ciphertexts and output the resulting ciphertext.

The security of the new scheme is related to that of the original by a straightforward hybrid
argument. We will show that the new scheme has decryption error at most 1/(10(t+ 1)), but in a
slightly weaker sense then Definition 2.1: We will allow 2% of the keys to be “bad” instead of just
1% as before. One can easily verify that the proof of Lemma 3.1 works in this case as well.

Our set of good key pairs for Enc′ is those for which Decsk(Encpk(·)) indeed have decryption
error at most 1/2 − ϵ and in addition MajEval is correct. By the union bound this happens with
probability at least 0.98.

To bound the decryption error of Decsk(Enc
′
pk(·)), assume that we have a good key pair as

described above. We will bound the probability that more than a 1/2 − ϵ/2 fraction of the k
ciphertexts generated by Enc′ are decrypted incorrectly. Clearly if this bad event does not happen,
then by the correctness of MajEval, the resulting ciphertext will decrypt correctly.

Recalling that the expected fraction of falsely decrypted ciphertexts is at most 1/2 − ϵ, the
Chernoff bound implies that the aforementioned bad event happens with probability at most

e−2(ϵ/2)
2k < 1/(10(t+ 1)) ,

and the theorem follows.

From the proof it is obvious that even “approximate-majority homomorphism” is sufficient for
the theorem to hold. Namely, even if MajEval only computes the majority function correctly if the
fraction of identical inputs is more than 1/2 + ϵ/2.

We can derive a general corollary for every weakly-learnable function using Claim 2.3. This
applies, for example, to linear functions, low degree polynomials and shallow circuits.

Corollary 3.5. An encryption scheme whose decryption function is weakly-learnable and whose
decryption error is 1/2− ϵ cannot be ω(log n/ϵ2)-majority-homomorphic.

The Role of Bad Keys. Recall that in Definitions 2.1 and 2.2 (decryption error and majority
homomorphism) we allowed a constant fraction of keys to be useless for the purpose of decryption

9

7. When Homomorphism Becomes a Liability

and homomorphic evaluation, respectively. In fact, it is this relaxation that makes our argument
more involved than [KV94, KS09].

As we mentioned above, the choice of constant 0.01 is arbitrary. Let us now explain how our
results extend to the case of 1/2− κ fraction of bad keys, where κ = 1/poly(n) (we now count the
keys that are either bad for decryption or bad for homomorphism). In such case, the argument of
Lemma 3.1 will work so long as we start with a (t, η)-sc-learner with η < κ/3 and so long as the
decryption error for good keys is at most κ/(3(t+1)). If the scheme is furthermore O(log(t/κ)/ϵ2) =
O(log n/ϵ2)-majority-homomorphic, the proof of Theorem 3.4 will also go through. Finally, using
boosting, we can start with any weak learner and reduce η to < κ/3 at the cost of a polynomial
increase in t, which is tolerable by our arguments (and swallowed by the asymptotic notation).

4 Attacks on the BL Scheme

In this section we use our tools from above to show that the BL scheme (outlined in Section 4.1
below) is broken. We present two attacks: the first, in Section 4.2, follows from Corollary 3.3 (and
works in the spirit of Theorem 3.4); and the second, in Section 4.3, directly attacks a lower level
subcomponent of the scheme and allows to decrypt any ciphertext. In fact, the latter attack also
follows the same basic principles and exploits a “built-in” evaluation of majority that exists in that
sub-component of BL.

4.1 Essentials of the BL Scheme

In this section we present the properties of the BL scheme. We concentrate on the properties that
are required for our breaks. We refer the reader to [BL11] for further details.

The BL scheme has a number of layers of abstraction, which are all instantiated based on a
global parameter 0 < α < 0.25 as explained below.

The Scheme Kq(n). BL introduce Kq(n), a public-key encryption scheme with imperfect cor-
rectness. For security parameter n, the public key is a matrix P ∈ Fn×r

q , where r = n1−α/8, and the

secret key is a vector y ∈ Fn
q in the kernel of PT (namely, yT ·P = 0). The keys are generated in

a highly structured manner in order to support homomorphism, but their structure is irrelevant to
us. An encryption of a message m ∈ Fq is a vector c = P ·x+m ·1+e, where x ∈ Fr

q is some vector,
and where e ∈ Fn

q is a low hamming weight vector. Decryption is performed by taking the inner
product ⟨y, c⟩, and succeeds so long as ⟨y, e⟩ = 0 (the vector y is chosen such that ⟨y,1⟩ = 1). It
is shown how the structure of the keys implies that decryption succeeds with probability at least(
1− n−(1−α/2)

)
. Finally, BL show that Kq(n) is homomorphic with respect to a single addition or

multiplication.3

Re-Encryption. In order to enable homomorphism, BL introduce the notion of re-encryption.
Consider an instantiation of Kq(n), with keys (P,y), and an instantiation of Kq(n

′) with keys
(P′,y′), for n′ = n1+α. Let Hn′:n ∈ Fn′×n

q be an element-wise encryption of y using the public key

3Homomorphic operations (addition, multiplication) are performed element-wise on ciphertext vectors, and the
structure of the key guarantees that correctness is preserved.

10

7. When Homomorphism Becomes a Liability

P′.4 Namely Hn′:n = P′ ·X′+ 1 ·yT +E′. Due to the size difference between the schemes, it holds
that with probability

(
1− n−Ω(1)

)
, all of the columns of Hn′:n are simultaneously decryptable and

indeed y′T ·Hn′:n = yT . In such case, for any ciphertext c of Kq(n), we get ⟨y′,Hn′:nc⟩ = ⟨y, c⟩.
The matrix Hn′:n therefore re-encrypts ciphertexts of Kq(n) as ciphertexts of Kq(n

′).
The critical idea for our second break is that a re-encrypted ciphertext always belongs to an

n-dimensional linear subspace (recall that n≪ n′), namely to the span of Hn′:n.

The Scheme BASIC. Using re-encryption, BL construct a ladder of schemes of increasing
lengths that allow for homomorphic evaluation. They define the scheme BASIC which has an
additional depth parameter d = O(1) (BL suggest to use d = 8, but our attack works for any

d > 1). They consider instantiations of Kq(ni), where ni = n(1+α)−(d−i)
, for i = 0, . . . , d, so nd = n.

They generate all re-encryption matrices Hni+1:ni (with success probability
(
1− n−Ω(1)

)
) and can

thus homomorphically evaluate depth d circuits.
The homomorphic evaluation works by performing a homomorphic operation at level i of the

evaluated circuit (with i going from 0 to d − 1), and then using re-encryption with Hni+1:ni to
obtain a fresh ciphertext for the next level.

For the purposes of our (second) break, we notice that in the last step of this evaluation is
re-encryption using Hnd:nd−1

. This means that homomorphically evaluated ciphertexts all come

from a linear subspace of dimension nd−1 = n1/(1+α).

Error Correction and the Matrix Hn:n. The scheme BASIC only allows homomorphism at
the expense of increasing the instance size (namely n). BL show next that it is possible to use
BASIC to generate a re-encryption matrix without a size increase.

They generate an instance of BASIC, with public keys P0, . . . ,Pd, secret key yd = y∗, and
re-encryption matrices Hni+1:ni . An additional independent instance of Kq(n) is generated, whose
keys we denote by (P,y). Then, a large number of encryptions of the elements of y under public
key P0 are generated.5 While some of these ciphertexts may have encryption error, BL show that
homomorphically evaluating a depth-d correction circuit (CORR in their notation), one can obtain
a matrix Hn:n, whose columns are encryptions of y∗ that are decryptable under y without error.
This process succeeds with probability

(
1− n−Ω(1)

)
.

The resemblance to the learner of Corollary 2.4 is apparent. In a sense, the public key of
BASIC is ready-for-use learner.

To conclude this part, BL generate a re-encryption matrix Hn:n that takes ciphertexts under y
and produces ciphertexts under y∗. Since Hn:n is produced using homomorphic evaluation, its rank
is at most nd−1 = n1/(1+α). We will capitalize on the fact that re-encryption using Hn:n produces
ciphertexts that all reside in a low-dimensional space.

Achieving Full Homomorphism – The Scheme HOM. The basic idea is to generate a
sequence of matrices Hn:n, thus creating a chaining of the respective secret keys that will allow
homomorphism of any depth. However, generating an arbitrarily large number of such re-encryption
matrices will eventually cause an error somewhere down the line. Therefore, a more sophisticated

4A note on notation: In [BL11], the re-encryption parameters are denoted by I (as opposed to our H). We feel
that their notation ignores the important linear algebraic structure of the re-encryption parameters, and therefore
we switched to matrix notation, which also dictated the change of letter.

5To be absolutely precise, BL encrypt a bit decomposition of y∗, but this is immaterial to us.

11

7. When Homomorphism Becomes a Liability

solution is required. BL suggest to encrypt each message a large number of times, and generate a
large number of re-encryption matrices per level. Then, since the vast majority of matrices per level
are guaranteed to be correct, one can use shallow approximate majority computation to guarantee
that the fraction of erroneous ciphertexts per level does not increase with homomorphic evaluation.

Decryption is performed as follows: Each ciphertext is a set of ciphertexts c1, . . . , ck of Kq(n)
(all with the same secret key). The decryption process first uses the Kq(n) key to decrypt the
individual ciphertexts and obtain m1, . . . ,mk, and then outputs the majority between the values
mi. BL show that a majority of the ciphertexts (say more than 15/16 fraction) are indeed correct,
which guarantees correct decryption.

BL can thus achieve a (leveled) fully homomorphic scheme which they denote by HOM, which
completes their construction.

4.2 An Attack on BL Using Homomorphism

We will show how to break the BL scheme using its homomorphic properties. We use Corollary 3.3
and our proof contains similar elements to the proof of Theorem 3.4. (The specifics of BL do not
allow to use Corollary 3.5 directly.)

Theorem 4.1. There is a polynomial time CPA attack on BL.

Proof. Clearly we cannot apply our methods to the scheme HOM as is, since its decryption is not
learnable. We thus describe a related scheme which is “embedded” in HOM and show how to
distinguish encryptions of 0 from encryptions of 1, which will imply a break of HOM.

We recall that the public key of HOM contains “chains” of re-encryption matrices of the form
Hn:n. The length of the chains is related to the homomorphic depth of HOM. Our sub-scheme will
only require a chain of constant length ℓ which will be determined later (such sub-chain therefore
must exist for any instantiation of BL that allows for more than constant depth homomorphism).
Granted that all links in the chain are successfully generated (which happens with probability
ℓ · n−Ω(1)), such a chain allows homomorphic evaluation of any depth-ℓ function. Let us focus on
the case where the chain is indeed properly generated.

Intuitively, we would have liked to use this structure to evaluate majority on 2ℓ input ciphertexts.
However, BL is defined over a large field F, and it is not clear how to implement majority over F in
depth that does not depend on q = |F|. To solve this problem, we use BL’s CORR function. This
function is just a NAND tree of depth ℓ (extended to F in the obvious way: NAND(x, y) = 1−xy).
BL show that given 2ℓ inputs, each of which is 0 (respectively 1) with probability 1− ϵ, the output

of CORR will be 0 (resp. 1) with probability 1−O(ϵ)2
ℓ/2

.
To encrypt a message m ∈ {0, 1} using our sub-scheme, we will generate 2ℓ ciphertexts. Each

ciphertext will be an independent encryption of m using the public key of HOM (which essentially
generates Kq(n) ciphertexts that correspond to the first link in all chains). We then apply CORR
homomorphically to the generated ciphertexts. Decryption in our subscheme will be standard
Kq(n) decryption (which is a linear function) using the secret key that corresponds to the last link
in the chain.6

We recall that the decryption error of Kq(n) is ϵ = n−Ω(1). By the properties of CORR, we
can choose ℓ = O(1) such that the decryption error of our sub-scheme is at most (say) o(1)/n.

6The secret key of the last link is not the same as the secret key of HOM, since we are only considering a sub-chain
of a much longer chain. However, this is not a problem: Our arguments do not require that the secret key is known
to anyone in order to break the scheme.

12

7. When Homomorphism Becomes a Liability

In conclusion, we get a sub-scheme of HOM such that with probability 1 − n−Ω(1) > 0.9 over
the key generation, the decryption error is at most o(1)/n. Furthermore, decryption is linear.
Corollary 3.3 implies that such scheme must be insecure.

4.3 A Specific Attack on BL

We noticed that the scheme BASIC, which is a component of HOM, contains by design homo-
morphic evaluation of majority: this is how the matrix Hn:n is generated. We thus present an
attack that only uses the matrix Hn:n and allows to completely decrypt BL ciphertexts (even non
binary) with probability 1− n−Ω(1). We recall that an attack completely breaks a scheme if it can
decrypt any given ciphertext with probability 1− o(1).

Theorem 4.2. There exists a polynomial time attack that completely breaks BASIC, and thus
also BL.

Proof. We consider the re-encryption matrix H = Hn:n ∈ Fn×n
q described in Section 4.1, which

re-encrypts ciphertexts under y into ciphertexts under y∗. The probability that H was successfully
generated is at least 1− n−Ω(1), in which case it holds that

y∗T ·H = yT .

In addition, as we explained in Section 4.1, the rank of H is at most h = n1/(1+α).
Our breaker will be given H and the public key P that corresponds to y, and will be able to

decrypt any vector c = EncP(m) with high probability, namely compute ⟨y, c⟩.

Breaker Code. As explained above, the input to the breaker is H,P and challenge c = EncP(m).
The breaker will execute as follows:

1. Generate k = h1+ϵ encryptions of 0, denoted v1, . . . ,vk, for ϵ =
α(1−α)

4 (any positive number

smaller than α(1−α)
2 will do).

Note that this means that with probability 1−n−Ω(1), all vi are decryptable encryptions of 0.
Intuitively, these vectors, once projected through H, will span all decryptable encryptions
of 0.

2. For all i = 1, . . . , k, compute v∗i = H · vi (the projections of the ciphertexts above through
H). Also compute o∗ = H · 1 (the projection of the all-one vector).

3. Find a vector ỹ∗ ∈ Fn
q such that ⟨ỹ∗,v∗i ⟩ = 0 for all i, and such that ⟨ỹ∗,o∗⟩ = 1. Such a

vector necessarily exists if all vi’s are decryptable, since y∗ is an example of such a vector.

4. Given a challenge ciphertext c, compute c∗ = H · c and output m = ⟨ỹ∗, c∗⟩ (namely,
m = ỹ∗T ·H · c).

Correctness. To analyze the correctness of the breaker, we first notice that the space of cipher-
texts that decrypt to 0 under y is linear (this is exactly the orthogonal space to y). We denote
this space by Z. Since 1 ̸∈ Z, we can define the cosets Zm = Z + m · 1. We note that all legal
encryptions of m using P reside in Zm.

13

7. When Homomorphism Becomes a Liability

We let Z∗ denote the space H ·Z (all vectors of the form H ·z such that z ∈ Z). This is a linear
space with dimension at most h. Similarly, define Z∗m = Z∗ +m · o∗.

Consider the challenge ciphertext c = EncP(m). We can think of c as an encryption of 0
with an added term m · 1. We therefore denote c = c0 +m · 1. Again this yields a c∗0 such that
c∗ = c∗0 +m · o∗.

Now consider the distribution Z over Z, which is the distribution of decryptable encryptions
of 0 (i.e. the distribution c = EncP(0), conditioned on ⟨y, c⟩ = 0). The distribution Z∗ is defined
by projecting Z through H. With probability

(
1− n−Ω(1)

)
, it holds that v∗1, . . . ,v

∗
k, and c∗0 are

uniform samples from Z∗.
By Lemma 2.1 below, it holds that c∗0 ∈ Span {v∗1, . . . ,v∗k}, with probability

(
1− n−Ω(1)

)
. In

such case
⟨ỹ∗, c∗⟩ = ⟨ỹ∗, c∗0⟩+m · ⟨ỹ∗,o∗⟩ = m .

We conclude that with probability 1−n−Ω(1), our breaker correctly decrypts c as required.

Acknowledgements

The author wishes to thank the MIT-BU cryptography reading group for introducing the BL scheme
to him, and especially to Stefano Tessaro and Shafi Goldwasser for various discussions. We further
thank Andrej Bogdanov for his comments on a preprint of this manuscript, and for the discussions
that followed, leading to the general argument about homomorphic schemes. Lastly, we thank Ron
Rothblum for pointing out the learning-theory aspect of our argument.

References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai
Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages
595–618. Springer, 2009.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In FOCS,
pages 298–307. IEEE Computer Society, 2003.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomor-
phic encryption without bootstrapping. ITCS, 2012. See also http://eprint.iacr.

org/2011/277.

[BL11] Andrej Bogdanov and Chin Ho Lee. Homomorphic encryption from codes. Cryptology
ePrint Archive, Report 2011/622, 2011. http://eprint.iacr.org/.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume
7417 of Lecture Notes in Computer Science, pages 868–886. Springer, 2012. See also
http://eprint.iacr.org/2012/078.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In CRYPTO, volume 6841, page
501, 2011.

14

7. When Homomorphism Becomes a Liability

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, FOCS, pages 97–106. IEEE, 2011.
References are to full version: http://eprint.iacr.org/2011/344.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[Gen10] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness.
In CRYPTO, pages 116–137, 2010.

[GH11] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes
in Computer Science, pages 129–148. Springer, 2011.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with
polylog overhead. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT, volume 7237 of Lecture Notes in Computer Science, pages 465–482. Springer,
2012.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In Harry R. Lewis, Barbara B. Simons,
Walter A. Burkhard, and Lawrence H. Landweber, editors, STOC, pages 365–377.
ACM, 1982.

[GOT12] Valérie Gauthier, Ayoub Otmani, and Jean-Pierre Tillich. A distinguisher-based attack
of a homomorphic encryption scheme relying on reed-solomon codes. Cryptology ePrint
Archive, Report 2012/168, 2012. http://eprint.iacr.org/.

[GRS08] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. How to encrypt with
the lpn problem. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (2), volume
5126 of Lecture Notes in Computer Science, pages 679–690. Springer, 2008.

[KS09] Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learning
intersections of halfspaces. J. Comput. Syst. Sci., 75(1):2–12, 2009. Preliminary version
in FOCS 06.

[KV94] Michael J. Kearns and Leslie G. Valiant. Cryptographic limitations on learning boolean
formulae and finite automata. J. ACM, 41(1):67–95, 1994. Preliminary version in
STOC 89.

[Sch90] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5:197–227,
1990. Preliminary version in FOCS 89.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with rela-
tively small key and ciphertext sizes. In Phong Q. Nguyen and David Pointcheval,
editors, Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science,
pages 420–443. Springer, 2010.

15

7. When Homomorphism Becomes a Liability

[Vai11] Vinod Vaikuntanathan. Computing blindfolded: New developments in fully homo-
morphic encryption. In Rafail Ostrovsky, editor, FOCS, pages 5–16. IEEE, 2011.

[Val84] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.
Preliminary version in STOC 84.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In EUROCRYPT, pages 24–43, 2010. Full
Version in http://eprint.iacr.org/2009/616.pdf.

16

7. When Homomorphism Becomes a Liability

Quantum-Secure Message Authentication Codes

Dan Boneh Mark Zhandry

Stanford University
{dabo,zhandry}@cs.stanford.edu

Abstract
We construct the first Message Authentication Codes (MACs) that are existentially unforge-

able against a quantum chosen message attack. These chosen message attacks model a quantum
adversary’s ability to obtain the MAC on a superposition of messages of its choice. We begin by
showing that a quantum secure PRF is sufficient for constructing a quantum secure MAC, a fact
that is considerably harder to prove than its classical analogue. Next, we show that a variant of
Carter-Wegman MACs can be proven to be quantum secure. Unlike the classical settings, we
present an attack showing that a pair-wise independent hash family is insufficient to construct a
quantum secure one-time MAC, but we prove that a four-wise independent family is sufficient
for one-time security.

Keywords: Quantum computing, MAC,chosen message attacks, post-quantum security

1 Introduction

Message Authentication Codes (MACs) are an important building block in cryptography used to
ensure data integrity. A MAC system is said to be secure if an efficient attacker capable of mounting
a chosen message attack cannot produce an existential MAC forgery (see Section 2.2).

With the advent of quantum computing there is a strong interest in post-quantum cryptography,
that is systems that remain secure even when the adversary has access to a quantum computer.
There are two natural approaches to defining security of a MAC system against a quantum adversary.
One approach is to restrict the adversary to issue classical chosen message queries, but then allow
the adversary to perform quantum computations between queries. Security in this model can be
achieved by basing the MAC construction on a quantum intractable problem.

The other more conservative approach to defining quantum MAC security is to model the entire
security game as a quantum experiment and allow the adversary to issue quantum chosen message
queries. That is, the adversary can submit a superposition of messages from the message space and
in response receive a superposition of MAC tags on those messages. Informally, a quantum chosen
message query performs the following transformation on a given superposition of messages:∑

m

ψm
∣∣m〉 −→

∑
m

ψm
∣∣m,S(k,m)

〉
where S(k,m) is a tag on the message m with secret key k.

To define security, let q be the number of queries that the adversary issues by the end of the
game. Clearly it can now produce q classical message-tag pairs by sampling the q superpositions

1

8. Quantum-Secure Message Authentication Codes

it received from the MAC signing oracle. We say that the MAC system is quantum secure if the
adversary cannot produce q + 1 valid message-tag pairs. This captures the fact that the adversary
cannot do any better than trivially sampling the responses from its MAC signing oracle and is the
quantum analogue of a classical existential forgery.

1.1 Our results

In this paper we construct the first quantum secure MAC systems. We begin with a definition
of quantum secure MACs and give an example of a MAC system that is secure against quantum
adversaries capable of classical chosen message queries, but is insecure when the adversary can issue
quantum chosen message queries. We then present a number of quantum secure MAC systems.

Quantum secure MACs. In the classical settings many MAC systems are based on the observa-
tion that a secure pseudorandom function gives rise to a secure MAC [BKR00, BCK96]. We begin
by studying the same question in the quantum settings. Very recently Zhandry [Zha12b] defined
the concept of a quantum secure pseudorandom function (PRF) which is a PRF that remains
indistinguishable from a random function even when the adversary can issue quantum queries to
the PRF. He showed that the classic GGM construction [GGM86] remains secure under quantum
queries assuming the underlying pseudorandom generator is quantum secure.

The first question we study is whether a quantum secure PRF gives rise to a quantum secure
MAC, as in the classical settings. To the MAC adversary a quantum secure PRF is indistinguishable
from a random function. Therefore proving that the MAC is secure amounts to proving that with q
quantum queries to a random oracle H no adversary can produce q + 1 input-output pairs of H
with non-negligible probability. In the classical settings where the adversary can only issue classical
queries to H this is trivial: given q evaluations of a random function, the adversary learns nothing
about the value of the function at other points. Unfortunately, this argument fails under quantum
queries because the response to a single quantum query to H : X → Y contains information about all
of H. In fact, with a single quantum query the adversary can produce two input-output pairs of H
with probability about 2/|Y| (with classical queries the best possible is 1/|Y|). As a result, proving
that q quantum queries are insufficient to produce q + 1 input-output pairs is quite challenging. We
prove tight upper and lower bounds on this question by proving the following theorem:

Theorem 1.1 (informal). Let H : X → Y be a random oracle. Then an adversary making at
most q < |X | quantum queries to H will produce q + 1 input-output pairs of H with probability at
most (q + 1)/|Y|. Furthermore, when q � |Y| there is an algorithm that with q quantum queries
to H will produce q + 1 input-output pairs of H with probability 1− (1− 1/|Y|)q+1 ≈ (q + 1)/|Y|.

The first part of the theorem is the crucial fact needed to build quantum secure MACs and is the
harder part to prove. It shows that when |Y| is large any algorithm has only a negligible chance in
producing q+ 1 input-output pairs of H from q quantum queries. To prove this bound we introduce
a new lower-bound technique we call the rank method for bounding the success probability of
algorithms that succeed with only small probability. Existing quantum lower bound techniques such
as the polynomial method [BBC+01] and the adversary method [Amb00, Aar02, Amb06, ASdW09]
do not give the result we need. One difficulty with existing lower bound techniques is that they
generally prove asymptotic bounds on the number of queries required to solve a problem with high
probability, whereas we need a bound on the success probability of an algorithm making a limited
number of queries. Attempting to apply existing techniques to our problem at best only bounds

2

8. Quantum-Secure Message Authentication Codes

the success probability away from 1 by an inverse polynomial factor, which is insufficient for our
purposes. The rank method for proving quantum lower bounds overcomes these difficulties and is a
general tool that can be used in other post-quantum security proofs.

The second part of Theorem 1.1 shows that the lower bound presented in the first part of the
theorem is tight. A related algorithm was previously presented by van Dam [vD98], but only for
oracles outputting one bit, namely when Y = {0, 1}. For such a small range only about |X |/2
quantum queries are needed to learn the oracle at all |X | points. A special case where Y = X = {0, 1}
and q = 1 was developed independently by Kerenidis and de Wolf [KdW03]. Our algorithm is a
generalization of van Dam’s result to multi-bit oracles.

Quantum secure Carter-Wegman MACs. A Carter-Wegman MAC [WC81] signs a message m
by computing

(
r, h(m)⊕ F (k, r)

)
where h is a secret hash function chosen from an xor-universal

hash family, F is a secure PRF with secret key k, and r is a short random nonce. The attractive
feature of Carter-Wegman MACs is that the long message m is hashed by a fast xor-universal hash h.
We show that a slightly modified Carter-Wegman MAC is quantum secure assuming the underlying
PRF is quantum secure in the sense of Zhandry [Zha12b].

One-time quantum secure MACs. A one-time MAC is existentially unforgeable when the
adversary can make only a single chosen message query. Classically, one-time MACs are constructed
from pair-wise independent hash functions [WC81]. These MACs are one-time secure since the value
of a pair-wise independent hash at one point gives no information about its value at another point.
Therefore, a single classical chosen-message query tells the adversary nothing about the MAC tag of
another message.

In the quantum settings things are more complicated. Unlike the classical settings, we show
that pair-wise independence does not imply existential unforgeability under a one-time quantum
chosen message attack. For example, consider the simple pair-wise independent hash family
H = {h(x) = ax+b}a,b∈Fp with domain and range Fp. We show that a quantum adversary presented
with an oracle for a random function h ∈ H can find both a and b with a single quantum query
to h. Consequently, the classical one-time MAC constructed from H is completely insecure in the
quantum settings. More generally we prove the following theorem:

Theorem 1.2 (informal). There is a polynomial time quantum algorithm that when presented with
an oracle for h(x) = a0 + a1x+ . . .+ adx

d for random a0, . . . , ad in Fp can recover a0, . . . , ad using
only d quantum queries to the oracle with probability 1−O(d/n).

The h(x) = ax+ b attack discussed above is a special case of this theorem with d = 1. With
classical queries finding a0, . . . , ad requires d + 1 queries, but with quantum queries the theorem
shows that d queries are sufficient.

Theorem 1.2 is a quantum polynomial interpolation algorithm: given oracle access to the
polynomial, the algorithm reconstructs its coefficients. This problem was studied previously by
Kane and Kutin [KK11] who prove that d/2 quantum queries are insufficient to interpolate the
polynomial. Interestingly, they conjecture that quantum interpolation requires d + 1 quantum
queries as in the classical case, but Theorem 1.2 refutes that conjecture. Theorem 1.2 also applies
to a quantum version of secret sharing where the shares themselves are superpositions. It shows
that the classical Shamir secret sharing scheme [Sha79] is insecure if the shares are allowed to be
quantum states obtained by evaluating the secret sharing polynomial on quantum superpositions.

3

8. Quantum-Secure Message Authentication Codes

More generally, the security of secret sharing schemes in the quantum settings was analyzed by
Dam̊ard et al. [DFNS11].

As for one-time secure MACs, while pair-wise independence is insufficient for quantum one-time
security, we show that four-wise independence is sufficient. That is, a four-way independent hash
family gives rise to an existentially unforgeable MAC under a one-time quantum chosen message
attack. It is still an open problem whether three-way independence is sufficient. More generally,
we show that (q + 1)-way independence is insufficient for a q-time quantum secure MAC, but
(3q + 1)-way independence is sufficient.

Motivation. Allowing the adversary to issue quantum chosen message queries is a natural and
conservative security model and is therefore an interesting one to study. Showing that classical
MAC constructions remain secure in this model gives confidence in case end-user computing devices
eventually become quantum. Nevertheless, one might imagine that even in a future where computers
are quantum, the last step in a MAC signing procedure is to sample the resulting quantum state so
that the generated MAC is always classical. The quantum chosen message query model ensures
that even if the attacker can bypass this last “classicalization” step, the MAC remains secure.

As further motivation we note that the results in this paper are the tip of a large emerging
area of research with many open questions. Consider for example signature schemes. Can one
design schemes that remain secure when the adversary can issue quantum chosen message queries?
Similarly, can one design encryption systems that remain secure when the the adversary can issue
quantum chosen ciphertext queries? More generally, for any cryptographic primitive modeled as an
interactive game, one can ask how to design primitives that remain secure when the interaction
between the adversary and its given oracles is quantum.

Other related work. Several recent works study the security of cryptographic primitives when
the adversary can issue quantum queries [BDF+11, Zha12a, Zha12b]. So far these have focused on
proving security of signatures, encryption, and identity-based encryption in the quantum random
oracle model where the adversary can query the random oracle on superpositions of inputs. These
works show that many, but not all, random oracle constructions remain secure in the quantum
random oracle model. The quantum random oracle model has also been used to prove security of
Merkle’s Puzzles in the quantum settings [BS08, BHK+11]. Meanwhile, Damård et al. [DFNS11]
examine secret sharing and multiparty computation in a model where an adversary may corrupt a
superposition of subsets of players, and build zero knowledge protocols that are secure, even when a
dishonest verifier can issue challenges on superpositions.

Some progress toward identifying sufficient conditions under which classical protocols are also
quantum immune has been made by Unruh [Unr10] and Hallgren et al. [HSS11]. Unruh shows that
any scheme that is statistically secure in Cannetti’s universal composition (UC) framework [Can01]
against classical adversaries is also statistically secure against quantum adversaries. Hallgren et al.
show that for many schemes this is also true in the computational setting. These results, however,
do not apply to MACs.

2 Preliminaries: Definitions and Notation

Let [n] be the set {1, ..., n}. For a prime power n, let Fn be the finite field on n elements. For any
positive integer n, let Zn be the ring of integers modulo n.

4

8. Quantum-Secure Message Authentication Codes

Functions will be denoted by capitol letters (such as F), and sets by capitol script letters
(such as X). We denote vectors with bold lower-case letters (such as v), and the components of a
vector v ∈ An by vi, i ∈ [n]. We denote matrices with bold capital letters (such as M), and the
components of a matrix M ∈ Am×n by Mi,j , i ∈ [m], j ∈ [n]. Given a function F : X → Y and a
vector v ∈ X n, let F (v) denote the vector (F (v1), F (v2), ..., F (vk)). Let F ([n]) denote the vector
(F (1), F (2), ..., F (n)).

Given a vector space V , let dimV be the dimension of V , or the number of vectors in any basis for
V . Given a set of vectors {v1, ...,vk}, let span{v1, ...,vk} denote the space of all linear combinations
of vectors in {v1, ...,vk}. Given a subspace S of an inner-product space V , and a vector v ∈ V ,
define projSv as the orthogonal projection of v onto S, that is, the vector w ∈ S such that |v−w|
is minimized.

Given a matrix M, we define the rank, denoted rank(M), to be the size of the largest subset of
rows (equivalently, columns) of M that are linearly independent.

Given a function F : X → Y and a subset S ⊆ X , the restriction of F to S is the function
FS : S → Y where FS(x) = F (x) for all x ∈ S. A distribution D on the set of functions F from
X to Y induces a distribution DS on the set of functions from S to Y, where we sample from DS
by first sampling a function F from D, and outputting FS . We say that D is k-wise independent
if, for each set S of size at most k, each of the distributions DS are truly random distributions on
functions from S to Y. A set F of functions from X to Y is k-wise independent if the uniform
distribution on F is k-wise independent.

2.1 Quantum Computation

The quantum system A is a complex Hilbert space H with inner product 〈·|·〉. The state of a
quantum system is given by a vector |ψ〉 of unit norm (〈ψ|ψ〉 = 1). Given quantum systems H1
and H2, the joint quantum system is given by the tensor product H1 ⊗H2. Given |ψ1〉 ∈ H1 and
|ψ2〉 ∈ H2, the product state is given by |ψ1〉|ψ2〉 ∈ H1 ⊗H2. Given a quantum state |ψ〉 and an
orthonormal basis B = {|b0〉, ..., |bd−1〉} for H, a measurement of |ψ〉 in the basis B results in a
value bi with probability |〈bi|ψ〉|2, and the state |ψ〉 is collapsed to the state |bi〉. We let bi ← |ψ〉
denote the distribution on bi obtained by sampling |ψ〉.

A unitary transformation over a d-dimensional Hilbert space H is a d× d matrix U such that
UU† = Id, where U† represents the conjugate transpose. A quantum algorithm operates on a
product space Hin⊗Hout⊗Hwork and consists of n unitary transformations U1, ...,Un in this space.
Hin represents the input to the algorithm, Hout the output, and Hwork the work space. A classical
input x to the quantum algorithm is converted to the quantum state |x, 0, 0〉. Then, the unitary
transformations are applied one-by-one, resulting in the final state

|ψx〉 = Un...U1|x, 0, 0〉 .

The final state is measured, obtaining (a, b, c) with probability |〈a, b, c|ψx〉|
2. The output of the

algorithm is b.

Quantum-accessible Oracles. We will implement an oracle O : X → Y by a unitary transfor-
mation O where

O|x, y, z〉 = |x, y +O(x), z〉

5

8. Quantum-Secure Message Authentication Codes

where + : X × X → X is some group operation on X . Suppose we have a quantum algorithm that
makes quantum queries to oracles O1, ..., Oq. Let |ψ0〉 be the state of the algorithm before any
queries, and let U1, ...,Uq be the unitary transformations applied between queries. The final state
of the algorithm will be

UqOq...U1O1|ψ0〉

We can also have an algorithm make classical queries to Oi. In this case, the input to the oracle
is measured before applying the transformation Oi.

Fix an oracle O : X → Y. Let O(q) : X q → Yq be the oracle that maps x into O(x) =
(O(x1), O(x2), ..., O(xq)). Observe that any quantum query to O(q) can be implemented using q
quantum queries to O, where the unitary transformations between queries just permute the registers.
We say that an algorithm that makes a single query to O(q) makes q non-adaptive queries to O.

The Density Matrix. Suppose the state of a quantum system depends on some hidden random
variable z ∈ Z, which is distributed according to a distribution D. That is, if the hidden variable is
z, the state of the system is |ψz〉. We can then define the density matrix of the quantum system as

ρ =
∑
z∈Z

Pr
D

[z]|ψz〉〈ψz|

Applying a unitary matrix U to the quantum state corresponds to the transformation

ρ→ UρU†

A partial measurement on some registers has the effect of zeroing out the terms in ρ where those
registers are not equal. For example, if we have two registers x and y, and we measure the x register,
then the new density matrix is

ρ′x,y,x′,y′ =
{

ρx,y,x′,y′ if x = x′

0 otherwise

2.2 Quantum secure MACs

A MAC system comprises two algorithms: a (possibly) randomized MAC signing algorithm S(k,m)
and a MAC verification algorithm V (k,m, t). Here k denotes the secret key chosen at random from
the key space, m denotes a message in the message space, and t denotes the MAC tag in the tag
space on the message m. These algorithms and spaces are parameterized by a security parameter λ.

Classically, a MAC system is said to be secure if no attacker can win the following game: a
random key k is chosen from the key space and the attacker is presented with a signing oracle
S(k, ·). Queries to the signing oracle are called chosen message queries. Let {(mi, ti)}qi=1 be the set
of message-tag pairs that the attacker obtains by interacting with the signing oracle. The attacker
wins the game if it can produce an existential forgery, namely a valid message-tag pair (m∗, t∗)
satisfying (m∗, t∗) 6∈ {(mi, ti)}qi=1. The MAC system is said to be secure if no “efficient” adversary
can win this game with non-negligible probability in λ.

6

8. Quantum-Secure Message Authentication Codes

Quantum chosen message queries. In the quantum settings we allow the adversary to maintain
its own quantum state and issue quantum queries to the signing oracle. Let

∑
m,x,y ψm,x,y

∣∣m,x, y〉
be the adversary’s state just prior to issuing a signing query. The MAC signing oracle transforms
this state as follows:

1. it chooses a random string r that will be used by the MAC signing algorithm,
2. it signs each “slot” in the given superposition by running S(k,m; r), that is running algorithm
S with randomness r. More precisely, the signing oracle performs the following transformation:∑

m,x,y

ψm,x,y
∣∣m,x, y〉 −→

∑
m,x,y

ψm,x,y
∣∣m, x⊕ S(k,m; r), y

〉
When the signing algorithm is deterministic there is no need to choose an r. However, for randomized
signing algorithms the same randomness is used to compute the tag for all slots in the superposition.
Alternatively, we could have required fresh randomness in every slot, but this would make it harder
to implement the MAC system on a quantum device. Allowing the same randomness in every slot
is more conservative and frees the signer from this concern. At any rate, the two models are very
close — if need be, the random string r can be used as a key for a quantum-secure PRF [Zha12b]
which is used to generate a fresh pseudorandom value for every slot.

Existential forgery. After issuing q quantum chosen message queries the adversary wins the
game if it can generate q + 1 valid classical message-tag pairs.

Definition 2.1. A MAC system is existentially unforgeable under a quantum chosen message attack
(EUF-qCMA) if no adversary can with the quantum MAC game with non-negligible advantage in λ.

Zhandry [Zha12b] gives an example of a classically secure PRF that is insecure under quantum
queries. This PRF gives an example MAC that is classically secure, but insecure under quantum
queries. Our goal for the remainder of the paper is to construct EUF-qCMA secure MACs.

3 The Rank Method

In this section we introduce the rank method which is a general approach to proving lower bounds
on quantum algorithms. The setup is as follows: we give a quantum algorithm A access to some
quantity H ∈ H. By access, we mean that the final state of the algorithm is some fixed function
of H. In this paper, H will be a set of functions, and A will be given oracle access to H ∈ H by
allowing A to make q quantum oracle queries to H, for some q. For now, we will treat H abstractly,
and return to the specific case where H is a set of functions later.

The idea behind the rank method is that, if we treat the final states of the algorithm on
different H as vectors, the space spanned by these vectors will be some subspace of the overall
Hilbert space. If the dimension of this subspace is small enough, the subspace (and hence all of
the vectors in it) must be reasonably far from most of the vectors in the measurement basis. This
allows us to bound the ability of such an algorithm to achieve some goal.

For H ∈ H, let |ψH〉 be the final state of the quantum algorithm A, before measurement, when
given access to H. Suppose the different |ψH〉 vectors all lie in a space of dimension d. Let ΨA,H be
the the |H| × d matrix whose rows are the various vectors |ψH〉.

7

8. Quantum-Secure Message Authentication Codes

Definition 3.1. For a quantum algorithm A given access to some value H ∈ H, we define the rank,
denoted rank(A,H), as the rank of the matrix ΨA,H.

The rank of an algorithm A seemingly contains very little information: it gives the dimension of
the subspace spanned by the |ψH〉 vectors, but gives no indication of the orientation of this subspace
or the positions of the |ψH〉 vectors in the subspace. Nonetheless, we demonstrate how the success
probability of an algorithm can be bounded from above knowing only the rank of ΨA,H.

Theorem 3.2. Let A be a quantum algorithm that has access to some value H ∈ H drawn from
some distribution D and produces some output w ∈ W. Let R : H×W → {True, False} be a binary
relation. Then the probability that A outputs some w such that R(H,w) = True is at most(

max
w∈W

Pr
H←D

[R(H,w)]
)
× rank(A,H) .

In other words, the probability that A succeeds in producing w ∈ W for which R(H,w) is true is
at most rank(A,H) times the best probability of success of any algorithm that ignores H and just
outputs some fixed w.

Proof. The probability that A outputs a w such that R(H,w) = True is

Pr
H←D

w←|ψH〉
[R(H,w)] =

∑
H

Pr
D

[H]
∑

w:R(H,w)
|〈w|ψH〉|

2 =
∑
w

∑
H:R(H,w)

Pr
D

[H]|〈w|ψH〉|
2

Now, |〈w|ψH〉| is just the magnitude of the projection of |w〉 onto the space spanned by the
vector |ψH〉, that is, projspan|ψH〉(|w〉). This is at most the magnitude of the projection of |w〉 onto
the space spanned by all of the |ψH′〉 for H ′ ∈ H, or projspan{|ψ

H′〉}
(|w〉). Thus,

Pr
H←D

w←|ψH〉
[R(z, w)] ≤

∑
w

 ∑
H:R(H,w)

Pr
D

[H]

∣∣∣∣projspan{|ψ
H′〉}

(|w〉)
∣∣∣∣2

Now, we can perform the sum over H, which gives PrH←D[R(H,w)]. We can bound this by the
maximum it attains over all w, giving us

Pr
H←D

w←|ψH〉
[R(H,w)] ≤

(
max
w

Pr
H←D

[R(H,w)]
)∑

w

∣∣∣∣projspan{|ψ
H′〉}

(|w〉)
∣∣∣∣2

Now, let |bi〉 be an orthonormal basis for span{|ψH′〉}. Then∣∣∣∣projspan{|ψ
H′〉}

(|w〉)
∣∣∣∣2 =

∑
i

|〈bi|w〉|2

Summing over all w gives

∑
w

∣∣∣∣projspan{|ψ
H′〉}

(|w〉)
∣∣∣∣2 =

∑
w

∑
i

|〈bi|w〉|2 =
∑
i

∑
w

|〈bi|w〉|2

8

8. Quantum-Secure Message Authentication Codes

Since the w are the possible results of measurement, the vectors |w〉 form an orthonormal basis
for the whole space, meaning

∑
w |〈bi|w〉|

2 = | |bi〉 |2 = 1. Hence, the sum just becomes the number
of |bi〉, which is just the dimension of the space spanned by the |ψH′〉. Thus,

Pr
H←D

w←|ψH〉
[R(H,w)] ≤

(
max
w∈W

Pr
H←D

[R(H,w)]
)

(dim span{|ψH′〉}) .

But dim span{|ψH′〉} is exactly rank(ΨA,H) = rank(A,H), which finishes the proof of the
theorem.

We now move to the specific case of oracle access. H is now some set of functions from X to
Y, and our algorithm A makes q quantum oracle queries to a function H ∈ H. Concretely, A is
specified by q + 1 unitary matrices Ui, and the final state of A on input H is the state

UqHUq−1 · · ·U1HU0|0〉

where H is the unitary transformation mapping |x, y, z〉 into |x, y +H(x), z〉, representing an oracle
query to the function H. To use the rank method (Theorem 3.2) for our purposes, we need to
bound the rank of such an algorithm. First, we define the following quantity:

Ck,q,n ≡
q∑
r=0

(
k

r

)
(n− 1)r .

Theorem 3.3. Let X and Y be sets of size m and n and let H0 be some function from X to Y. Let
S be a subset of X of size k and let H be some set of functions from X to Y that are equal to H0
except possibly on points in S. If A is a quantum algorithm making q queries to an oracle drawn
from H, then

rank(A,H) ≤ Ck,q,n .

Proof. Let |ψqH〉 be the final state of a quantum algorithm after q quantum oracle calls to an oracle
H ∈ H. We wish to bound the dimension of the space spanned by the vectors |ψqH〉 for all H ∈ H.
We accomplish this by exhibiting a basis for this space. Our basis consists of

∣∣ψqH′〉 vectors where
H ′ only differs from H0 at a maximum of q points in S. We need to show that two things: that our
basis consists of Ck,q,n vectors, and that our basis does in fact span the whole space.

We first count the number of basis vectors by counting the number of H ′ oracles. For each r,
there are

(k
r

)
ways of picking the subset T of size r from S where H ′ will differ from H0. For each

subset T , there are nr possible functions H ′. However, if any value x ∈ T satisfies F (x) = H0(x),
then this is equivalent to a case where we remove x from T , and we would have already counted
this case for a smaller value of r. Thus, we can assume H ′(x) 6= H0(x) for all x in T . There are
(n− 1)r such functions. Summing over all r, we get that the number of distinct H ′ oracles is

q∑
r=0

(
k

r

)
(n− 1)r = Ck,q,n .

Next, we need to show that the
∣∣ψqH′〉 vectors span the entire space of |ψqH〉 vectors. We first

introduce some notation: let
∣∣ψ0〉 be the state of a quantum algorithm before any quantum queries.

Let |ψqH〉 be the state after q quantum oracle calls to the oracle H. Let

Mq
H = UqHUq−1H · · ·U1H .

9

8. Quantum-Secure Message Authentication Codes

Then |ψqH〉 = Mq
H

∣∣ψ0〉.
We note that since

∣∣ψ0〉 is fixed for any algorithm, it is sufficient to prove that the Mq
H matrices

are spanned by the Mq
H′ .

For any subset T of S, and a function F : T → Y, let JT ,F be the oracle such that

JT ,F (x) =
{
F (x) if x ∈ T
H0(x) otherwise

.

Let Mq
T ,H denote Mq

JT ,H
. In other words, MT ,H is the transformation matrix corresponding to

the oracle that is equal to H on the set T , and equal to H0 elsewhere. We claim that any Mq
H for

H ∈ HS is a linear combination of the matrices Mq
T ,H for subsets T of S of size at most q. We will

fix a particular H, and for convenience of notation, we will let JT = JT ,H . That is, JT is the oracle
that is equal to H on the set T and H0 otherwise. We will also let Mq

T = Mq
T ,H and Mq = Mq

H .
That is, Mq is the transition matrix corresponding to the oracle H, and MT is the transition matrix
corresponding to using the oracle JT . For the singleton set {x}, we will also let Jx = J{x}.

We make the following observations:

H =
(∑
x∈S

Jx

)
− (k − 1)H0 (3.1)

JT =
(∑
x∈T

Jx

)
− (|T | − 1)H0 (3.2)

These identities can be seen by applying each side to the different inputs. Next, we take Mq
H

and Mq
T and expand out the H and JT terms using Equations 3.1 and 3.2:

Mq = Uq

((∑
x∈S

Jx

)
− (k − 1)H0

)
Uq−1 · · ·U1

((∑
x∈S

Jx

)
− (k − 1)H0

)
(3.3)

Mq
T = Uq

((∑
x∈T

Jx

)
− (|T | − 1)H0

)
Uq−1 · · ·U1

((∑
x∈T

Jx

)
− (|T | − 1)H0

)
(3.4)

Let J⊥ = H0. For a vector r ∈ (S ∪ {⊥})q, let

Pr = UqJrqUq−1 · · ·Jr2U1Jr1

For a particular r, we wish to expand the Mq and Mq
T matrices in terms of the Pr matrices. If

d of the components of r are ⊥, then the coefficient of Pr in the expansion of Mq is (−1)d(k − 1)d.
If, in addition, all of the other components of r lie in T , then the coefficient in the expansion of
Mq
T is (−1)d(|T | − 1)d (if any of the components of r lie outside of T , the coefficient is 0).
Now, we claim that, for some values a`, we have

Mq =
q∑
`=0

a`
∑

T ⊆S:|T |=`
Mq
T

To accomplish this, we look for the coefficient of Pr in the expansion of the right hand side
of this equation. Fix an `. Let d be the number of components of r equal to ⊥, and let p be the

10

8. Quantum-Secure Message Authentication Codes

number of distinct component values other than ⊥. Notice that p+ d ≤ q. Then there are
(k−p
`−p
)

different sets T of size ` for which all of the values of the components lie in T . Thus, the coefficient
of Pr is

q∑
`=p

a`

(
k − p
`− p

)
(−1)i(`− 1)d

Therefore, we need values a` such that
q∑
`=p

a`

(
k − p
`− p

)
(`− 1)d = (k − 1)d (3.5)

for all d, p. Notice that we can instead phrase this problem as a polynomial interpolation problem.
The right hand side of Equation 3.5 is a polynomial P of degree d ≤ q − p, evaluated at k − 1. We
can interpolate this polynomial using the points ` = p, ..., q, obtaining

P (k − 1) =
q∑
`=p

P (`− 1)
q∏

j=p,j 6=`

k − p
`− p

.

The numerator of the product evaluates to

(k − p)!
(k − `)(k − q − 1)!

while to evaluate the bottom, we split it into two parts: j = p, ..., `− 1 and j − `+ 1, ..., q. The first
part evaluates to (`− p)!, and the second part evaluates to (−1)q−`(q − `)!. With a little algebraic
manipulation, we have that

P (k − 1) =
q∑
`=p

P (`− 1)
((

k − `− 1
k − q − 1

)
(−1)q−`

)(
k − p
`− p

)

for all polynomials P (x) of degree at most q − p. Setting P (x) = xd for d = 0, ..., q − `, we see
that Equation 3.5 is satisfied if

a` =
(
k − 1− `
k − 1− q

)
(−1)q−` .

3.1 An Example

Suppose our task is to, given one quantum query to an oracle H : X → Y, produce two distinct
pairs (x0, y0) and (x1, y1) such that H(x0) = y0 and H(x1) = y1. Suppose further that H is drawn
from a pairwise independent set H. We will now see that the rank method leads to a bound on the
success probability of any quantum algorithm A.

Corollary 3.4. No quantum algorithm A, making a single query to a function H : X → Y drawn
from a pairwise independent set H, can produce two distinct input/output pairs of H, except with
probability at most |X |/|Y|.

11

8. Quantum-Secure Message Authentication Codes

Proof. Let m = |X | and n = |Y|. Since no outputs of H are fixed, we will set S = X in Theorem 3.3,
showing that the rank of the algorithm A is bounded by Cm,1,n = 1 + m(n − 1) < mn. If an
algorithm makes no queries to H, the best it can do at outputting two distinct input/output pairs
is to just pick two arbitrary distinct pairs, and output those. The probability that this zero-query
algorithm succeeds is at most 1/n2. Then Theorem 3.2 tells us that A succeeds with probability at
most rank(A,H) times this amount, which equates to m

n .

For m > n, this bound is trivial. However, for m smaller than n, this gives a non-trivial bound,
and for m exponentially smaller than n, this bound is negligible.

4 Outputting Values of a Random Oracle

In this section, we will prove Theorem 1.1. We consider the following problem: given q quantum
queries to a random oracle H : X → Y, produce k > q distinct pairs (xi, yi) such that yi = H(xi).
Let n = |Y| be the size of the range. Motivated by our application to quantum-accessible MACs,
we are interested in the case where the range Y of the oracle is large, and we want to show that
to produce even one extra input/output pair (k = q + 1) is impossible, except with negligible
probability. We are also interested in the case where the range of the oracle, though large, is far
smaller than the domain. Thus, the bound we obtained in the previous section (Corollary 3.4) is
not sufficient for our purposes, since it is only non-trivial if the range is larger than the domain.

In the classical setting, when k ≤ q, this problem is easy, since we can just pick an arbitrary
set of k different xi values, and query the oracle on each value. For k > q, no adversary of even
unbounded complexity can solve this problem, except with probability 1/nk−q, since for any set
of k inputs, at least k − q of the corresponding outputs are completely unknown to the adversary.
Therefore, for large n, we have have a sharp threshold: for k ≤ q, this problem can be solved
efficiently with probability 1, and for even k = q+1, this problem cannot be solved, even inefficiently,
except with negligible probability.

In the quantum setting, the k ≤ q case is the same as before, since we can still query the
oracle classically. However, for k > q, the quantum setting is more challenging. The adversary can
potentially query the random oracle on a superposition of all inputs, so he “sees” the output of the
oracle on all points. Proving that it is still impossible to produce k input/output pairs is thus more
complicated, and existing methods fail to prove that this problem is difficult. Therefore, it is not
immediately clear that we have the same sharp threshold as before.

In Section 4.1 we use the rank method to bound the probability that any (even computationally
unbounded) quantum adversary succeeds. Then in Section 4.2 we show that our bound is tight by
giving an efficient algorithm for this problem that achieves the lower bound. In particular, for an
oracle H : X → Y we consider two cases:

• Exponentially-large range Y and polynomial k, q. In this case, we will see that the success
probability even when k = q + 1 is negligible. That is, to produce even one additional
input/output pair is hard. Thus, we get the same sharp threshold as in the classical case

• Constant size range Y and polynomial k, q. We show that even when q is a constant fraction
of k we can still produce k input/output pairs with overwhelming probability using only q
quantum queries. This is in contrast to the classical case, where the success probability for
q = ck, c < 1, is negligible in k.

12

8. Quantum-Secure Message Authentication Codes

4.1 A Tight Upper Bound

Theorem 4.1. Let A be a quantum algorithm making q queries to a random oracle H : X → Y
whose range has size n, and produces k > q pairs (xi, yi) ∈ X ×Y. The probability that the xi values
are distinct and yi = H(xi) for all i ∈ [k] is at most 1

nk
Ck,q,n.

Proof. Before giving the complete proof, we sketch the special case where k is equal to the size of
the domain. In this case, any quantum algorithm that outputs k distinct input/output pairs must
output all input/output pairs. Similar to the proof of Corollary 3.4, we will set S = X , and use
Theorem 3.3 to bound the rank of A at Ck,q,n. Now, any algorithm making zero queries succeeds
with probability at most 1/nk. Theorem 3.2 then bounds the success probability of any q query
algorithm as

1
nk
Ck,q,n .

Now for the general proof: first, we will assume that the probability A outputs any particular
sequence of xi values is independent of the oracle H. We will show how to remove this assumption
later. We can thus write

|ψqH〉 =
∑

x
αx|x〉|φH,x〉

where αX are complex numbers whose square magnitudes sum to one, and |x〉|φH,x〉 is the normalized
projection of |ψqH〉 onto the space spanned by |x, w〉 for all w. The probability that A succeeds is
equal to ∑

H

Pr[H]
∑

x
|〈x, H(x)|ψqH〉|

2 =
∑
H

Pr[H]
∑

x
|αx|2|〈H(x)|φH,x〉|2 .

First, we reorder the sums so the outer sum is the sum over x. Now, we write H = (H0, H1)
where H0 is the oracle restricted to the components of x, and H1 is the oracle restricted to all other
inputs. Thus, our probability is:

1
nm

∑
x
|αx|2

∑
H0,H1

∣∣∣〈H0(x)|φ(H0,H1),x〉
∣∣∣2 .

Using the same trick as we did before, we can replace |〈H(x)|φH,x〉| with the quantity∣∣∣projspan|φ(H0,H1),x〉|H0(X)〉
∣∣∣ ,

which is bounded by
∣∣∣∣projspan{|φ(H′0,H1),x〉}|H0(x)〉

∣∣∣∣ as we vary H ′0 over oracles whose domain is the
components of x. The probability of success is then bounded by

1
nm

∑
x
|αx|2

∑
H0,H1

∣∣∣∣projspan{|φ(H′0,H1),x〉}|H0(x)〉
∣∣∣∣2 .

We now perform the sum over H0. Like in the proof of Corollary 3.4, the sum evaluates to
dim span{|φ(H′0,H1),x〉}. Since the |φ(H′0,H1),x〉 vectors are projections of |ψqH〉, this dimension is
bounded by dim span{

∣∣∣ψq(H′0,H1)

〉
}. Let H be the set of oracles (H ′0, H1) as we vary H ′0, and consider

A acting on oracles in H. Fix some oracle H∗0 from among the H ′0 oracles, and let S be the set of

13

8. Quantum-Secure Message Authentication Codes

components of x. Then (H ′0, H1) differs from (H∗0 , H1) only on the elements of S. Since |S| ≤ k,
Theorem 3.2 tells us that rank(A,H) ≤ Ck,q,n. But

rank(A,H) = dim span{
∣∣∣ψq(H′0,H1)

〉
}

Therefore, we can bound the success probability by

1
nm

∑
x
|αx|2

∑
H1

Ck,q,n .

Summing over all nm−k different H1 values and all x values gives a bound of

1
nk
Ck,q,n

as desired.
So far, we have assume that A produces x with probability independent of H. Now, suppose

our algorithm A does not produce x with probability independent of the oracle. We construct a
new algorithm B with access to H that does the following: pick a random oracle O with the same
domain and range as H, and give A the oracle H + O that maps x into H(x) + O(x). When A
produces k input/output pairs (xi, yi), output the pairs (xi, yi −O(xi)). (xi, yi) are input/output
pairs of H +O if and only if (xi, yi −O(xi)) are input/output pairs of H. Further, A still sees a
random oracle, so it succeeds with the same probability as before. Moreover, the oracle A sees is
now independent of H, so B outputs x with probability independent of H. Thus, applying the
above analysis to B shows that B, and hence A, produce k input/output pairs with probability at
most

1
nk
Ck,q,n

For this paper, we are interested in the case where n = |Y| is exponentially large, and we are
only allowed a polynomial number of queries. Suppose k = q + 1, the easiest non-trivial case for the
adversary. Then, the probability of success is

1
nq+1

q∑
r=0

(
q + 1
r

)
(n− 1)r = 1−

(
1− 1

n

)q+1
≤ q + 1

n
. (4.1)

Therefore, to produce even one extra input/output pair is impossible, except with exponentially
small probability, just like in the classical case. This proves the first part of Theorem 1.1.

4.2 The Optimal Attack

In this section, we present a quantum algorithm for the problem of computing H(xi) for k different
xi values, given only q < k queries:

Theorem 4.2. Let X and Y be sets, and fix integers q < k, and k distinct values x1, ..., xk ∈ X .
There exists a quantum algorithm A that makes q non-adaptive quantum queries to any function
H : X → Y, and produces H(x1), ...,H(xk) with probability Ck,q,n/nk, where n = |Y|.

14

8. Quantum-Secure Message Authentication Codes

The algorithm is similar to the algorithm of [vD98], though generalized to handle arbitrary range
sizes. This algorithm has the same success probability as in Theorem 4.1, showing that both our
attack and lower bound of Theorem 4.1 are optimal. This proves the second part of Theorem 1.1.

Proof. Assume that Y = {0, ..., n− 1}. For a vector y ∈ Yk, let ∆(y) be the number of coordinates
of y that do not equal 0. Also, assume that xi = i.

Initially, prepare the state that is a uniform superposition of all vectors y ∈ Yk such that
∆(y) ≤ q:

|ψ1〉 = 1√
V

∑
y:∆(y)≤q

|y〉

Notice that the number of vectors of length k with at most q non-zero coordinates is exactly
q∑
r=0

(
k

r

)
(n− 1)r = Ck,q,n .

We can prepare the state efficiently as follows: Let Setupk,q,n : [Ck,q,n]→ [n]k be the following
function: on input ` ∈ [Ck,q,n],

• Check if ` ≤ Ck−1,q,n. If so, compute the vector y′ = Setupk−1,q,n(n), and output the vector
y = (0,y′).

• Otherwise, let `′ = `− Ck−1,q,n. It is easy to verify that `′ ∈ [(n− 1)Ck−1,q−1,n].

• Let `′′ ∈ Ck−1,q−1,n and y0 ∈ [n]\{0} be the unique such integers such that `′ = (n−1)`′′+y0−n.

• Let y′ = Setupk−1,q−1,n(`′′), and output the vector y = (y0,y′).

The algorithm relies on the observation that a vector y of length k with at most q non-zero
coordinates falls into one of either two categories:

• The first coordinate is 0, and the remaining k − 1 coordinates form a vector with at most q
non-zero coordinates

• The first coordinate is non-zero, and the remaining k − 1 coordinates form a vector with at
most q − 1 non-zero coordinates.

There are Ck−1,q,n vectors of the first type, and Ck−1,q−1,n vectors of the second type for each
possible setting of the first coordinate to something other than 0. Therefore, we divide [Ak,q,n] into
two parts: the first Ck−1,q,n integers map to the first type, and the remaining (n − 1)Ck−1,q−1,n
integers map to vectors of the second type.

We note that Setup is efficiently computable, invertible, and its inverse is also efficiently
computable. Therefore, we can prepare |ψ1〉 by first preparing the state

1√
Ck,q,n

∑
`∈[Ck,q,n]

|`〉

and reversibly converting this state into |φ1〉 using Setupk,q,n.
Next, let F : Yk → [k]q be the function that outputs the indexes i such that yi 6= 0, in order of

increasing i. If there are fewer than q such indexes, the function fills in the remaining spaces the

15

8. Quantum-Secure Message Authentication Codes

first indexes such that yi = 0 If there are more than q indexes, the function truncates to the first q.
F is realizable by a simple classical algorithm, so it can be implemented as a quantum algorithm.
Apply this algorithm to |ψ1〉, obtaining the state

|ψ2〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

|y, F (y)〉

Next, let G : Yk → Yq be the function that takes in vector y, computes x = F (y), and outputs
the vector (yx1 , yx2 , ..., yxq). In other words, it outputs the vector of the non-zero components of y,
padding with zeros if needed. This function is also efficiently computable by a classical algorithm,
so we can apply if to each part of the superposition:

|ψ3〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

|y, F (y), G(y)〉

Now we apply the Fourier transform to the G(y) part, obtaining

|ψ4〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

|y, F (y)〉
∑

z
e−i

2π
n
〈z,G(y)〉|z〉

Now we can apply H to the F (y) part using q non-adaptive queries, adding the answer to the z
part. The result is the state

|ψ5〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

|y, F (y)〉
∑

z
e−i

2π
n
〈z,G(y)〉|z +H(F (y))〉

We can rewrite this last state as follows:

|ψ5〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

ei
2π
n
〈H(F (y)),G(y)〉|y, F (y)〉

∑
z
e−i

2π
n
〈z,G(y)〉|z〉

Now, notice that H(F (y)) is the vector of H applied to the indexes where y is non-zero, and
that G(y) is the vector of values of y that those points. Thus the inner product is

〈H(F (y), G(y)〉 =
∑
i:yi 6=0

H(i)× yi =
k∑
i=0

H(i)yi = 〈H([k]),y〉 .

The next step is to uncompute the z and F (y) registers, obtaining

|ψ6〉 = 1√
Ck,q,n

∑
y:∆(y)≤q

ei
2π
n
〈H([k]),y〉|y〉

Lastly, we perform a Fourier transform the remaining space, obtaining

|ψ7〉 = 1√
Ck,q,nnk

∑
z

 ∑
y:∆(y)≤q

ei
2π
n
〈H([k])−z,y〉

|z〉
Now measure. The probability we obtain H([k]) is

1
Ck,q,nnk

∣∣∣∣∣∣
∑

y:∆(y)≤q
1

∣∣∣∣∣∣
2

= Ck,q,n
nk

as desired.

16

8. Quantum-Secure Message Authentication Codes

As we have already seen, for exponentially-large Y, this attack has negligible advantage for any
k > q. However, if n = |Y| is constant, we can do better. The error probability is

k∑
r=q+1

(
k

r

)(
1− 1

n

)r(1
n

)k−r
=

k−q−1∑
s=0

(
k

s

)(1
n

)s(
1− 1

n

)k−s
.

This is the probability that k consecutive coin flips, where each coin is heads with probability
1/n, yields fewer than k − q heads. Using the Chernoff bound, if q > k(1− 1/n), this probability is
at most

e−
n
2k (q−k(1−1/n))2

.

For a constant n, let c be any constant with 1− 1/n < c < 1. If we use q = ck queries, the error
probability is less than

e−
n
2k (k(c+1/n−1))2

= e−
nk
2 (c+1/n−1)2

,

which is exponentially small in k. Thus, for constant n, and any constant c with 1− 1/n < c < 1,
using q = ck quantum queries, we can determine k input/output pairs with overwhelming probability.
This is in contrast to the classical case, where with any constant fraction of k queries, we can
only produce k input/output pairs with negligible probability. As an example, if H outputs two
bits, it is possible to produce k input/output pairs of of H using only q = 0.8k quantum queries.
However, with 0.8k classical queries, we can output k input/output pairs with probability at most
4−0.2k < 0.76k.

5 Quantum-Accessible MACs

Using Theorem 4.1 we can now show that a quantum secure pseudorandom function [Zha12b] gives
rise to the quantum-secure MAC, namely S(k,m) = PRF(k,m). We prove that this mac is secure.

Theorem 5.1. If PRF : K × X → Y is a quantum-secure pseudorandom function and 1/|Y| is
negligible, then S(k,m) = PRF(k,m) is a EUF-qCMA-secure MAC.

Proof. Let A be a polynomial time adversary that makes q quantum queries to S(k, ·) and produces
q + 1 valid input/output pairs with probability ε. Let Game 0 be the standard quantum MAC
attack game, where A makes q quantum queries to MACk. By definition, A’s success probability in
this game is ε.

Let Game 1 be the same as Game 0, except that S(k, ·) is replaced with a truly random function
O : X → Y , and define A’s success probability as the probability that A outputs q + 1 input/output
pairs of O. Since PRF is a quantum-secure PRF, A’s advantage in distinguishing Game 0 from
Game 1 is negligible.

Now, in Game 1, A makes q quantum queries to a random oracle, and tries to produce q + 1
input/output pairs. However, by Theorem 4.1 and Eq. (4.1) we know that A’s success probability is
bounded by (q + 1)/|Y| which is negligible. It now follows that ε is negligible and therefore, S is a
EUF-qCMA-secure MAC.

17

8. Quantum-Secure Message Authentication Codes

5.1 Carter-Wegman MACs

In this section, we show how to modify the Carter-Wegman MAC so that it is secure in the quantum
setting presented in Section 2.2. Recall that H is an XOR-universal family of hash functions from
X into Y if for any two distinct points x and y, and any constant c ∈ Y,

Pr
h←H

[H(x)−H(y) = c] = 1/|Y|

The Carter-Wegman construction uses a pseudorandom function family PRF with domain X and
range Y , and an XOR-universal family of hash functions H from M to Y . The key is a pair (k,H),
where k is a key for PRF and H is a function drawn from H. To sign a message, pick a random
r ∈ X , and return (r, PRF(k, r) +H(m)).

This MAC is not, in general, secure in the quantum setting presented in Section 2.2. The reason
is that the same randomness is used in all slots of a quantum chosen message query, that is the
signing oracle computes: ∑

m

αm|m〉 −→
∑
m

αm|m, r,PRF(k, r) +H(m)〉

where the same r is used for all classical states of the superposition. For example, suppose H is
the set of functions H(x) = ax + b for random a and b. With even a single quantum query, the
adversary will be able to obtain a and PRF(k, r) + b with high probability, using the algorithm from
Theorem 6.2 in Section 6. Knowing both of these will allow the adversary to forge any message.

We show how to modify the standard Carter-Wegman MAC to make it secure in the quantum
setting.

Construction 1 (Quantum Carter-Wegman). The Quantum Carter-Wegman MAC (QCW-MAC)
is built from a pseudorandom function PRF, an XOR-universal set of functions H, and a pairwise
independent set of functions R.

Keys: The secret key for QCW-MAC is a pair (k,H), where k is a key for PRF and H :M→ Y is
drawn from H

Signing: To sign a message m choose a random R ∈ R and output the pair
(
R(m), PRF(k,R(m)) +

H(m)
)

as the tag. When responding to a quantum chosen message query, the same R is used
in all classical states of the superposition.

Verification: To verify that (r, s) is a valid tag for m, accept iff PRF(k, r) +H(m) = s.

Theorem 5.2. The Quantum Carter-Wegman MAC is a EUF-qCMA secure MAC.

Proof. We start with an adversary A that makes q tag queries, and then produces q + 1 valid
message/tag pairs with probability ε. We now adapt the classical Carter-Wegman security proof to
our MAC in the quantum setting.

When the adversary makes query i on the superposition∑
m,y,z

α(i)
m,y,z|m, y, z〉 ,

the challenger responds with the superposition∑
m,y,z

α(i)
m,y,z|m, y + Si(m), z〉

18

8. Quantum-Secure Message Authentication Codes

where Si(m) = (Ri(m),PRF(k, (Ri(m)) +H(m)) for a randomly chosen Ri ∈ R, where R is a
pairwise independent set of functions.

The adversary then creates q+1 triples (mj , rj , sj) which, with probability ε, are valid message/tag
tuples. That means H(mj) + PRF(k, rj) = sj for all j.

We now prove that ε must be small using a sequence of games:
Game 0: Run the standard MAC game, responding to query i with the oracle that maps m to

(Ri(m),PRF(k,Ri(m)) +H(m)), where Ri is a random function from R. The advantage of A in this
game is the probability is produces q + 1 forgeries. Denote this advantage as ε0, which is equal to ε.

Game 1: Replace PRF(k, ·) with a truly random function F , and denote the advantage in this
game as ε1. Since PRF is a quantum-secure PRF, ε1 is negligibly close to ε0.

Game 2: Next we change the goal of the adversary. The adversary is now asked to produce
a triple (m0,m1, s) where H(m0)−H(m1) = s. Given an adversary A for Game 1, we construct
an adversary B for Game 2 as follows: run A, obtaining q + 1 forgeries (mj , rj , sj) such that
H(mj) + F (rj) = sj with probability ε1. If all rj are distinct, abort. Otherwise, assume without
loss of generality that r0 = r1. Then

H(m0)−H(m1) = (s0 − F (r0))− (s1 − F (r1)) = s0 − s1

so output (m0,m1, s0 − s1). Let ε2 be the advantage of B in this game. Let p be the probability
that all rj are distinct and A succeeds. Then ε2 ≥ ε1 − p.

We wish to bound p. Define a new algorithm C, with oracle access to F , that first generates H,
and then runs A, playing the role of challenger to A. When A outputs q + 1 triples (mj , rj , sj), B
outputs q+1 pairs (rj , sj−H(mj)). If A succeeded, then H(mj)+F (rj) = sj , so F (rj) = sj−H(mj),
meaning the pairs C outputs are all input/output pairs of F . If all the rj are distinct, then C will
output q + 1 input/output pairs, which is impossible except with probability at most (q + 1)/|Y|.
Therefore, p ≤ (q + 1)/|Y|. Therefore, as long as |Y| is super-polynomial in size, p is negligible,
meaning ε2 is negligibly close to ε1.

Game 3: Now modify the game so that we draw Ri uniformly at random from the set of all
oracles. Notice that each Ri is queried only once, meaning pairwise-independent Ri look exactly
like truly random Ri, so Game 3 looks exactly like Game 2 from the point of view of the adversary.
Thus the success probability ε3 is equal to ε2.

Game 4: For this game, we answer query i with the oracle that maps m to (Ri(m), F (Ri(m)).
That is, we ignore H for answering MAC queries. Let ε3 be the success probability in this game.

To prove that ε4 is negligibly close to ε3, we need the following lemma:

Lemma 5.3. Consider two distributions D1 and D2 on oracles from M into X × Y:

• D1: generate a random oracle R :M→ X and a random oracle P :M→ Y, and output the
oracle that maps m to (R(m), P (m)).

• D2: generate a random oracle R :M→ X and a random oracle F : X → Y, and output the
oracle that maps m to (R(m), F (R(m))).

Then the probability that any q-quantum query algorithm distinguishes D1 from D2 is at most
O(q2/|X |1/3).

Proof. Let B be a quantum algorithm making quantum queries that distinguishes with probability
λ. We will now define a quantum algorithm C that is given r samples (si, ti) ∈ X ×Y , where si are

19

8. Quantum-Secure Message Authentication Codes

chosen randomly, and ti are either chosen randomly, or are equal to T (si) for a randomly chosen
function T : X → Y. C’s goal is to distinguish these two cases. Notice that as long as the si are
distinct, these two distributions are identical. Therefore, C’s distinguishing probability is at most
the probability of a collision, which is at most O(r2/|X |).

C works as follows: generate a random oracle A :M→ [r]. Let R(m) = sA(m) and P (m) = tA(m),
and give B the oracle (R(m), P (m)). If ti are random, then we have the oracle that maps
m to (sA(m), tA(m)). This is exactly the small-range distribution of Zhandry [Zha12b], and is
indistinguishable from D1 except with probability O(q3/r).

Similarly, if ti = T (si), then the oracle maps m to (sA(m), T (sA(m))). The oracle that maps m
to sA(m) is also a small-range distribution, so it is indistinguishable from a random oracle except
with probability O(q3/r). If we replace sA(m) with a random oracle, we get exactly the distribution
D2. Thus, D2 is indistinguishable from (sA(m), T (sA(m))) except with probability O(q3/r).

Therefore, C’s success probability at distinguishing D1 from D2 is at least λ−O(q3/r), and is
at most O(r2/|X |). This means the distinguishing probability of B is at most

O

(
r2

X
+ q3

r

)

This is minimized by choosing r = O(q|X |1/3), which gives a distinguishing probability of at
most O(q2/|X |1/3).

We show that ε4 is negligibly-close to ε3 using a sequence of sub-games. Game 3a is the game
where we answer query i with the oracle that maps m to (Ri(m), Pi(m)+H(m)) where Pi is another
random oracle. Notice that we can define oracles R(i,m) = Ri(m) and P (i,m) = Pi(m). Then R
and P are random oracles, and using the above lemma, the success probability of B in Game 3a is
negligibly close to that of Game 3. Notice that since Pi is random, P ′i (m) = Pi(m) +H(m) is also
random, so Game 3a is equivalent to the game were we answer query i with the oracle that maps
m to (Ri(m), Pi(m)). Using the above lemma again, the success probability of B in this game is
negligibly close to that of Game 4.

Now, we claim that ε4, the success probability in Game 4 is negligible. Indeed, the view of B is
independent of H, so the probability that H(m0)−H(m1) = s is 1/|Y|. Since ε4 is negligibly close
to ε = ε0, the advantage of A, A’s advantage is also negligible.

6 q-time MACs

In this section, we develop quantum one-time MACs, MACs that are secure when the adversary
can issue only one quantum chosen message query. More generally, we will study quantum q-time
MACs.

Classically, any pairwise independent function is a one-time MAC. In the quantum setting,
Corollary 3.4 shows that when the range is much larger than the domain, this still holds. However,
such MACs are not useful since we want the tag to be short. We first show that when the range is
not larger than the domain, pairwise independence is not enough to ensure security:

Theorem 6.1. For any set Y of prime-power size, and any set X with |X | ≥ |Y|, there exist
(q + 1)-wise independent functions from X to Y that are not q-time MACs.

20

8. Quantum-Secure Message Authentication Codes

To prove this theorem, we treat Y as a finite field, and assume X = Y , as our results are easy to
generalize to larger domains. We use random degree q polynomials as our (q + 1)-wise independent
family, and show in Theorem 6.2 below that such polynomials can be completely recovered using
only q quantum queries. It follows that the derived MAC cannot be q-time secure since once the
adversary has the polynomial it can easily forge tags on new messages.

Theorem 6.2. For any prime power n, there is an efficient quantum algorithm that makes only
q quantum queries to an oracle implementing a degree-q polynomial F : Fn → Fn, and completely
determines F with probability 1−O(qn−1).

The theorem shows that a (q+1)-wise independence family is not necessarily a secure quantum q-
time MAC since after q quantum chosen message queries the adversary extracts the entire secret key.
The case q = 1 is particularly interesting. The following lemma will be used to prove Theorem 6.2:

Lemma 6.3. For any prime power n, and any subset X ⊆ Fn of size n− k, there is an efficient
quantum algorithm that makes a single quantum query to any degree-1 polynomial F : X → Fn, and
completely determines F with probability 1−O(kn−1).

Proof. Write F (x) = ax+ b for values a, b ∈ Fn, and write n = pt for some prime p and integer t.
We design an algorithm to recover a and b.

Initialize the quantum registers to the state

|ψ1〉 = 1√
n− k

∑
x∈X
|x, 0〉

Next, make a single oracle query to F , obtaining

|ψ2〉 = 1√
n− k

∑
x∈X
|x, ax+ b〉

Note that we can interpret elements z ∈ Fn as vectors z ∈ Ftp. Let 〈y, z〉 be the inner product of
vectors y, z ∈ Ftp. Multiplication by a in Fn is a linear transformation over the vector space Ftp, and
can therefore be represented by a matrix Ma ∈ Ft×tp . Thus, we can write

|ψ2〉 = 1√
n− k

∑
x∈X
|x,Max + b〉

Note that in the case t = 1, a is a scalar in Fp, so Ma is just the scalar a.
Now, the algorithm applies the Fourier transform to both registers, to obtain

|ψ3〉 = 1
n
√
n− k

∑
y,z

(∑
x∈X

ω〈x,y〉+〈Max+b,z〉
p

)
|y, z〉

where ωp is a complex primitive pth root of unity.
The term in parenthesis can be written as(∑

x∈X
ω〈x,y+MT

a z〉
p

)
ω〈b,z〉p

21

8. Quantum-Secure Message Authentication Codes

We will then do a change of variables, setting y′ = y + MT
a z.

Therefore, we can write the state as

|ψ3〉 = 1
n
√
n− k

∑
y′,z

(∑
x∈X

ω〈x,y
′〉

p

)
ω〈b,z〉p |y′ −MT

a z, z〉

For z 6= 0 and y′ = 0, we will now explain how to recover a from (−MT
a z, z). Notice that the

transformation that takes a and outputs −MT
a z is a linear transformation. Call this transformation

Lz. The coefficients of Lz are easily computable, given z, by applying the transformation to each of
the unit vectors. Notice that if t = 1, Lz is just the scalar −z. We claim that Lz is invertible if z 6= 0.
Suppose there is some a such that Lza = −MT

a z = 0. Since z 6= 0, this means the linear operator
−MT

a is not invertible, so neither is −Ma. But −Ma is just multiplication by −a in the field Fn.
This multiplication is only non-invertible if −a = 0, meaning a = 0, a contradiction. Therefore, the
kernel of Lz is just 0, so the map is invertible.

Therefore, to compute a, compute the inverse operator L−1
z and apply it to −MT

a z, interpreting
the result as a field element in Fn. The result is a. More specifically, for z 6= 0, apply the computation
mapping (y, z) to (L−1

z y, z), which will take (−MT
a z, z) to (a, z). For z = 0, we will just apply the

identity map, leaving both registers as is. This map is now reversible, meaning this computation
can be implemented as a quantum computation. The result is the state

|ψ4〉 = 1
n
√
n− k

∑
y′

(∑
x∈X

ω〈x,y
′〉

p

)∑
z6=0

ω〈b,z〉p |L−1
z y′ + a, z〉+ |y′, 0〉

We will now get rid of the |y′, 0〉 terms by measuring whether z = 0. The probability that z = 0

is 1/n, and in this case, we abort. Otherwise, we are left if the state

|ψ5〉 = 1√
n(n− 1)(n− k)

∑
z 6=0,y′

(∑
x∈X

ω〈x,y
′〉

p

)
ω〈b,z〉p |L−1

z y′ + a, z〉

The algorithm then measures the first register. Recall that X has size n− k. The probability
the outcome of the measurement is a is then (1− k/n). In this case, we are left in the state

|ψ6〉 = 1√
n− 1

∑
z6=0

ω〈b,z〉p |z〉

Next, the algorithm performs the inverse Fourier transform to the second register, arriving at
the state

|ψ7〉 = 1√
n(n− 1)

∑
w

∑
z6=0

ω〈b−w,z〉
p

|w〉
Now the algorithm measures again, and interpret the resulting vector as a field element. The

probability that the result is b is 1−1/n. Therefore, with probability (1−k/n)(1−1/n)2 = 1−O(k/n),
the algorithm outputs both a and b.

22

8. Quantum-Secure Message Authentication Codes

Now we use this attack to obtain an attack on degree-d polynomials, for general d:
Proof of Theorem 6.2. We show how to recover the q + 1 different coefficients of any degree-q
polynomial, using only q − 1 classical queries and a single quantum query.

Let a be the coefficient of xq, and b the coefficient of xq−1 in F (x). First, make q − 1 classical
queries to arbitrary distinct points {x1, ..., xq−1}. Let Z(x) be the unique polynomial of degree q− 2
such that r(xi) = F (xi), using standard interpolation techniques. Let G(x) = F (x)− Z(x). G(x) is
a polynomial of degree q that is zero on the xi, so it factors, allowing us to write

F (x) = Z(x) + (a′x+ b′)
q−1∏
i=1

(x− xi)

By expanding the product, we see that a = a′ and b = b′ − a
∑
xi. Therefore, we can implement an

oracle mapping x to a(x+
∑
xi) + b as follows:

• Query F on x, obtaining F (x).

• Compute Z(x), and let G(x) = F (x)− Z(x).

• Output G(x)/
∏

(x− xi) = a(x+
∑
xi) + b.

This oracle works on all inputs except the q − 1 different xi values. We run the algorithm from
Lemma 6.3 on X = Fn \ {xi}, we will recover with probability 1−O(q/n) both a and b+ a

∑
xi

using a single quantum query, from which we can compute a and b. Along with the F (xi) values,
we can then reconstruct the entire polynomial.

6.1 Sufficient Conditions for a One-Time Mac

We show that, while pairwise independence is not enough for a one-time MAC, 4-wise independence
is. We first generalize a theorem of Zhandry [Zha12a]:

Lemma 6.4. Let A be any quantum algorithm that makes c classical queries and q quantum queries
to an oracle H. If H is drawn from a (c+2q)-wise independent function, then the output distribution
of A is identical to the case where H is truly random.

Proof. If q = 0, then this theorem is trivial, since the c outputs A sees are distributed randomly.
If c = 0, then the theorem reduces to that of Zhandry [Zha12a]. By adapting the proof of the c = 0
case to the general case, we get the lemma. Our approach is similar to the polynomial method, but
needs to be adapted to handle classical queries correctly.

Our quantum algorithm makes k = c + q queries. Let Q ⊆ [k] be the set of queries that are
quantum, and let C ⊆ [k] be the set of queries that are classical.

Fix an oracle H. Let δx,y be 1 if H(x) = y and 0 otherwise. Let ρ(i) be the density matrix after
the ith query, and ρ(i−1/2) be the density matrix before the ith query. ρ(q+1/2) is the final state of
the algorithm.

We now claim that ρ(i) and ρ(i+1/2) are polynomials of the δx,y of degree ki, where ki is twice
the number of quantum queries made so far, plus the number of classical queries made so far.

ρ(0) and ρ(0+1/2) are independent of H, so they are not a function of the δx,y at all, meaning
the degree is 0 = k0.

We now inductively assume our claim is true for i − 1, and express ρ(i) in terms of ρ(i−1/2).
There are two cases:

23

8. Quantum-Secure Message Authentication Codes

• i is a quantum query. In this case, ki = ki−1 + 2. We can write

ρ
(i)
x,y,z,x′,y′,z′ = ρ

(i−1/2)
x,y−H(x),z,x′,y′−H(x′),z

An alternative way to write this is as

ρ
(i)
x,y,z,x′,y′,z′ =

∑
r,r′

δx,y−rδx′,y′−r′ρ
(i−1/2)
x,r,z,x′,r′,z

By induction, each of the ρ
(i−1/2)
x,r,z,x′,r′,z are polynomials of degree ki−1 in the dx,y values, so

ρ
(i)
x,y,z,x′,y′,z′ is a polynomial of degree ki−1 + 2 = ki.

• i is a classical query. This means li = ki−1 + 1. Let ρ(i−1/4) representing the state after
measuring the x register, but before making the actual query. This is identical to ρ(i−1/2),
except the entries where x 6= x′ are zeroed out. We can then write

ρ
(i)
x,y,z,x′,y′,z′ =

∑
r,r′

δx,y−rδx′,y′−r′ρ
(i−1/4)
x,r,z,x′,r′,z =

∑
r,r′

δx,y−rδx,y′−r′ρ
(i−1/2)
x,r,z,x,r′,z

Now, notice that δx,y−rδx,y′−r′ is zero unless y − r = y′ − r′, in which case it just reduces to
δx,y−r. Therefore, we can simply further:

ρ
(i)
x,y,z,x′,y′,z′ =

∑
r

δx,y−rρ
(i−1/2)
x,r,z,x,(y−y′)+r,z

By induction, each of the ρ
(i−1/2)
x,r,z,x,(y−y′)+r,z values are polynomials of degree ki−1 in the dx,y

values, so ρ
(i)
x,y,z,x′,y′,z′ is a polynomial of degree ki−1 + 1 = ki

Therefore, after all q queries, final matrix ρ(q+1/2) is a polynomial in the δx,y of degree at most
k = 2q + c. We can then write the density matrix as

ρ(q+1/2) =
∑
x,y

Mx,y

rq∏
t=0

δxi,yi

where x and y are vectors of length k, Mx,y are matrices, and the sum is over all possible vectors.
Now, fix a distribution D on oracles H. The density matrix for the final state of the algorithm,

when the oracle is drawn from H, is given by

∑
x,y

Mx,y

(∑
H

Pr[H ← D]
rq∏
t=0

δxi,yi

)

The term in parenthesis evaluates to PrH←D[H(x) = y]. Therefore, the final density matrix can be
expressed as ∑

x,y
Mx,y Pr

H←D
[H(x) = y]

Since x and y are vectors of length k = 2q + c, if D is k-wise independent, PrH←D[H(x) = y]
evaluates to the same quantity as if D was truly random. Thus the density matrices are the same.
Since all of the statistical information about the final state of the algorithm is contained in the
density matrix, the distributions of outputs are thus identical, completing the proof.

24

8. Quantum-Secure Message Authentication Codes

Using this lemma we show that (3q + 1)-wise independence is sufficient for q-time MACs.

Theorem 6.5. Any (3q + 1)-wise independent family with domain X and range Y is a quantum
q-time secure MAC provided (q + 1)/|Y| is negligible.

Proof. Let D be some (3q + 1)-wise independent function. Suppose we have an adversary A that
makes q quantum queries to an oracle H, and attempts to produces q + 1 input/output pairs. Let
εR be the probability of success when H is a random oracle, and let εD be the probability of success
when H is drawn from D. We construct an algorithm B with access to H as follows: simulate A
with oracle access to H. When A outputs q + 1 input/output pairs, simply make q + 1 queries to H
to check that these are valid pairs. Output 1 if and only if all pairs are valid. Therefore, B makes
q quantum queries and c = q + 1 classical queries to H, and outputs 1 if and only if A succeeds:
if H is random, B outputs 1 with probability εR, and if H is drawn from D, B outputs 1 with
probability εD. Now, since D is (3q + 1)-wise independent and 3q + 1 = 2q + c, Lemma 6.4 shows
that the distributions of outputs when H is drawn from D is identical to that when H is random,
meaning εD = εR.

Thus, when H is drawn from D, A’s succeeds with the same probability that it would if H
was random. But we already know that if H is truly random, A’s success probability is less than
(q + 1)/|Y|. Therefore, when H is drawn from D, A succeeds with probability less than (q + 1)/|Y|,
which is negligible. Hence, if H is drawn from D, H is a q-time MAC.

7 Conclusion

We introduced the rank method as a general technique for obtaining lower bounds on quantum oracle
algorithms and used this method to bound the probability that a quantum algorithm can evaluate
a random oracle O : X → Y at k points using q < k queries. When the range of Y is small, say
|Y| = 8, a quantum algorithm can recover k points of O from only 0.9k queries with high probability.
However, we show that when the range Y is large, no algorithm can produce k input-output pairs of
O using only k−1 queries, with non-negligible probability. We use these bounds to construct the first
MACs secure against quantum chosen message attacks. We consider both PRF and Carter-Wegman
constructions. For one-time MACs we showed that pair-wise independence does not ensure security,
but four-way independence does.

These results suggest many directions for future work. First, can these bounds be generalized to
signatures to obtain signatures secure against quantum chosen message attacks? Similarly, can we
construct encryption systems secure against quantum chosen ciphertext attacks where decryption
queries are superpositions of ciphertexts?

Acknowledgments

We thank Luca Trevisan and Amit Sahai for helpful conversations about this work. This work
was supported by NSF, DARPA, IARPA, the Air Force Office of Scientific Research (AFO SR)
under a MURI award, Samsung, and a Google Faculty Research Award. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of DARPA, IARPA, DoI/NBC, or
the U.S. Government.

25

8. Quantum-Secure Message Authentication Codes

References

[Aar02] Scott Aaronson. Quantum lower bound for the collision problem. In STOC, pages
635–642, 2002.

[Amb00] Andris Ambainis. Quantum lower bounds by quantum arguments. In STOC, pages
636–643, 2000.

[Amb06] Andris Ambainis. Polynomial degree vs. quantum query complexity. J. Comput. Syst.
Sci., 72(2):220–238, 2006.

[ASdW09] Andris Ambainis, Robert Spalek, and Ronald de Wolf. A new quantum lower bound
method, with applications to direct product theorems and time-space tradeoffs. Algo-
rithmica, 55(3):422–461, 2009.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf.
Quantum Lower Bounds by Polynomials. Journal of the ACM (JACM), 48(4):778–797,
July 2001.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited:
The cascade construction and its concrete security. In FOCS, pages 514–523, 1996.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random Oracles in a Quantum World. In Advances in Cryptology —
ASIACRYPT 2011, 2011.

[BHK+11] Gilles Brassard, Peter Høyer, Kassem Kalach, Marc Kaplan, Sophie Laplante, and Louis
Salvail. Merkle Puzzles in a Quantum World. Advances in Cryptology - CRYPTO 2011,
pages 391–410, 2011.

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci., 61(3), 2000.

[BS08] Gilles Brassard and Louis Salvail. Quantum Merkle Puzzles. Second International
Conference on Quantum, Nano and Micro Technologies (ICQNM 2008), pages 76–79,
February 2008.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. of FOCS. IEEE, 2001.

[DFNS11] Ivan Damg̊ard, Jakob Funder, Jesper Buus Nielsen, and Louis Salvail. Superposition
attacks on cryptographic protocols. CoRR, abs/1108.6313, 2011.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Construct Random
Functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[HSS11] Sean Hallgren, Adam Smith, and Fang Song. Classical cryptographic protocols in a
quantum world. In Proc. of Crypto, LNCS. Springer, 2011.

[KdW03] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally
decodable codes via a quantum argument. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing (STOC), pages 106–115, 2003.

26

8. Quantum-Secure Message Authentication Codes

[KK11] Daniel M. Kane and Samuel A. Kutin. Quantum interpolation of polynomials. Quantum
Information & Computation, 11(1&2):95–103, 2011. First published in 2009.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Unr10] Dominique Unruh. Universally Composable Quantum Multi-Party Computation. Ad-
vances in Cryptology — EUROCRYPT 2010, pages 486–505, 2010.

[vD98] Wim van Dam. Quantum oracle interrogation: Getting all information for almost half
the price. In FOCS, pages 362–367, 1998.

[WC81] Mark N. Wegman and Larry Carter. New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.

[Zha12a] Mark Zhandry. Secure Identity-Based Encryption in the Quantum Random Oracle
Model. In Advances in Cryptology — CRYPTO, 2012. Full version available at the
Cryptology ePrint Archives: http://eprint.iacr.org/2012/076/.

[Zha12b] Mark Zhandry. How to Construct Quantum Random Functions. In Proceedings of FOCS,
2012. Full version available at the Cryptology ePrint Archives: http://eprint.iacr.
org/2012/182/.

27

8. Quantum-Secure Message Authentication Codes

Dynamic Proofs of Retrievability via Oblivious RAM

David Cash∗ Alptekin Küpçü† Daniel Wichs‡

March 15, 2013

Abstract

Proofs of retrievability allow a client to store her data on a remote server (e.g., “in the cloud”) and
periodically execute an efficient audit protocol to check that all of the data is being maintained correctly
and can be recovered from the server. For efficiency, the computation and communication of the server
and client during an audit protocol should be significantly smaller than reading/transmitting the data in
its entirety. Although the server is only asked to access a few locations of its storage during an audit, it
must maintain full knowledge of all client data to be able to pass.

Starting with the work of Juels and Kaliski (CCS ’07), all prior solutions to this problem crucially
assume that the client data is static and do not allow it to be efficiently updated. Indeed, they all store a
redundant encoding of the data on the server, so that the server must delete a large fraction of its storage
to ‘lose’ any actual content. Unfortunately, this means that even a single bit modification to the original
data will need to modify a large fraction of the server storage, which makes updates highly inefficient.
Overcoming this limitation was left as the main open problem by all prior works.

In this work, we give the first solution providing proofs of retrievability for dynamic storage, where the
client can perform arbitrary reads/writes on any location within her data by running an efficient protocol
with the server. At any point in time, the client can execute an efficient audit protocol to ensure that the
server maintains the latest version of the client data. The computation and communication complexity of
the server and client in our protocols is only polylogarithmic in the size of the client’s data. The starting
point of our solution is to split up the data into small blocks and redundantly encode each block of data
individually, so that an update inside any data block only affects a few codeword symbols. The main
difficulty is to prevent the server from identifying and deleting too many codeword symbols belonging
to any single data block. We do so by hiding where the various codeword symbols for any individual
data block are stored on the server and when they are being accessed by the client, using the algorithmic
techniques of oblivious RAM.

∗IBM Research, T.J. Watson. Hawthorne, NY, USA. cdc@gatech.edu
†Koç University. İstanbul, TURKEY. akupcu@ku.edu.tr
‡IBM Research, T.J. Watson. Hawthorne, NY, USA. wichs@cs.nyu.edu

9. Dynamic Proofs of Retrievability via Oblivious RAM

1 Introduction

Cloud storage systems (Amazon S3, Dropbox, Google Drive etc.) are becoming increasingly popular as a
means of storing data reliably and making it easily accessible from any location. Unfortunately, even though
the remote storage provider may not be trusted, current systems provide few security or integrity guarantees.

Guaranteeing the privacy and authenticity of remotely stored data while allowing efficient access and
updates is non-trivial, and relates to the study of oblivious RAMs and memory checking, which we will
return to later. The main focus of this work, however, is an orthogonal question: How can we efficiently
verify that the entire client data is being stored on the remote server in the first place? In other words, what
prevents the server from deleting some portion of the data (say, an infrequently accessed sector) to save on
storage?

Provable Storage. Motivated by the questions above, there has been much cryptography and security
research in creating a provable storage mechanism, where an untrusted server can prove to a client that her
data is kept intact. More precisely, the client can run an efficient audit protocol with the untrusted server,
guaranteeing that the server can only pass the audit if it maintains full knowledge of the entire client data.
This is formalized by requiring that the data can be efficiently extracted from the server given its state at
the beginning of any successful audit. One may think of this as analogous to the notion of extractors in the
definition of zero-knowledge proofs of knowledge [14, 4].

One trivial audit mechanism, which accomplishes the above, is for the client to simply download all of
her data from the server and check its authenticity (e.g., using a MAC). However, for the sake of efficiency,
we insist that the computation and communication of the server and client during an audit protocol is much
smaller than the potentially huge size of the client’s data. In particular, the server shouldn’t even have to
read all of the client’s data to run the audit protocol, let alone transmit it. A scheme that accomplishes the
above is called a Proof of Retrievability (PoR).

Prior Techniques. The first PoR schemes were defined and constructed by Juels and Kaliski [19], and
have since received much attention. We review the prior work and and closely related primitives (e.g.,
sublinear authenticators [23] and provable data possession [1]) in Section 1.2.

On a very high level, all PoR constructions share essentially the same common structure. The client
stores some redundant encoding of her data under an erasure code on the server, ensuring that the server
must delete a significant fraction of the encoding before losing any actual data. During an audit, the client
then checks a few random locations of the encoding, so that a server who deleted a significant fraction will
get caught with overwhelming probability.

More precisely, let us model the client’s input data as a string M ∈ Σ` consisting of ` symbols from
some small alphabet Σ, and let Enc : Σ` → Σ`′ denote an erasure code that can correct the erasure of up
to 1

2 of its output symbols. The client stores Enc(M) on the server. During an audit, the client selects
a small random subset of t out of the `′ locations in the encoding, and challenges the server to respond
with the corresponding values, which it then checks for authenticity (e.g., using MAC tags). Intuitively,
if the server deletes more than half of the values in the encoding, it will get caught with overwhelming
probability > 1 − 2−t during the audit, and otherwise it retains knowledge of the original data because of
the redundancy of the encoding. The complexity of the audit protocol is only proportional to t which can
be set to the security parameter and is independent of the size of the client data.1

Difficulty of Updates. One of the main limitations of all prior PoR schemes is that they do not support
efficient updates to the client data. Under the above template for PoR, if the client wants to modify even a
single location of M, it will end up needing to change the values of at least half of the locations in Enc(M)

1Some of the more advanced PoR schemes (e.g., [27, 10]) optimize the communication complexity of the audit even further
by cleverly compressing the t codeword symbols and their authentication tags in the server’s response.

1
9. Dynamic Proofs of Retrievability via Oblivious RAM

on the server, requiring a large amount of work (linear in the size of the client data). Constructing a PoR
scheme that allows for efficient updates was stated as the main open problem by Juels and Kaliski [19]. We
emphasize that, in the setting of updates, the audit protocol must ensure that the server correctly maintains
knowledge of the latest version of the client data, which includes all of the changes incurred over time.
Before we describe our solution to this problem, let us build some intuition about the challenges involved
by examining two natural but flawed proposals.

First Proposal. A natural attempt to overcome the inefficiency of updating a huge redundant encoding
is to encode the data “locally” so that a change to one position of the data only affects a small number
of codeword symbols. More precisely, instead of using an erasure code that takes all ` data symbols as
input, we can use a code Enc : Σk → Σn that works on small blocks of only k � ` symbols encoded into
n symbols. The client divides the data M into L = `/k message blocks (m1, . . . ,mL), where each block
mi ∈ Σk consists of k symbols. The client redundantly encodes each message block mi individually into
a corresponding codeword block ci = Enc(mi) ∈ Σn using the above code with small inputs. Finally the
client concatenates these codeword blocks to form the value C = (c1, . . . , cL) ∈ ΣLn, which it stores on the
server. Auditing works as before: The client randomly chooses t of the L · n locations in C and challenges
the server to respond with the corresponding codeword symbols in these locations, which it then tests for
authenticity.2 The client can now read/write to any location within her data by simply reading/writing to
the n relevant codeword symbols on the server.

The above proposal can be made secure when the block-size k (which determines the complexity of
reads/updates) and the number of challenged locations t (which determines the complexity of the audit) are
both set to Ω(

√
`) where ` is the size of the data (see Appendix A for details). This way, the audit is likely to

check sufficiently many values in each codeword block ci. Unfortunately, if we want a truly efficient scheme
and set n, t = o(

√
`) to be small, then this solution becomes completely insecure. The server can delete a

single codeword block ci from C entirely, losing the corresponding message block mi, but still maintain a
good chance of passing the above audit as long as none of the t random challenge locations coincides with
the n deleted symbols, which happens with good probability.

Second Proposal. The first proposal (with small n, t) was insecure because a cheating server could easily
identify the locations within C that correspond to a single message block and delete exactly the codeword
symbols in these locations. We can prevent such attacks by pseudo-randomly permuting the locations of all
of the different codeword-symbols of different codeword blocks together. That is, the client starts with the
value C = (C[1], . . . ,C[Ln]) = (c1, . . . , cL) ∈ ΣLn computed as in the first proposal. It chooses a pseudo-
random permutation π : [Ln] → [Ln] and computes the permuted value C′ := (C[π(1)], . . . ,C[π(Ln)])
which it then stores on the server in an encrypted form (each codeword symbol is encrypted separately).
The audit still checks t out of Ln random locations of the server storage and verifies authenticity.

It may seem that the server now cannot immediately identify and selectively delete codeword-symbols
belonging to a single codeword block, thwarting the attack on the first proposal. Unfortunately, this mod-
ification only re-gains security in the static setting, when the client never performs any operations on the
data.3 Once the client wants to update some location of M that falls inside some message block mi, she
has to reveal to the server where all of the n codeword symbols corresponding to ci = Enc(mi) reside in
its storage since she needs to update exactly these values. Therefore, the server can later selectively delete
exactly these n codeword symbols, leading to the same attack as in the first proposal.

Impossibility? Given the above failed attempts, it may even seem that truly efficient updates could be
inherently incompatible with efficient audits in PoR. If an update is efficient and only changes a small

2This requires that we can efficiently check the authenticity of the remotely stored data C, while supporting efficient updates
on it. This problem is solved by memory checking (see our survey of related work in Section 1.2).

3A variant of this idea was actually used by Juels and Kaliski [19] for extra efficiency in the static setting.

2
9. Dynamic Proofs of Retrievability via Oblivious RAM

subset of the server’s storage, then the server can always just ignore the update, thereby failing to maintain
knowledge of the latest version of the client data. All of the prior techniques appear ineffective against
such attack. More generally, any audit protocol which just checks a small subset of random locations of the
server’s storage is unlikely to hit any of the locations involved in the update, and hence will not detect such
cheating, meaning that it cannot be secure.4 However, this does not rule out the possibility of a very efficient
solution that relies on a more clever audit protocol, which is likelier to check recently updated areas of the
server’s storage and therefore detect such an attack. Indeed, this property will be an important component
in our actual solution.

1.1 Our Results and Techniques

Overview of Result. In this work, we give the first solution to dynamic PoR that allows for efficient
updates to client data. The client only keeps some short local state, and can execute arbitrary read/write
operations on any location within the data by running a corresponding protocol with the server. At any
point in time, the client can also initiate an audit protocol, which ensures that a passing server must have
complete knowledge of the latest version of the client data. The cost of any read/write/audit execution
in terms of server/client work and communication is only polylogarithmic in the size of the client data.
The server’s storage remains linear in the size of the client data. Therefore, our scheme is optimal in an
asymptotic sense, up to polylogarithmic factors. See Section 7 for a detailed efficiency analysis.

PoR via Oblivious RAM. Our dynamic PoR solution starts with the same idea as the first proposal
above, where the client redundantly encodes small blocks of her data individually to form the value C =
(c1, . . . , cL) ∈ ΣLn, consisting of L codeword blocks and `′ = Ln codeword symbols, as defined previously.
The goal is to then store C on the server in some “clever way” so that that the server cannot selectively
delete too many symbols within any single codeword block ci, even after observing the client’s read and write
executions (which access exactly these symbols). As highlighted by the second proposal, simply permuting
the locations of the codeword symbols of C is insufficient. Instead, our main idea it to store all of the
individual codeword symbols of C on the server using an oblivious RAM scheme.

Overview of ORAM. Oblivious RAM (ORAM), initially defined by Goldreich and Ostrovsky [13], allows
a client to outsource her memory to a remote server while allowing the client to perform random-access reads
and writes in a private way. More precisely, the client has some data D ∈ Σd, which she stores on the server
in some carefully designed privacy-preserving form, while only keeping a short local state. She can later run
efficient protocols with the server to read or write to the individual entries of D. The read/write protocols
of the ORAM scheme should be efficient, and the client/server work and communication during each such
protocol should be small compared to the size of D (e.g., polylogarithmic). A secure ORAM scheme not
only hides the content of D from the server, but also the access pattern of which locations in D the client is
reading or writing in each protocol execution. Thus, the server cannot discern any correlation between the
physical locations of its storage that it is asked to access during each read/write protocol execution and the
logical location inside D that the client wants to access via this protocol.

We review the literature and efficiency of ORAM schemes in Section 6. In our work, we will also always
use ORAM schemes that are authenticated, which means that the client can detect if the server ever sends
an incorrect value. In particular, authenticated ORAM schemes ensure that the most recent version of the
data is being retrieved in any accepting read execution, preventing the server from “rolling back” updates.

Construction of Dynamic PoR. A detailed technical description of our construction appears in Sec-
tion 5, and below we give a simplified overview. In our PoR construction, the client starts with data

4The above only holds when the complexity of the updates and the audit are both o(
√
`), where ` is the size of the data. See

Appendix A for a simple protocol of this form that archives square-root complexity.

3
9. Dynamic Proofs of Retrievability via Oblivious RAM

Memory M

Memory parsed into
message blocks (m1, ... , mL)

Locally encoded
memory C = (c1, ... , cL)

ORAM server
data structures ...

ORAM protocols

Figure 1: Our Construction

M ∈ Σ` which she splits into small message blocks M = (m1, . . . ,mL) with mi ∈ Σk where the block
size k � ` = Lk is only dependant on the security parameter. She then applies an error correcting code
Enc : Σk → Σn that can efficiently recover n

2 erasures to each message block individually, resulting in the
value C = (c1, . . . , cL) ∈ ΣLn where ci = Enc(mi). Finally, she initializes an ORAM scheme with the initial
data D = C, which the ORAM stores on the server in some clever privacy-preserving form, while keeping
only a short local state at the client.

Whenever the client wants to read or write to some location within her data, she uses the ORAM scheme
to perform the necessary reads/writes on each of the n relevant codeword symbols of C (see details in
Section 5). To run an audit, the client chooses t (≈ security parameter) random locations in {1, . . . , Ln}
and runs the ORAM read protocol t times to read the corresponding symbols of C that reside in these
locations, checking them for authenticity.

Catching Disregarded Updates. First, let us start with a sanity check, to explain how the above con-
struction can thwart a specific attack in which the server simply disregards the latest update. In particular,
such attack should be caught by a subsequent audit. During the audit, the client runs the ORAM pro-
tocol to read t random codeword symbols and these are unlikely to coincide with any of the n codeword
symbols modified by the latest update (recall that t and n are both small and independent of the data
size `). However, the ORAM scheme stores data on the server in a highly organized data-structure, and
ensures that the most recently updated data is accessed during any subsequent “read” execution, even for
an unrelated logical location. This is implied by ORAM security since we need to hide whether or not the
location of a read was recently updated or not. Therefore, although the audit executes the “ORAM read”
protocols on random logical locations inside C, the ORAM scheme will end up scanning recently updated
ares of the server’s actual storage and check them for authenticity, ensuring that recent updates have not
been disregarded.

Security and “Next-Read Pattern Hiding”. The high-level security intuition for our PoR scheme is
quite simple. The ORAM hides from the server where the various locations of C reside in its storage, even
after observing the access pattern of read/write executions. Therefore it is difficult for the server to reach a
state where it will fail on read executions for most locations within some single codeword block (lose data)
without also failing on too many read executions altogether (lose the ability to pass an audit).

Making the above intuition formal is quite subtle, and it turns out that standard notion of ORAM

4
9. Dynamic Proofs of Retrievability via Oblivious RAM

security does not suffice. The main issue is that that the server may be able to somehow delete all (or
most) of the n codeword symbols that fall within some codeword block ci = (C[j+ 1], . . . ,C[j+n]) without
knowing which block it deleted. Therefore, although the server will fail on any subsequent read if and only
if its location falls within the range {j + 1, . . . , j + n}, it will not learn anything about the location of the
read itself since it does not know the index j. Indeed, we will give an example of a contrived ORAM scheme
where such an attack is possible and our resulting construction of PoR using this ORAM is insecure.

We show, however, that the intuitive reasoning above can be salvaged if the ORAM scheme achieves a
new notion of security that we call next-read pattern hiding (NRPH), which may be of independent interest.
NRPH security considers an adversarial server that first gets to observe many read/write protocol executions
performed sequentially with the client, resulting in some final client configuration Cfin. The adversarial server
then gets to see various possibilities for how the “next read” operation would be executed by the client for
various distinct locations, where each such execution starts from the same fixed client configuration Cfin.5

The server should not be able to discern any relationship between these executions and the locations they
are reading. For example, two such “next-read” executions where the client reads two consecutive locations
should be indistinguishable from two executions that read two random and unrelated locations. This notion
of NRPH security will be used to show that server cannot reach a state where it can selectively fail to respond
on read queries whose location falls within some small range of a single codeword block (lose data), but still
respond correctly to most completely random reads (pass an audit).

Proving Security via an Extractor. As mentioned earlier, the security of PoR is formalized via an
extractor and we now give a high-level overview of how such an extractor works. In particular, we claim
that we can take any adversarial server that has a “good” chance of passing an audit and use the extractor
to efficiently recover the latest version of the client data from it. The extractor initializes an “empty array”
C. It then executes random audit protocols with the server, by acting as the honest client. In particular,
it chooses t random locations within the array and runs the corresponding ORAM read protocols. If the
execution of the audit is successful, the extractor fills in the corresponding values of C that it learned during
the audit execution. In either case, it then rewinds the server and runs a fresh execution of the audit,
repeating this step for several iterations.

Since the server has a good chance of passing a random audit, it is easy to show that the extractor can
eventually recover a large fraction, say > 3

4 , of the entries inside C by repeating this process sufficiently many
times. Because of the authenticity of the ORAM, the recovered values are the correct ones, corresponding to
the latest version of the client data. Now we need to argue that there is no codeword block ci within C for
which the extractor recovered fewer than 1

2 of its codeword symbols, as this would prevent us from applying
erasure decoding and recovering the underlying message block. Let FAILURE denote the above bad event.
If all the recovered locations (comprising > 3

4 fraction of the total) were distributed uniformly within C
then FAILURE would occur with negligible probability, as long as the codeword size n is sufficiently large
in the security parameter. We can now rely on the NRPH security of the ORAM to ensure that FAILURE
also happens with negligible probability in our case. We can think of the FAILURE event as a function of
the locations queried by the extractor in each audit execution, and the set of executions on which the server
fails. If the malicious server can cause FAILURE to occur, it means that it can distinguish the pattern
of locations actually queried by the extractor during the audit executions (for which the FAILURE event
occurs) from a randomly permuted pattern of locations (for which the FAILURE event does not occur with
overwhelming probability). Note that the use of rewinding between the audit executions of the extractor
forces us to rely on NRPH security rather than just standard ORAM security.

The above presents the high-level intuition and is somewhat oversimplified. See Section 4 for the formal
definition of NRPH security and Section 5 for the formal description of our dynamic PoR scheme and a
rigorous proof of security.

5This is in contrast to the standard sequential operations where the client state is updated after each execution.

5
9. Dynamic Proofs of Retrievability via Oblivious RAM

Achieving Next-Read Pattern Hiding. We show that standard ORAM security does not generically
imply NRPH security, by giving a contrived scheme that satisfies the former but not the latter. Nevertheless,
many natural ORAM constructions in the literature do seem to satisfy NRPH security. In particular, we
examine the efficient ORAM construction of Goodrich and Mitzenmacher [15] and prove that (with minor
modifications) it is NRPH secure.

Contributions. We call our final scheme PORAM since it combines the techniques and security of PoR and
ORAM. In particular, other than providing provable dynamic cloud storage as was our main goal, our scheme
also satisfies the strong privacy guarantees of ORAM, meaning that it hides all contents of the remotely
stored data as well as the access pattern of which locations are accessed when. It also provides strong
authenticity guarantees (same as memory checking ; see Section 1.2), ensuring that any “read” execution
with a malicious remote server is guaranteed to return the latest version of the data (or detect cheating).

In brief, our contributions can be summarized as follows:

• We give the first asymptotically efficient solution to PoR for outsourced dynamic data, where a suc-
cessful audit ensures that the server knows the latest version of the client data. In particular:

– Client storage is small and independent of the data size.

– Server storage is linear in the data size, expanding it by only a small constant factor.

– Communication and computation of client and server during read, write, and audit executions
are polylogarithmic in the size of the client data.

• Our scheme also achieves strong privacy and authenticity guarantees, matching those of oblivious RAM
and memory checking.

• We present a new security notion called “next-read pattern hiding (NRPH)” for ORAM and a con-
struction achieving this new notion, which may be of independent interest.

We mention that the PORAM scheme is simple to implement and has low concrete efficiency overhead on
top of an underlying ORAM scheme with NRPH security. There is much recent and ongoing research activity
in instantiating/implementing truly practical ORAM schemes, which are likely to yield correspondingly
practical instantiations of our PORAM protocol.

1.2 Related Work

Proofs of retrievability for static data were initially defined and constructed by Juels and Kaliski [19],
building on a closely related notion called sublinear-authenticators of Naor and Rothblum [23]. Concurrently,
Ateniese et al. [1] defined another related primitive called provable data possession (PDP). Since then, there
has been much ongoing research activity on PoR and PDP schemes.

PoR vs. PDP. The main difference between PoR and PDP is the notion of security that they achieve.
A PoR audit guarantees that the server maintains knowledge of all of the client data, while a PDP audit
only ensures that the server is storing most of the client data. For example, in a PDP scheme, the server
may lose a small portion of client data (say 1 MB out of a 10 GB file) and may maintain an high chance of
passing a future audit.6 On a technical level, the main difference in most prior PDP/PoR constructions is
that PoR schemes store a redundant encoding of the client data on the server. For a detailed comparison,
see Küpçü [21, 22].

6An alternative way to use PDPs can also achieve full security, at the cost of requiring the server to read the entire client data
during an audit, but still minimizing the communication complexity. If the data is large, say 10 GB, this is vastly impractical.

6
9. Dynamic Proofs of Retrievability via Oblivious RAM

Static Data. PoR and PDP schemes for static data (without updates) have received much research atten-
tion [27, 10, 7, 2], with works improving on communication efficiency and exact security, yielding essentially
optimal solutions. Another interesting direction has been to extend these works to the multi-server setting
[6, 8, 9] where the client can use the audit mechanism to identify faulty machines and recover the data from
the others.

Dynamic Data. The works of Ateniese et al. [3], Erway et al. [12] and Wang et al. [30] show how
to achieve PDP security for dynamic data, supporting efficient updates. This is closely related to work on
memory checking [5, 23, 11], which studies how to authenticate remotely stored dynamic data so as to allow
efficient reads/writes, while being able to verify the authenticity of the latest version of the data (preventing
the server from “rolling back” updates and using an old version). Unfortunately, these techniques alone
cannot be used to achieve the stronger notion of PoR security. Indeed, the main difficulty that we resolve
in this work, how to efficiently update redundantly encoded data, does not come up in the context of PDP.

A recent work of Stefanov et al. [29] considers PoR for dynamic data, but in a more complex setting
where an additional trusted “portal” performs some operations on behalf of the client, and can cache updates
for an extended period of time. It is not clear if these techniques can be translated to the basic client/server
setting, which we consider here. However, even in this modified setting, the complexity of the updates and
the audit in that work is proportional to square-root of the data size, whereas ours is polylogarithmic.

2 Preliminaries

Notation. Throughout, we use λ to denote the security parameter. We identify efficient algorithms as
those running in (probabilistic) polynomial time in λ and their input lengths, and identify negligible quantities
(e.g., acceptable error probabilities) as negl(λ) = 1/λω(1), meaning that they are asymptotically smaller than

1/λc for every constant c > 0. For n ∈ N, we define the set [n]
def
= {1, . . . , n}. We use the notation (k mod n)

to denote the unique integer i ∈ {0, . . . , n− 1} such that i = k (mod n).

Erasure Codes. We say that (Enc,Dec) is an (n, k, d)Σ-code with efficient erasure decoding over an al-
phabet Σ if the original message can always be recovered from a corrupted codeword with at most d − 1
erasures. That is, for every message m = (m1, . . . ,mk) ∈ Σk giving a codeword c = (c1, . . . , cn) = Enc(m),
and every corrupted codeword c̃ = (c̃1, . . . , c̃n) such that c̃i ∈ {ci,⊥} and the number of erasures is
|{i ∈ [n] : c̃i = ⊥}| ≤ d − 1, we have Dec(c̃) = m. We say that a code is systematic if, for every
message m, the codeword c = Enc(m) contains m in the first k positions c1 = m1, . . . , ck = mk. A sys-
tematic variant of the Reed-Solomon code achieves the above for any integers n > k and any field Σ of size
|Σ| ≥ n with d = n− k + 1.

Virtual Memory. We think of virtual memory M, with word-size w and length `, as an array M ∈ Σ`

where Σ
def
= {0, 1}w. We assume that, initially, each location M[i] contains the special uninitialized symbol

0 = 0w. Throughout, we will think of ` as some large polynomial in the security parameter, which upper
bounds the amount of memory that can be used.

Outsourcing Virtual Memory. In the next two sections, we look at two primitives: dynamic PoR and
ORAM. These primitives allow a client to outsource some virtual memory M to a remote server, while
providing useful security guarantees. Reading and writing to some location of M now takes on the form
of a protocol execution with the server. The goal is to provide security while preserving efficiency in terms
of client/server computation, communication, and the number of server-memory accesses per operation,
which should all be poly-logarithmic in the length `. We also want to optimize the size of the client storage
(independent of `) and server storage (not much larger than `). We find this abstract view of outsourcing
memory to be the simplest and most general to work with. Any higher-level data-structures and operations

7
9. Dynamic Proofs of Retrievability via Oblivious RAM

(e.g., allowing appends/inserts to data or implementing an entire file-system) can be easily done on top of
this abstract notion of memory and therefore securely outsourced to the remote server.

3 Dynamic PoR

A Dynamic PoR scheme consists of protocols PInit,PRead,PWrite, Audit between two stateful parties: a
client C and a server S. The server acts as the curator for some virtual memory M, which the client can
read, write and audit by initiating the corresponding interactive protocols:

• PInit(1λ, 1w, `): This protocol corresponds to the client initializing an (empty) virtual memory M with
word-size w and length `, which it supplies as inputs.

• PRead(i): This protocol corresponds to the client reading v = M[i], where it supplies the input i and
outputs some value v at the end.

• PWrite(i, v): This protocol corresponds to setting M[i] := v, where the client supplies the inputs i, v.

• Audit: This protocol is used by the client to verify that the server is maintaining the memory contents
correctly so that they remain retrievable. The client outputs a decision b ∈ {accept, reject}.

The client C in the protocols may be randomized, but we assume (w.l.o.g.) that the honest server S is
deterministic. At the conclusion of the PInit protocol, both the client and the server create some long-term
local state, which each party will update during the execution of each of the subsequent protocols. The
client may also output reject during the execution of the PInit,PRead,PWrite protocols, to denote that it
detected some misbehavior of the server. Note that we assume that the virtual memory is initially empty,
but if the client has some initial data, she can write it onto the server block-by-block immediately after
initialization. For ease of presentation, we may assume that the state of the client and the server always
contains the security parameter, and the memory parameters (1λ, 1w, `).

We now define the three properties of a dynamic PoR scheme: correctness, authenticity and retrievability.
For these definitions, we say that P = (op0, op1, . . . , opq) is a dynamic PoR protocol sequence if op0 =
PInit(1λ, 1w, `) and, for j > 0, opj ∈ {PRead(i), PWrite(i, v), Audit} for some index i ∈ [`] and value
v ∈ {0, 1}w.

Correctness. If the client and the server are both honest and P = (op0, . . . , opq) is some protocol sequence,
then we require the following to occur with probability 1 over the randomness of the client:

• Each execution of a protocol opj = PRead(i) results in the client outputting the correct value v = M[i],
matching what would happen if the corresponding operations were performed directly on a memory M.
In particular, v is the value contained in the most recent prior write operation with location i, or, if no
such prior operation exists, v = 0.

• Each execution of the Audit protocol results in the decision b = accept.

Authenticity. We require that the client can always detect if any protocol message sent by the server de-
viates from honest behavior. More precisely, consider the following game AuthGameS̃(λ) between a malicious

server S̃ and a challenger:

• The malicious server S̃(1λ) specifies a valid protocol sequence P = (op0, . . . , opq).

• The challenger initializes a copy of the honest client C and the (deterministic) honest server S. It
sequentially executes op0, . . . , opq between C and the malicious server S̃ while, in parallel, also passing
a copy of every message from C to the honest server S.

• If, at any point during the execution of some opj , any protocol message given by S̃ differs from that of
S, and the client C does not output reject, the adversary wins and the game outputs 1. Else 0.

8
9. Dynamic Proofs of Retrievability via Oblivious RAM

For any efficient adversarial server S̃, we require Pr[AuthGameS̃(λ) = 1] ≤ negl(λ). Note that authenticity
and correctness together imply that the client will always either read the correct value corresponding to the
latest contents of the virtual memory or reject whenever interacting with a malicious server.

Retrievability. Finally we define the main purpose of a dynamic PoR scheme, which is to ensure that the
client data remains retrievable. We wish to guarantee that, whenever the malicious server is in a state with
a reasonable probability δ of successfully passing an audit, he must know the entire content of the client’s
virtual memory M. As in “proofs of knowledge”, we formalize knowledge via the existence of an efficient
extractor E which can recover the value M given (black-box) access to the malicious server.

More precisely, we define the game ExtGameS̃,E(λ, p) between a malicious server S̃, extractor E , and
challenger:

• The malicious server S̃(1λ) specifies a protocol sequence P = (op0, . . . , opq). Let M ∈ Σ` be the correct
value of the memory contents at the end of executing P .

• The challenger initializes a copy of the honest client C and sequentially executes op0, . . . , opq between C
and S̃. Let Cfin and S̃fin be the final configurations (states) of the client and malicious server at the end of
this interaction, including all of the random coins of the malicious server. Define the success-probability

Succ(S̃fin)
def
= Pr

[
S̃fin

Audit←→ Cfin = accept
]

as the probability that an execution of a subsequent Audit protocol between S̃fin and Cfin results in the
latter outputting accept. The probability is only over the random coins of Cfin during this execution.

• Run M′ ← E S̃fin(Cfin, 1
`, 1p), where the extractor E gets black-box rewinding access to the malicious

server in its final configuration S̃fin, and attempts to extract out the memory contents as M′.7

• If Succ(S̃fin) ≥ 1/p and M′ 6= M then output 1, else 0.

We require that there exists a probabilistic-poly-time extractor E such that, for every efficient malicious
server S̃ and every polynomial p = p(λ) we have Pr[ExtGameS̃,E(λ, p) = 1] ≤ negl(λ).

The above says that whenever the malicious server reaches some state S̃fin in which it maintains a δ ≥ 1/p
probability of passing the next audit, the extractor E will be able to extract out the correct memory contents
M from S̃fin, meaning that the server must retain full knowledge of M in this state. The extractor is efficient,
but can run in time polynomial in p and the size of the memory `.

A Note on Adaptivity. We defined the above authenticity and retrievability properties assuming that
the sequence of read/write operations is adversarial, but is chosen non-adaptively, before the adversarial
server sees any protocol executions. This seems to be sufficient in most realistic scenarios, where the server
is unlikely to have any influence on which operations the client wants to perform. It also matches the
security notions in prior works on ORAM. Nevertheless, we note that our final results also achieve adaptive
security, where the attacker can choose the sequence of operations opi adaptively after seeing the execution
of previous operations, if the underlying ORAM satisfies this notion. Indeed, most prior ORAM solutions
seem to do so, but it was never included in their analysis.

4 Oblivious RAM with Next-Read Pattern Hiding

An ORAM consists of protocols (OInit,ORead,OWrite) between a client C and a server S, with the same
syntax as the corresponding protocols in PoR. We will also extend the syntax of ORead and OWrite to allow
for reading/writing from/to multiple distinct locations simultaneously. That is, for arbitrary t ∈ N, we define

7This is similar to the extractor in zero-knowledge proofs of knowledge. In particular E can execute protocols with the
malicious server in its state S̃fin and rewind it back this state at the end of the execution.

9
9. Dynamic Proofs of Retrievability via Oblivious RAM

the protocol ORead(i1, . . . , it) for distinct indices i1, . . . , it ∈ [`], in which the client outputs (v1, . . . , vt) corre-
sponding to reading v1 = M[i1], . . . , vt = M[it]. Similarly, we define the protocol OWrite(it, . . . , it; v1, . . . , vt)
for distinct indices i1, . . . , it ∈ [`], which corresponds to setting M[i1] := v1, . . . ,M[it] := vt.

We say that P = (op0, . . . , opq) is an ORAM protocol sequence if op0 = OInit(1λ, 1w, `) and, for j > 0,
opj is a valid (multi-location) read/write operation.

We require that an ORAM construction needs to satisfy correctness and authenticity, which are defined
the same way as in PoR.8 For privacy, we define a new property called next-read pattern hiding. For
completeness, we also define the standard notion of ORAM pattern hiding in Appendix B.

Next-Read Pattern Hiding. Consider an honest-but-curious server A who observes the execution of
some protocol sequence P with a client C resulting in the final client configuration Cfin. At the end of this
execution, A gets to observe how Cfin would execute the next read operation ORead(i1, . . . , it) for various
different t-tuples (i1, . . . , it) of locations, but always starting in the same client state Cfin. We require that A
cannot observe any correlation between these next-read executions and their locations, up to equality. That
is, A should not be able to distinguish if Cfin instead executes the next-read operations on permuted locations
ORead(π(i1), . . . , π(it)) for a permutation π : [`]→ [`].

More formally, we define NextReadGamebA(λ), for b ∈ {0, 1}, between an adversary A and a challenger:

• The attacker A(1λ) chooses an ORAM protocol sequence P1 = (op0, . . . , opq1). It also chooses a
sequence P2 = (rop1, . . . , ropq2) of valid multi-location read operations, where each operation is of
the form ropj = ORead(ij,1, . . . , ij,tj) with tj distinct locations. Lastly, it chooses a permutation
π : [`]→ [`]. For each ropj in P2, define a permuted version rop′j := ORead(π(ij,1), . . . , π(ij,tj)). The
game now proceeds in two stages.

• Stage I. The challenger initializes the honest client C and the (deterministic) honest server S. It
sequentially executes the protocols P = (op0, . . . , opq1) between C and S. Let Cfin,Sfin be the final
configuration of the client and server at the end.

• Stage II. For each j ∈ [q2]: challenger either executes the original operation ropj if b = 0, or the
permuted operation rop′j if b = 1, between C and S. At the end of each operation execution it resets
the configuration of the client and server back to Cfin,Sfin respectively, before the next execution.

• The adversary A is given the transcript of all the protocol executions in stages I and II, and outputs a
bit b̃ which we define as the output of the game. Note that, since the honest server S is deterministic,
seeing the protocol transcripts between S and C is the same as seeing the entire internal state of S at
any point time.

We require that, for every efficient A, we have∣∣Pr[NextReadGame0
A(λ) = 1]− Pr[NextReadGame1

A(λ) = 1]
∣∣ ≤ negl(λ).

5 PORAM: Dynamic PoR via ORAM

We now give our construction of dynamic PoR, using ORAM. Since the ORAM security properties are
preserved by the construction as well, we happen to achieve ORAM and dynamic PoR simultaneously.
Therefore, we call our construction PORAM.

8Traditionally, authenticity is not always defined/required for ORAM. However, it is crucial for our use. As noted in several
prior works, it can often be added at almost no cost to efficiency. It can also be added generically by running a memory checking
scheme on top of ORAM. See Section 6.4 for details.

10
9. Dynamic Proofs of Retrievability via Oblivious RAM

Overview of Construction. Let (Enc, Dec) be an (n, k, d = n − k + 1)Σ systematic code with efficient
erasure decoding over the alphabet Σ = {0, 1}w (e.g., the systematic Reed-Solomon code over F2w). Our
construction of dynamic PoR will interpret the memory M ∈ Σ` as consisting of L = `/k consecutive message
blocks, each having k alphabet symbols (assume k is small and divides `). The construction implicitly maps
operation on M to operations on encoded memory C ∈ (Σ)`code=Ln, which consists of L codeword blocks
with n alphabet symbols each. The L codeword blocks C = (c1, . . . , cL) are simply the encoded versions of
the corresponding message blocks in M = (m1, . . . ,mL) with cq = Enc(mq) for q ∈ [L]. This means that,
for each i ∈ [`], the value of the memory location M[i] can only affect the values of the encoded-memory
locations C[j + 1], . . . ,C[j + n] where j = n · bi/kc. Furthermore, since the encoding is systematic, we have
M[i] = C[j + u] where u = (i mod k) + 1. To read the memory location M[i], the client will use ORAM
to read the codeword location C[j + u]. To write to the memory location M[i] := v, the client needs to
update the entire corresponding codeword block. She does so by first using ORAM to read the corresponding
codeword block c = (C[j+ 1], . . . ,C[j+n]), and decodes to obtain the original memory block m = Dec(c).9

She then locally updates the memory block by setting m[u] := v, re-encodes the updated memory block
to get c′ = (c1, . . . , cn) := Enc(m) and uses the ORAM to write c′ back into the encoded memory, setting
C[j + 1] := c′1, . . . ,C[j + n] := c′n.

The Construction. Our PORAM construction is defined for some parameters n > k, t ∈ N. Let O =
(OInit,ORead,OWrite) be an ORAM. Let (Enc, Dec) be an (n, k, d = n − k + 1)Σ systematic code with
efficient erasure decoding over the alphabet Σ = {0, 1}w (e.g., the systematic Reed-Solomon code over F2w).

• PInit(1λ, 1w, `): Assume k divides ` and let `code := n · (`/k). Run the OInit(1λ, 1w, `code) protocol.

• PRead(i): Let i′ := n · bi/kc+ (i mod k) + 1 and run the ORead(i′) protocol.

• PWrite(i, v): Set j := n · bi/kc and u := (i mod k) + 1.

– Run ORead(j + 1, . . . , j + n) and get output c = (c1, . . . , cn).

– Decode m = (m1, . . . ,mk) = Dec(c).

– Modify position u of m by locally setting mu := v. Re-encode the modified message-block m by
setting c′ = (c′1, . . . , c

′
n) := Enc(m).

– Run OWrite(j + 1, . . . , j + n; c′1, . . . , c
′
n).

• Audit: Pick t distinct indices j1, . . . , jt ∈ [`code] at random. Run ORead(j1, . . . , jt) and return accept

iff the protocol finished without outputting reject.

If, any ORAM protocol execution in the above scheme outputs reject, the client enters a special rejection
state in which it stops responding and automatically outputs reject for any subsequent protocol execution.

It is easy to see that if the underlying ORAM scheme used in the above PORAM construction is secure in
the standard sense of ORAM (see Appendix B) then the above construction preserves this ORAM security,
hiding which locations are being accessed in each operation. As our main result, we now prove that if the
ORAM scheme satisfies next-read pattern hiding (NRPH) security then the PORAM construction above is
also a secure dynamic PoR scheme.

Theorem 1. Assume that O = (OInit,ORead,OWrite) is an ORAM with next-read pattern hiding (NRPH)
security, and we choose parameters k = Ω(λ), k/n = (1 − Ω(1)), t = Ω(λ). Then the above scheme
PORAM = (PInit,PRead,PWrite,Audit) is a dynamic PoR scheme.

9We can skip this step if the client already has the value m stored locally e.g. from prior read executions.

11
9. Dynamic Proofs of Retrievability via Oblivious RAM

5.1 Proof of Theorem 1

The correctness and authenticity properties of PORAM follow immediately from those of the underlying
ORAM scheme O. The main challenge is to show that the retrievability property holds. As a first step, let
us describe the extractor.

The Extractor. The extractor E S̃fin(Cfin, 1
`, 1p) works as follows:

(1) Initialize C := (⊥)`code where `code = n(`/k) to be an empty vector.

(2) Keep rewinding and auditing the server by repeating the following step for s = max(2`code, λ) · p times:
Pick t distinct indices j1, . . . , jt ∈ [`code] at random and run the protocol ORead(j1, . . . , jt) with S̃fin,
acting as Cfin as in the audit protocol. If the protocol is accepting and Cfin outputs (v1, . . . , vt), set
C[j1] := v1, . . . ,C[jt] := vt. Rewind S̃fin, Cfin to their state prior to this execution for the next iteration.

(3) Let δ
def
= (1 + k

n)/2. If the number of “filled in” values in C is |{j ∈ [`code] : C[j] 6= ⊥}| < δ · `code then
output fail1. Else interpret C as consisting of L = `/k consecutive codeword blocks C = (c1, . . . , cL)
with each block cj ∈ Σn. If there exists some index j ∈ [L] such that the number of “filled” in values in
codeword block cj is |{i ∈ [n] : cj [i] 6= ⊥}| < k then output fail2. Otherwise, apply erasure decoding
to each codeword block cj , to recover mj = Dec(cj), and output M = (m1, . . . ,mL) ∈ Σ`.10

Proof by Contradiction. Assume that PORAM does not satisfy the retrievability property with the above
extractor E . Then there exists some efficient adversarial server S̃ and some polynomials p = p(λ), p′ = p′(λ)
such that, for infinitely many values λ ∈ N, we have:

Pr[ExtGameS̃,E(λ, p(λ)) = 1] >
1

p′(λ)
(1)

Using the same notation as in the definition of ExtGame, let S̃fin, Cfin be the final configurations of the
malicious server S̃ and client C, respectively, after executing the protocol sequence P chosen by the server at
the beginning of the game, and let M be the correct value of the memory contents resulting from P . Then
(1) implies

Pr

[
Succ(S̃fin) > 1

p(λ)

∧E S̃fin(Cfin, 1
`, 1p) 6= M

]
>

1

p′(λ)
(2)

where the probability is over the coins of C, S̃ which determine the final configuration S̃fin, Cfin and the coins
of the extractor E . We now slowly refine the above inequality until we reach a contradiction, showing that
the above cannot hold.

Extractor can only fail with {fail1, fail2}. Firstly, we argue that at the conclusion of ExtGame, the
extractor must either output the correct memory contents M or must fail with one of the error messages
{fail1, fail2}. In other words, it can always detect failure and never outputs an incorrect value M′ 6= M. This
follows from the authenticity of the underlying ORAM scheme which guarantees that the extractor never
puts any incorrect value into the array C.

Lemma 1. Within the execution of ExtGameS̃,E(λ, p), we have:

Pr[E S̃fin(Cfin, 1
`, 1p) 6∈ {M, fail1, fail2}] ≤ negl(λ).

Proof of Lemma. The only way that the above bad event can occur is if the extractor puts an incorrect value
into its array C which does not match encoded version of the correct memory contents M. In particular, this

10The failure event fail1 and the choice of δ is only intended to simplify the analysis of the extractor. The only real bad event
from which the extractor cannot recover is fail2.

12
9. Dynamic Proofs of Retrievability via Oblivious RAM

means that one of the audit protocol executions (consisting of an ORead with t random locations) initiated
by the extractor E between the malicious server S̃fin and the client Cfin causes the client to output some
incorrect value which does not match correct memory contents M, and not reject. By the correctness of the
ORAM scheme, this means that the the malicious server must have deviated from honest behavior during
that protocol execution, without the client rejecting. Assume the probability of this bad event happening is
ρ. Since the extractor runs s = max(2`code, λ) · p = poly(λ) such protocol executions with rewinding, there
is at least ρ/s = ρ/poly(λ) probability that the above bad event occurs on a single random execution of the
audit with S̃fin. But this means that S̃ can be used to break the authenticity of ORAM with advantage
ρ/poly(λ), by first running the requested protocol sequence P and then deviating from honest behavior
during a subsequent ORead protocol without being detected. Therefore, by the authenticity of ORAM, we
must have ρ = negl(λ).

Combining the above with (2) we get:

Pr

[
Succ(S̃fin) > 1

p(λ)

∧E S̃fin(Cfin, 1
`, 1p) ∈ {fail1, fail2}

]
>

1

p′(λ)
− negl(λ) (3)

Extractor can indeed only fail with fail2. Next, we refine equation (3) and claim that the extractor is
unlikely to reach the failure event fail1 and therefore must fail with fail2.

Pr

[
Succ(S̃fin) > 1

p(λ)

∧E S̃fin(Cfin, 1
`, 1p) = fail2

]
>

1

p′(λ)
− negl(λ) (4)

To prove the above, it suffices to prove the following lemma, which intuitively says that if S̃fin has a good
chance of passing an audit, then the extractor must be able to extract sufficiently many values inside C
and hence cannot output fail1. Remember that fail1 occurs if the extractor does not have enough values to
recover the whole memory, and fail2 occurs if the extractor does not have enough values to recover some
message block.

Lemma 2. For any (even inefficient) machine S̃fin and any polynomial p = p(λ) we have:

Pr[E S̃fin(Cfin, 1
`, 1p) = fail1 | Succ(S̃fin) ≥ 1/p] ≤ negl(λ).

Proof of Lemma. Let E be the bad event that fail1 occurs. For each iteration i ∈ [s] within step (2) of the
execution of E let us define:

• Xi to be an indicator random variable that takes on the value Xi = 1 iff the ORead protocol execution
in iteration i does not reject.

• Gi to be a random variable that denotes the subset {j ∈ [`code] : C[j] 6= ⊥} of filled-in positions in the
current version of C at the beginning of iteration i.

• Yi to be an indicator random variable that takes on the value Yi = 1 iff |Gi| < δ · `code and all of the
locations that E chooses to read in iteration i happen to satisfy j1, . . . , jt ∈ Gi.

If Xi = 1 and Yi = 0 in iteration i, then at least one position of C gets filled in so |Gi+1| ≥ |Gi| + 1.
Therefore the bad event E only occurs if fewer than δ`code of the Xi take on a 1 or at least one Yi takes on
a 1, giving us:

Pr[E] ≤ Pr

[
s∑
i=1

Xi < δ`code

]
+

s∑
i=1

Pr[Yi = 1]

13
9. Dynamic Proofs of Retrievability via Oblivious RAM

For each i, we can bound Pr[Yi = 1] ≤
(bδ`codec

t

)
/
(
`code
t

)
≤ δt. If we define X = 1

s

∑s
i=1Xi we also get:

Pr

[
s∑
i=1

Xi < δ`code

]
≤ Pr

[
X < 1/p− (1/p− δ`code

s
)

]
≤ exp(−2s(1/p− δ`code/s)

2)

≤ exp(−s/p) ≤ 2−λ

where the second inequality follows by the Chernoff-Hoeffding bound. Therefore Pr[E] ≤ 2−λ+sδt = negl(λ)
which proves the lemma.

Use Estimated Success Probability. Instead of looking at the true success probability Succ(S̃fin),

which we cannot efficiently compute, let us instead consider an estimated probability S̃ucc(S̃fin) which is
computed in the context of ExtGame by sampling 2λ(p(λ))2 different “audit protocol executions” between
S̃fin and Cfin and seeing on which fraction of them does S̃ succeed (while rewinding S̃fin and Cfin after each
one). Then, by the Chernoff-Hoeffding bound, we have:

Pr

[
S̃ucc(S̃fin) ≤ 1

2p(λ)

∣∣∣∣ Succ(S̃fin) >
1

p(λ)

]
≤ e−λ = negl(λ)

Combining the above with (4), we get:

Pr

[
S̃ucc(S̃fin) > 1

2p(λ)

∧E S̃fin(Cfin, 1
`, 1p) = fail2

]
>

1

p′(λ)
− negl(λ) (5)

Assume Passive Attacker. We now argue that we can replace the active attacker S̃ with an efficient
passive attacker Ŝ who always acts as the honest server S in each protocol execution within the protocol
sequence P and the subsequent audit, but can selectively fail by outputting ⊥ at any point. In particular
Ŝ just runs a copy of S̃ and the honest server S concurrently, and if S̃ deviates from the execution of S, it
just outputs ⊥. Then we claim that, within the context of ExtGameŜ,E , we have:

Pr

[
S̃ucc(Ŝfin) > 1

2p(λ)

∧E Ŝfin(Cfin, 1
`, 1p) = fail2

]
>

1

p′(λ)
− negl(λ) (6)

The above probability is equivalent for Ŝ and S̃, up to the latter deviating from the protocol execution with-
out being detected by the client, either during the protocol execution of P or during one of the polynomially

many executions of the next read used to compute S̃ucc(S̃) and E S̃ . The probability that this occurs is
negligible, by authenticity of ORAM.

Permuted Extractor. We now aim to derive a contradiction from (6). Intuitively, if fail2 occurs (but
fail1 does not), it means that there is some codeword block cj such that Ŝfin is significantly likelier to fail on
a next-read query for which at least one location falls inside cj , than it is for a “random” read query. This
would imply an attack on next-read pattern hiding. We now make this intuition formal. Consider a modified
“permuted extractor” Eperm who works just like E with the exception that it permutes the locations used in
the ORead executions during the extraction process. In particular Eperm makes the following modifications
to E :

• At the beginning, Eperm chooses a random permutation π : [`code]→ [`code].

• During each of the s iterations of the audit protocol, Eperm chooses t indices j1, . . . , jt ∈ [`code] at random
as before, but it then runs ORead(π(j1), . . . , π(jt)) on the permuted values. If the protocol is accepting
the extractor Eperm still “fills-in” the original locations: C[j1], . . . ,C[jt] (since we are only analyzing the
event fail2 we do not care about the values in these locations but only if they are filled in or not).

14
9. Dynamic Proofs of Retrievability via Oblivious RAM

Now we claim that an execution of ExtGame the permuted extractor Eperm is still likely to result in the failure
event fail2. This follows from “next-read pattern hiding” which ensures that permuting the locations inside
of the ORead executions (with rewinding) is indistinguishable.

Lemma 3. The following holds within ExtGameŜ,Eperm
:

Pr

[
S̃ucc(Ŝfin) > 1

2p(λ)

∧E Ŝfin
perm(Cfin, 1

`, 1p) = fail2

]
>

1

p′(λ)
− negl(λ) (7)

Proof of Lemma. Assume that (7) does not hold. Then we claim that there is an adversary A with non-
negligible distinguishing advantage in NextReadGamebA(λ) against the ORAM.

The adversary A runs Ŝ who chooses a PoR protocol sequence P1 = (op0, . . . , opq2), and A translates
this to the appropriate ORAM protocol sequence, as defined by the PORAM scheme. Then A chooses its
own sequence P2 = (rop1, . . . , ropq2) of sufficiently many read operations ORead(i1, . . . , it) where i1, . . . , it ∈
[`code] are random distinct indices. It then passes P1, P2 to its challenger and gets back the transcripts of
the protocol executions for stages (I) and (II) of the game.

The adversary A then uses the client communication from the stage (I) transcript to run Ŝ, getting it into

some state Ŝfin. It then uses the stage (II) transcripts, to compute E Ŝfin(Cfin, 1
`, 1p)

?
= fail2 and to estimate

S̃ucc(Ŝfin), without knowing the client state Cfin. It does so just by checking on which executions does Ŝfin

abort with ⊥ and which it runs to completion (here we use that Ŝ is semi-honest and never deviates beyond

outputting ⊥). Lastly A outputs 1 iff the emulated extraction E Ŝfin(Cfin, 1
`, 1p) = fail2 and S̃ucc(Ŝfin) ≥ 1

2p(λ) .

Let b be the challenger’s bit in the “next-read pattern hiding game”. If b = 0 (not permuted) then

A perfectly emulates the distribution of E Ŝfin(Cfin, 1
`, 1p)

?
= fail2 and the estimation of S̃ucc(Ŝfin) so, by

inequality (6):
Pr[NextReadGame0

A(λ) = 1] ≥ 1/p′(λ)− negl(λ).

If b = 1 (permuted) then A perfectly emulates the distribution of the permuted extractor E Ŝfin
perm(Cfin, 1

`, 1p)
?
=

fail2 and the estimation of S̃ucc(Ŝfin) since, for the latter, it does not matter whether random reads are
permuted or not. Therefore, since (7) is false by assumption, we have

Pr[NextReadGame1
A(λ) = 1] ≤ 1/p′(λ)− µ(λ)

where µ(λ) is non-negligible. This means that the distinguishing advantage of the passive attacker A is
non-negligible in the next-read pattern hiding game, which proves the lemma.

Contradiction. Finally, we present an information-theoretic argument showing that, when using the
permuted extractor Eperm, the probability of fail2 is negligible over the choice of the permutation π. Together
with inequality (7), this gives us a contradiction.

Lemma 4. For any (possibly unbounded) S̃, we have

Pr

[
Succ(˜̃Sfin) > 1

2p(λ)

∧E S̃fin
perm(Cfin, 1

`, 1p) = fail2

]
= negl(λ).

Proof of Lemma. Firstly, note that an equivalent way of thinking about Eperm is to have it issue random (un-
permuted) read queries just like E to recover C, but then permute the locations of C via some permutation
π : [`code] → [`code] before testing for the event fail2. This is simply because we have the distributional
equivalence (π(random), random) ≡ (random, π(random)), where random represents the randomly chosen
locations for the audit and π is a random permutation. Now, with this interpretation of Eperm, the event fail2
occurs only if (I) the un-permuted C contains more than δ fraction of locations with filled in (non ⊥) values

15
9. Dynamic Proofs of Retrievability via Oblivious RAM

so that fail1 does not occur, and (II) the permuted version (c1, . . . , cL) = C[π(1)], . . . ,C[π(`code)] contains
some codeword block cj with fewer than k/n fraction of filled in (non ⊥) values.

We now show that, conditioned on (I) the probability of (II) is negligible over the random choice of π.
Fix some index j ∈ [L] and let us bound the probability that cj is the “bad” codeword block with fewer than
k filled in values. Let X1, X2, . . . , Xn be random variables where Xi is 1 if cj [i] 6= ⊥ and 0 otherwise. Let

X
def
= 1

n

∑n
i=1Xi. Then, over the randomness of π, the random variables X1, . . . , Xn are sampled without

replacement from a population of `code values (location in C), at least δ`code of which are 1 (6= ⊥) and the
rest are 0 (= ⊥). Therefore, by Hoeffding’s bound for sampling from finite populations without replacement
(See section 6 of [18]), we have:

Pr[cj is bad] = Pr[X < k/n] = Pr[X < δ − (δ − k/n)]

≤ exp(−2n(δ − k/n)2) = negl(λ)

By taking a union-bound over all codeword blocks cj , we can bound the probability in equation (7) by∑`/k
j=1 Pr[cj is bad] ≤ negl(λ).
We have already shown that fail1 only occurs with negligible probability. We now showed that fail2 for the

permuted extractor also occurs with negligible probability, while the adversary succeeds with non-negligible
probability.

Combining the above lemma with equation (7), we get a contradiction, showing that the assumption
in equation (1) cannot hold. Thus, as long as the adversary succeeds with non-negligible probability dur-
ing audits, the extractor will also succeed with non-negligible probability in extracting the whole memory
contents correctly.

6 ORAM Instantiation

The notion of ORAM was introduced by Goldreich and Ostrovsky [13], who also introduced the so-called
hierarchical scheme having the structure seen in Figures 1 and 6.2. Since then several improvements to the
hierarchical scheme have been given, including improved rebuild phases and the use of advanced hashing
techniques [31, 26, 15].

We examine a particular ORAM scheme of Goodrich and Mitzenmacher [15] and show that (with minor
modifications) it satisfies next-read pattern hiding security. Therefore, this scheme can be used to instantiate
our PORAM construction. We note that most other ORAM schemes from the literature that follow the
hierarchical structure also seemingly satisfy next-read pattern hiding, and we only focus on the above
example for concreteness. However, in Appendix C, we show that it is not the case that every ORAM
scheme satisfies next-read pattern hiding, and in fact give an example of a contrived scheme which does not
satisfy this notion and makes our construction of PORAM completely insecure. We also believe that there
are natural schemes, such as the ORAM of Shi et al. [28], which do not satisfy this notion. Therefore,
next-read pattern hiding is a meaningful property beyond standard ORAM security and must be examined
carefully.

Overview. We note that ORAM schemes are generally not described as protocols, but simply as a data
structure in which the client’s encrypted data is stored on the server. Each time that a client wants to
perform a read or write to some address i of her memory, this operation is translated into a series of
read/write operations on this data structure inside the server’s storage. In other words, the (honest) server
does not perform any computation at all during these ‘protocols’, but simply allows the client to access
arbitrary locations inside this data structure.

Most ORAM schemes, including the one we will use below, follow a hierarchical structure. They maintain
several levels of hash tables on the server, each holding encrypted address-value pairs, with lower tables

16
9. Dynamic Proofs of Retrievability via Oblivious RAM

having higher capacity. The tables are managed so that the most recently accessed data is kept in the top
tables and the least recently used data is kept in the bottom tables. Over time, infrequently accessed data
is moved into lower tables (obliviously).

To write a value to some address, just insert the encrypted address-value pair in the top table. To read
the value at some address, one hashes the address and checks the appropriate position in the top table. If it
is found in that table, then one hides this fact by sequentially checking random positions in the remaining
tables. If it is not found in the top table, then one hashes the address again and checks the second level table,
continuing down the list until it is found, and then accessing random positions in the remaining tables. Once
all of the tables have been accessed, the found data is written into the top table. To prevent tables from
overflowing (due to too many item insertions), there are additional periodic rebuild phases which obliviously
moves data from the smaller tables to larger tables further down.

Security Intuition. The reason that we always write found data into the top table after any read, is
to protect the privacy of repeatedly reading the same address, and ensuring that this looks the same as
reading various different addresses. In particular, reading the same address twice will not need to access the
same locations on the server, since after the first read, the data will already reside in the top table, and the
random locations will be read at lower tables.

At any point in time, after the server observes many read/write executions, any subsequent read operation
just accesses completely random locations in each table, from the point of view of the server. This is the
main observation needed to argue standard pattern hiding. For next-read pattern hiding, we notice that
we can extend the above to any set of q distinct executions of a subsequent read operation with distinct
addresses (each execution starting in the same client/server state). In particular, each of the q operations
just accesses completely random locations in each table, independently of the other operations, from the
point of view of the server.

One subtlety comes up when the addresses are not completely distinct from each other, as is the case in
our definition where each address can appear in multiple separate multi-read operations. The issue is that
doing a read operation on the same address twice with rewinding will reveal the level at which the data
for that address is stored, thus revealing some information about which address is being accessed. One can
simply observe at which level do the accesses begin to differ in the two executions. We fix this issue by
modifying a scheme so that, instead of accessing freshly chosen random positions in lower tables once the
correct value is found, we instead access pseudorandom positions that are determined by the address being
read and the operation count. That way, any two executions which read the same address starting from the
same client state are exactly the same and do not reveal anything beyond this. Note that, without state
rewinds, this still provides regular pattern hiding.

6.1 Technical Tools

Our construction uses the standard notion of a pseudorandom-function (PRF) where F (K,x) denote the
evaluation of the PRF F on input x with key K. We also rely on a symmetric-key encryption scheme secure
against chosen-plaintext attacks, and let Enc(K, ·),Dec(K, ·) denote the encryption/decryption algorithms
with key K.

Encrypted cuckoo table. An encrypted cuckoo table [25, 20] consists of three arrays (T1, T2, S) that hold
ciphertexts of some fixed length. The arrays T1 and T2 are both of size m and serve as cuckoo-hash tables
while S is an array of size s and serves as an auxiliary stash. The data structure uses two hash functions
h1, h2 : [`] → [m]. Initially, all entries of the arrays are populated with independent encryptions of a
special symbol ⊥. To retrieve a ciphertext associated with an address i, one decrypts all of the ciphertexts
in S, as well as the ciphertexts at T1[h1[i]] and T2[h2[i]] (thus at most s+ 2 decryptions are performed). If
any of these ciphertexts decrypts to a value of the form (i, v), then v is the returned output. To insert
an address-value pair (i, v), encrypt it and write the ciphertext ct to position T1[h1(i)], retrieving whatever

17
9. Dynamic Proofs of Retrievability via Oblivious RAM

ciphertext ct1 was there before. If the original ciphertext ct1 decrypts to ⊥, then stop. Otherwise, if ct1
decrypts to a pair (j, w), then re-encrypt the pair and write the resulting ciphertext to T2[h2(j)], again
retrieving whatever ciphertext ct2 was there before. If ct2 decrypts to ⊥, then stop, and otherwise continue
this process iteratively with ciphertexts ct3, ct4, If this process continues for t = c log n steps, then ‘give
up’ and just put the last evicted ciphertext ctt into the first available spot in the stash S. If S is full, then
the data structure fails.

We will use the following result sketched in [15]: If m = (1 + ε)n for some constant ε > 0, and h1, h2 are
random functions, then after n items are inserted, the probability that S has k or more items written into it
is O(1/nk+2). Thus, if S has at least λ slots, then the probability of a failure after n insertions is negligible
in λ.

Oblivious table rebuilds. We will assume an oblivious protocol for the following task. At the start of the
protocol, the server holds encrypted cuckoo hash tables C1, . . . , Cr. The client has two hash functions h1, h2.
After the oblivious interaction, the server holds a new cuckoo hash table C ′r that results from decrypting
the data in C1, . . . , Cr, deleting data for duplicated locations with preference given to the copy of the data
in the lowest index table, encrypting each index-value pair again, and then inserting the ciphertexts into C ′r
using h1, h2.

Implementing this task efficiently and obliviously is an intricate task. See [15] and [26] for different
methods, which adapt the usage of oblivious sorting first introduced in [13].

6.2 ORAM Scheme

We can now describe the scheme of Goodrich et al, with our modifications for next-read pattern hiding.
As ingredients, this scheme will use a PRF F and an encryption scheme (Enc,Dec). A visualization of the
server’s data structures is given in Figure 6.2.

OInit(1λ, 1w, `): Let L the smallest integer such that 2L > `. The client chooses 2L random keys K1,1,
K1,2, . . . ,KL,1,KL,2 and 2L additional random keys R1,1, R1,2, . . . , RL,1, RL,2 to be used for pseudo-
random functions, and initializes a counter ctr to 0. It also selects an encryption key for the IND-CPA
secure scheme. It instructs the server to allocate the following data structures:

• An empty array A0 that will change size as it is used.

• L empty cuckoo hash tables C1, . . . , CL where the parameters in Cj are adjusted to hold 2j data
items with a negligible (in λ) probability of overflow when used with random hash functions.

The client state consists of all of the keys (Kj,0,Kj,1)j∈[L], (Rj,0, Rj,1)j∈[L], the encryption key, and ctr.

ORead(i1, . . . , it): The client starts by initializing an array found of t flags to false. For each index ij to
be read, the client does the following. For each level k = 1, . . . , L, the client executes

• Let Ck = (T
(k)
1 , T

(k)
2 , S(k))

• If found[j] = false, read and decrypt all of S(k), T
(k)
1 [F (Kk,1, ij)] and T

(k)
2 [F (Kk,2, ij)]. If the data

is in any of these slots, set found[j] to true and remember the value as vj .

• Else, if found[j] = true, then instead read all of S(k), T
(k)
1 [F (Rk,1, ij‖ctr)] and T

(k)
2 [F (Rk,2, ij‖ctr)]

and ignore the results. Note that the counter value is used to create random reads when the state
is not reset, while providing the same random values if the state is reset.

Finally, it encrypts and appends (ij , vj) to the end of A0 and continues to the next index ij+1. We note
that above, when accessing a table using the output of F , we are interpreting the bit string output by
F as a random index from the appropriate range.

After all the indices have been read and written to A0, the client initiates a rebuild phase, the description
of which we defer for now.

18
9. Dynamic Proofs of Retrievability via Oblivious RAM

OWrite(i1, . . . , it; v1, . . . , vt): The client encrypts and writes (ij , vj) into A0 for each j, then initiates a
rebuild phase, described below.

...

A0

S(1)

S(2)

S(3)

S(L)

T(1)1

T(1)2

T(2)1

T(2)2

T(3)1

T(3)2

T(L)1

T(L)2

Figure 2: Server data structures in the ORAM instantiation.

Rebuild phase. We complete the scheme description by describing a rebuild phase, which works as follows.
The client repeats the following process until A0 is empty:

• Increment ctr.

• Remove and decrypt an item from A0, calling the result (j, v).

• Let r ≥ 0 be the largest integer such that 2r divides (ctr mod 2L).

• Select new keys Kr,1,Kr,2 and use the functions F (Kr,1, ·) and F (Kr,2, ·) as h1 and h2 to obliviously
build a new cuckoo table C ′r holding the removed item (j, v) and all of the data items in C1, . . . , Cr−1,
freshly re-encrypted and with duplicates removed.

• Then, for j = 1 to r − 1, set Kj,1,Kj,2 to fresh random keys and set the cuckoo tables C1, . . . , Cr to be
new, empty tables and Cr to be C ′r.

Note that the remaining tables Cr+1, . . . , CL are not touched.
We can implement the rebuild phase using the any of the protocols (with small variations) from [15, 16].

The most efficient gives an amortized overhead of log ` operations for all rebuilds, assuming that the client
can temporarily locally store `δ memory slots during the protocol (but the client does need to store them
between executions of the protocol). If we only allow the client to store a constant number of slots at any
one time, then the we incur an overhead of log2 `. In either case the worst-case overhead is O(`). Using
the de-amortization techniques from [16, 24], we can achieve worst-case complexity of log2 `, at the cost of
doubling the server storage. This technique was analyzed in the original ORAM security setting, but it is
not hard to extend our proof to show that it preserves next-read pattern hiding as well.

6.3 Next-Read Pattern Hiding

Theorem 2. Assuming that F is a secure PRF, and the underlying encryption scheme is chosen-plaintext
secure, then the scheme O described above is next-read pattern hiding.

Proof. We show that for any efficient adversary A, the probabilities that A outputs 1 when playing either
NextReadGame0

A or NextReadGame1
A differs by only a negligible amount. In these games, the adversary A

19
9. Dynamic Proofs of Retrievability via Oblivious RAM

provides two tuples of operations P1 = (op1, . . . , opq1) and P2 = (rop1, . . . , ropq2), the latter being all multi-
reads, and a permutation π on [`]. Then in NextReadGame0

A, A is given the transcript of an honest client
and server executing P1, as well as the transcript of executing the multi-reads in P2 with rewinds after each
operation, while in NextReadGame1

A it is given the same transcript except that second part is generated by
first permuting the addresses in P2 according to π.

We need to argue that these inputs are computationally indistinguishable. For our analysis below, we
assume that a rebuild phase never fails, as this event happens with negligible probability in λ, as discussed
before. We start by modifying the execution of the games in two ways that are shown to be undetectable by
A. The first change will show that all of the accesses into tables appear to the adversary to be generated by
random functions, and the second change will show that the ciphertexts do not reveal any usable information
for the adversary.

First, whenever keys Kj,1,Kj,2 are chosen and used with the function F , we use random functions gj,1, gj,2
in place of F (Kj,1, ·) and F (Kj,2, ·).11 We do the same for the Rj,1, Rj,2 keys, calling the random functions
rj,1 and rj,2. This change only changes the behavior of A by a negligible amount, as otherwise we could
build a distinguisher to contradict the PRF security of F via a standard hybrid argument over all of the
keys chosen during the game.

The second change we make is that all of the ciphertexts in the transcript are replaced with independent
encryptions of equal-length strings of zeros. We claim that this only affects the output distribution of A by
a negligible amount, as otherwise we could build an adversary to contradict the IND-CPA security of the
underlying encryption scheme via a standard reduction. Here it is crucial that, after each rewind, the client
chooses new randomness for the encryption scheme.

We now complete the proof by showing that the distribution of the transcripts given to A is identical
in the modified versions of NextReadGame0

A and NextReadGame1
A. To see why this is true, let us examine

what is in one of the game transcripts given to A. The transcript for the execution of P1 consists of ORead
and OWrite transcripts, which are accesses to indices in the cuckoo hash tables, ciphertext writes into A0,
and rebuild phases. Finally the execution of P2 (either permuted by π or not) with rewinds generates a
transcript that consists of several accesses to the cuckoo hash tables, each followed by writes to A0 and a
rebuild phase.

By construction of the protocol, in the modified game the only part of the transcript that depends

on the addresses in P2 are the reads into T
(k)
1 and T

(k)
2 for each k. All other parts of the transcript are

oblivious scans of the S(k) arrays and oblivious table rebuilds which do not depend on the addresses (recall

the ciphertexts in these transcripts are encryptions of zeros). Thus we focus on the indices read in each T
(k)
1

and T
(k)
2 , and need to show that, in the modified games, the distribution of these indices does not depend

on the addresses in P2.
The key observation is that, after the execution of P1, the state of the client is such that each address

i will induce a uniformly random sequence of indices in the tables that is independent of the indices read
for any other address and independent of the transcript for P1. If the data is in the cuckoo table at level k,
then the indices will be

(gj,1(i))kj=1 and (rj,1(i‖ctr))Lj=k+1 .

Thus each i induces a random sequence, and each address will generate an independent sequence. We claim
moreover that the sequence for i is independent of the transcript for P1. This follows from the construction:
For the indices derived from rj,1 and rj,2, the transcript for P1 would have always used a lower value for ctr.
For the indices derived from gj,1 and gj,2, we have that the execution of P1 would not have evaluated those
functions on input i: If i was read during P1, then i would have been written to A0 and a rebuild phase
would have chosen new random functions for gj,1 and gj,2 before the address/value pair i was placed in the

11As usual, instead of actually picking and using a random function, which is an exponential task, we create random numbers
whenever necessary, and remember them. Since there will be only polynomially-many interactions, this only requires polynomial
time and space.

20
9. Dynamic Proofs of Retrievability via Oblivious RAM

j-th level table again.
With this observation we can complete the proof. When the modified games are generating the transcript

for the multi-read operations in P2, each individual read for an index i induces an random sequence of
table reads among its other oblivious operations. But since each i induces a completely random sequence
and permuting the addresses will only permute the random sequences associated with the addresses, the
distribution of the transcript is unchanged. Thus no adversary can distinguish these games, which means
that no adversary could distinguish NextReadGame0

A and NextReadGame1
A, as required.

6.4 Authenticity, Extensions & Optimizations

Authenticity. To achieve authenticity we sketch how to employ the technique introduced in [13]. A
straightforward attempt is to tag every ciphertext stored on the server along with its location on the server
using a message authentication code (MAC). But this fails because the sever can “roll back” changes to the
data by replacing ciphertexts with previously stored ones at the same location. We can generically fix this
by using the techniques of memory checking [5, 23, 11] at some additional logarithmic overhead. However,
it also turns out that authenticity can also be added at almost no cost to several specific constructions, as
we describe below.

Goldreich and Ostrovsky showed that any ORAM protocol supporting time labeled simulation (TLS) can
be modified to achieve authenticity without much additional complexity. We say that an ORAM protocol
supports TLS if there exists an efficient algorithm Q such that, after the j-th message is sent to the server,
for each index x on the server memory, the number of times x has been written to is equal to Q(j, x).12

Overall, one implements the above tagging strategy, and also includes Q(j, x) with the data being tagged,
and when reading one recomputes Q(j, x) to verify the tag.

Our scheme can be shown to support TLS in a manner very similar to the original hierarchical scheme [13].
The essential observation, also used there, is that the table indices are only written to during a rebuild phase,
so by tracking the number of executed rebuild phases we can compute how many times each index of the
table was written to.

Extensions and optimizations. The scheme above is presented in a simplified form that can be made
more efficient in several ways while maintaining security.

• The keys in the client state can be derived from a single key by appropriately using the PRF. This
shrinks the client state to a single key and counter.

• The initial table C1 can be made larger to reduce the number of rebuild phases (although this does not
affect the asymptotic complexity).

• We can collapse the individual oblivious table rebuilds into one larger rebuild.

• It was shown in [17] that all of the L cuckoo hash tables can share a single O(λ)-size stash S while still
maintaining a negligible chance of table failure.

• Instead of doing table rebuilds all at once, we can employ a technique that allows for them to be done
incrementally, allowing us to achieve worst-case rather than amortized complexity guarantees [16, 24].
These techniques come at the cost of doubling the server storage.

• The accesses to cuckoo tables on each level during a multi-read can be done in parallel, which reduces
the round complexity of that part to be independent of t, the number of addresses being read.

We can also extend this scheme to support a dynamically changing memory size. This is done by simply
allocating different sized tables during a rebuild that eliminate the lower larger tables or add new ones of
the appropriate size. This modification will achieve next-read pattern hiding security, but it will not be
standard pattern-hiding secure, as it leaks some information about the number of memory slots in use. One

12Here we mean actual writes on the server, and not OWrite executions.

21
9. Dynamic Proofs of Retrievability via Oblivious RAM

can formalize this, however, in a pattern-hiding model where any two sequences with equal memory usage
are required to be indistinguishable.

Efficiency. In this scheme the client stores the counter and the keys, which can be derived from a single
key using the PRF. The server stores log ` tables, where the j-th table requires 2j + λ memory slots, which
sums to O(` + λ · log `). Using the optimization above, we only need a single stash, reducing the sum to
O(`+λ). When executing ORead, each index read requires accessing two slots plus the λ stash slots in each
of the log ` tables, followed by a rebuild. OWrite is simply one write followed by a rebuild phase. The table
below summarizes the efficiency measures of the scheme.

Client Storage O(1)

Server Storage O(`+ λ)

Read Complexity O(λ · log `) + RP

Write Complexity O(1) + RP

Table 1: Efficiency of ORAM scheme above. “RP” denotes the aggregate cost of the rebuild phases, which
is O(log `), or O(log2 `) in the worst-case, per our discussion above.

7 Efficiency

We now look at the efficiency of our PORAM construction, when instantiated with the ORAM scheme from
section 6 (we assume the rebuild phases are implemented via the Goodrich-Mitzemacher algorithm [15] with
the worst-case complexity optimization [16, 24].) Since our PORAM scheme preserves (standard) ORAM
security, we analyze its efficiency in two ways. Firstly, we look at the overhead of PORAM scheme on top of
just storing the data inside of the ORAM without attempting to achieve any PoR security (e.g., not using
any error-correcting code etc.). Secondly, we look at the overall efficiency of PORAM. Third, we compare
it with dynamic PDP [12, 30] which does not employ erasure codes and does not provide full retrievability
guarantee. In the table below, ` denotes the size of the client data and λ is the security parameter. We
assume that the ORAM scheme uses a PRF whose computation takes O(λ) work.

PORAM Efficiency vs. ORAM Overall vs. Dynamic PDP [12]

Client Storage Same O(λ) Same

Server Storage × O(1) O(`) × O(1)

Read Complexity × O(1) O(λ log2 `) × O(log `)

Write Complexity × O(λ) O(λ2 × log2 `) × O(λ× log `)

Audit Complexity Read × O(λ) O(λ2 × log2 `) × O(log `)

By modifying the underlying ORAM to dynamically resize tables during rebuilds, the resulting PORAM
instantiation will achieve the same efficiency measures as above, but with ` taken to be amount of memory
currently used by the memory access sequence. This is in contrast to the usual ORAM setting where ` is
taken to be a (perhaps large) upper bound on the total amount of memory that will ever be used.

Acknowledgements

Alptekin Küpçü would like to acknowledge the support of TÜBİTAK, the Scientific and Technological
Research Council of Turkey, under project number 112E115. David Cash and Daniel Wichs are sponsored
by DARPA under agreement number FA8750-11-C-0096. The U.S. Government is authorized to reproduce

22
9. Dynamic Proofs of Retrievability via Oblivious RAM

and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The
views expressed are those of the author and do not reflect the official policy or position of the Department
of Defense or the U.S. Government. Distribution Statement “A” (Approved for Public Release, Distribution
Unlimited).

References

[1] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J. Peterson, and D. Song. Provable
data possession at untrusted stores. In P. Ning, S. D. C. di Vimercati, and P. F. Syverson, editors,
ACM CCS 07, pages 598–609. ACM Press, Oct. 2007.

[2] G. Ateniese, S. Kamara, and J. Katz. Proofs of storage from homomorphic identification protocols. In
M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 319–333. Springer, Dec. 2009.

[3] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik. Scalable and efficient provable data possession.
Cryptology ePrint Archive, Report 2008/114, 2008. http://eprint.iacr.org/.

[4] M. Bellare and O. Goldreich. On defining proofs of knowledge. In E. F. Brickell, editor, CRYPTO’92,
volume 740 of LNCS, pages 390–420. Springer, Aug. 1993.

[5] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of memories.
Algorithmica, 12(2/3):225–244, 1994.

[6] K. D. Bowers, A. Juels, and A. Oprea. HAIL: a high-availability and integrity layer for cloud storage.
In E. Al-Shaer, S. Jha, and A. D. Keromytis, editors, ACM CCS 09, pages 187–198. ACM Press, Nov.
2009.

[7] K. D. Bowers, A. Juels, and A. Oprea. Proofs of retrievability: theory and implementation. In R. Sion
and D. Song, editors, CCSW, pages 43–54. ACM, 2009.

[8] B. Chen, R. Curtmola, G. Ateniese, and R. C. Burns. Remote data checking for network coding-based
distributed storage systems. In A. Perrig and R. Sion, editors, CCSW, pages 31–42. ACM, 2010.

[9] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. Mr-pdp: Multiple-replica provable data possession.
In ICDCS, 2008.

[10] Y. Dodis, S. P. Vadhan, and D. Wichs. Proofs of retrievability via hardness amplification. In O. Reingold,
editor, TCC 2009, volume 5444 of LNCS, pages 109–127. Springer, Mar. 2009.

[11] C. Dwork, M. Naor, G. N. Rothblum, and V. Vaikuntanathan. How efficient can memory checking be?
In O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 503–520. Springer, Mar. 2009.

[12] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic provable data possession. In
E. Al-Shaer, S. Jha, and A. D. Keromytis, editors, ACM CCS 09, pages 213–222. ACM Press, Nov.
2009.

[13] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Journal of the
ACM, 43(3):431–473, 1996.

[14] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM
Journal on Computing, 18(1):186–208, 1989.

[15] M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of outsourced data via oblivious RAM
simulation. In L. Aceto, M. Henzinger, and J. Sgall, editors, ICALP 2011, Part II, volume 6756 of
LNCS, pages 576–587. Springer, July 2011.

23
9. Dynamic Proofs of Retrievability via Oblivious RAM

[16] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Oblivious RAM simulation with
efficient worst-case access overhead. In CCSW, pages 95–100, 2011.

[17] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Privacy-preserving group data
access via stateless oblivious ram simulation. In SODA, pages 157–167, 2012.

[18] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

[19] A. Juels and B. S. Kaliski Jr. Pors: proofs of retrievability for large files. In P. Ning, S. D. C. di
Vimercati, and P. F. Syverson, editors, ACM CCS 07, pages 584–597. ACM Press, Oct. 2007.

[20] A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing: Cuckoo hashing with a stash. SIAM
J. Comput., 39(4):1543–1561, 2009.

[21] A. Küpçü. Efficient Cryptography for the Next Generation Secure Cloud. PhD thesis, Brown University,
2010.

[22] A. Küpçü. Efficient Cryptography for the Next Generation Secure Cloud: Protocols, Proofs, and Imple-
mentation. Lambert Academic Publishing, 2010.

[23] M. Naor and G. N. Rothblum. The complexity of online memory checking. In 46th FOCS, pages
573–584. IEEE Computer Society Press, Oct. 2005.

[24] R. Ostrovsky and V. Shoup. Private information storage (extended abstract). In 29th ACM STOC,
pages 294–303. ACM Press, May 1997.

[25] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.

[26] B. Pinkas and T. Reinman. Oblivious RAM revisited. In T. Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 502–519. Springer, Aug. 2010.

[27] H. Shacham and B. Waters. Compact proofs of retrievability. In J. Pieprzyk, editor, ASIACRYPT 2008,
volume 5350 of LNCS, pages 90–107. Springer, Dec. 2008.

[28] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram with o((logn)3) worst-case cost. In D. H.
Lee and X. Wang, editors, ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages
197–214. Springer, 2011.

[29] E. Stefanov, M. van Dijk, A. Oprea, and A. Juels. Iris: A scalable cloud file system with efficient
integrity checks. Cryptology ePrint Archive, Report 2011/585, 2011. http://eprint.iacr.org/.

[30] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling public verifiability and data dynamics for
storage security in cloud computing. In M. Backes and P. Ning, editors, ESORICS 2009, volume 5789
of LNCS, pages 355–370. Springer, Sept. 2009.

[31] P. Williams, R. Sion, and B. Carbunar. Building castles out of mud: practical access pattern privacy
and correctness on untrusted storage. In P. Ning, P. F. Syverson, and S. Jha, editors, ACM CCS 08,
pages 139–148. ACM Press, Oct. 2008.

24
9. Dynamic Proofs of Retrievability via Oblivious RAM

A Simple Dynamic PoR with Square-Root Complexity

We sketch a very simple construction of dynamic PoR that achieves sub-linear complexity in its read, write
and audit operations. Although the scheme is asymptotically significantly worst then our PORAM solution
as described in the main body, it is significantly simpler and may be of interest for some practical parameter
settings.

The construction starts with the first dynamic PoR proposal from the introduction. To store a memory
M ∈ Σ` on the server, the client divides it into L =

√
` consecutive message blocks (m1, . . . ,mL), each

containing L =
√
` symbols. The client then encodes each of the message blocks mi using an (n = 2L, k =

L, d = L + 1)-erasure code (e.g., Reed-Solomon tolerating L erasures), to form a codeword block ci, and
concatenates the codeword blocks to form a string C = (c1, . . . , cL) ∈ Σ2` which it then stores on the server.
We can assume the code is systematic so that the message block mi resides in the first L symbols of the
corresponding codeword block ci. In addition, the client initializes a memory checking scheme [5, 23, 11],
which it uses to authenticate each of the 2` codeword symbols within C.

To read a location j ∈ [`] of memory, the client computes the index i ∈ [L] of the message block mi

containing that location, and downloads the appropriate symbol of the codeword block ci which contains
the value M[j] (here we use that the code is systematic), which it checks for authenticity via the memory
checking scheme. To write to a location j ∈ [`] the client downloads the entire corresponding codeword block
ci (checking for authenticity) decodes mi, changes the appropriate location to get an updated block m′i and
finally re-encodes it to get c′i which it then writes to the server, updating the appropriate authentication
information within the memory checking scheme. The audit protocol selects t = λ (security parameter)
random positions within every codeword block ci and checks them for authenticity via the memory checking
scheme.

The read and write protocols of this scheme each execute the memory checking read protocol to read
and write 1 and

√
` symbols respectively. The audit protocol reads and checks λ

√
` symbols. Assuming an

efficient (poly-logarithmic) memory checking protocol, this means actual complexity of these protocols incurs
another O(log `) factor and another constant factor increase in server storage. Therefore the complexity of
the reads, writes, and audit is O(1), O(

√
`), O(

√
`) respectively, ignoring factors that depend on the security

parameter or are polylogarithmic in `.
Note that the above scheme actually gives us a natural trade-off between the complexity of the writes

and the audit protocol. In particular, for any δ > 0, we can set the message block size to L1 = `δ symbols,
so that the client memory M now consists of L2 = `1−δ such blocks. In this case, the complexity of reads,
writes, and audits becomes O(1), O(`δ), O(`1−δ) respectively.

B Standard Pattern Hiding for ORAM

We recall an equivalent definition to the one introduced by Goldreich and Ostrovsky [13]. Informally,
standard pattern hiding says that an (arbitrarily malicious and efficient) adversary cannot detect which
sequence of instructions a client is executing via the ORAM protocols.

Formally, for a bit b and an adversary A, we define the game ORAMGamebA(λ) as follows:

• The attacker A(1λ) outputs two equal-length ORAM protocol sequences Q0 = (op0, . . . , opq), Q1 =
(op′0, . . . , op

′
q). We require that for each index j, the operations opj and op′j only differ in the location

they access and the values the are writing, but otherwise correspond to the same operation (read or
write).

• The challenger initializes an honest client C and server S, and sequentially executes the operations in
Qb, between C and S.

• Finally, A is given the complete transcript of all the protocol executions, and he outputs a bit b̃, which
is the output of the game.

25
9. Dynamic Proofs of Retrievability via Oblivious RAM

We say that an ORAM protocol is pattern hiding if for all efficient adversaries A we have:∣∣Pr[ORAMGame0
A(λ) = 1]− Pr[ORAMGame1

A(λ) = 1]
∣∣ ≤ negl(λ).

Sometimes we also want to achieve a stronger notion of security where we also wish to hide whether each
operation is a read or a write. This can be done generically by always first executing a read for the desired
location and then executing a write to either just write-back the read value (when we only wanted to do a
read) or writing in a new value.

C Standard ORAM Security Does not Suffice for PORAM

In this section we construct an ORAM that is secure in the usual sense but is not next-read pattern hiding.
In fact, we will show something stronger: If the ORAM below were used to instantiate our PORAM scheme
then the resulting dynamic PoR scheme is not secure. This shows that some notion of security beyond
regular ORAM is necessary for the security PORAM.

Counterexample construction. We can take any ORAM scheme (e.g., the one in Section 6 for concrete-
ness) and modify it by “packing” multiple consecutive logical addresses into a single slot of the ORAM. In
particular, if the client initializes the modified ORAM (called MORAM within this section) with alphabet
Σ = {0, 1}w, it will translate this into initializing the original ORAM with the alphabet Σn = {0, 1}nw,
where each symbol in the modified alphabet “packs” together n symbols of the original alphabet. Assume
this is the same n as the codeword length in our PORAM protocol.

Whenever the client wants to read some address i using MORAM, the modified scheme looks up where it
was packed by computing j = bi/nc, uses the original ORAM scheme to execute ORead(j), and then parses
the resulting output as (v0, . . . , vn−1) ∈ Σn, and returns vi mod n. To write v to address i, MORAM runs
ORAM scheme’s ORead(bi/nc) to get (v0, . . . , vn−1) as before, then sets vi mod n ← v and writes the data
back via ORAM scheme’s OWrite(bi/nc, (v0, . . . , vn−1)). It is not hard to show that this modified scheme
retains standard ORAM security, since it hides which locations are being read/written.

We next discuss why this modification causes the MORAM to not be NRPH secure. Consider what
happens if the client issues a read for an address, say i = 0, and then is rewound and reads another address
that was packed into the same ORAM slot, say i+1. Both operations will cause the client to issue ORead(0).
And since our MORAM was deterministic, the client will access exactly same table indices at every level on
the server on both runs. But, if these addresses were permuted to not be packed together (e.g., blocks were
packed using equivalence classes of their indices (mod `/n)), then the client will issue ORead commands
on different addresses, reading different table positions (with high probability), thus allowing the server to
distinguish which case it was in and break NRPH security.

This establishes that the modified scheme is not NRPH secure. To see why PORAM is not secure with
MORAM, consider an adversary that, after a sequence of many read/write operations, randomly deletes one
block of its storage (say, from the lowest level cuckoo table). If this block happens to contain a non-dummy
ciphertext that contains actual data (which occurs with reasonable probability), then this attack corresponds
to deleting some codeword block in full (because all codeword blocks corresponding to a message block was
packed in the same ORAM storage location), even though the server does not necessarily know which one.
Therefore, the underlying message block can never be recovered from the attacker. But this adversary can
still pass an audit with good probability, because the audit would only catch the adversary if it happened
to access the deleted block during its reads either by (1) selecting exactly this location to check during the
audit, (2) reading this location in the cuckoo table slot as a dummy read. This happens with relatively low
probability, around 1/`, where ` is the number of addresses in the client memory.

To provide some more intuition, we can also examine why this same attack (deleting a random location
in the lowest level cuckoo table) does not break PORAM when instantiated with the ORAM implementation

26
9. Dynamic Proofs of Retrievability via Oblivious RAM

from Section 6 that is NRPH secure. After this attack, the adversary still maintains a good probability of
passing a subsequent audit. However, by deleting only a single ciphertext in one of the cuckoo tables, the
attacker now deleted only a single codeword symbol, not a full block of n of them. And now we can show
that our extractor can still recover enough of the other symbols of the codeword block so that the erasure
code will enable recovery of the original data. Of course, the server could start deleting more of the locations
in the lowest level cuckoo table, but he cannot selectively target codeword symbols belonging to a single
codeword block, since it has no idea where those reside. If he starts to delete too many of them just to make
sure a message block is not recoverable, then he will lose his ability to pass an audit.

27
9. Dynamic Proofs of Retrievability via Oblivious RAM

Hardness of SIS and LWE with Small Parameters

Daniele Micciancio∗ Chris Peikert†

February 13, 2013

Abstract

The Short Integer Solution (SIS) and Learning With Errors (LWE) problems are the foundations for
countless applications in lattice-based cryptography, and are provably as hard as approximate lattice
problems in the worst case. A important question from both a practical and theoretical perspective is how
small their parameters can be made, while preserving their hardness.

We prove two main results on SIS and LWE with small parameters. For SIS, we show that the problem
retains its hardness for moduli q ≥ β · nδ for any constant δ > 0, where β is the bound on the Euclidean
norm of the solution. This improves upon prior results which required q ≥ β ·

√
n log n, and is essentially

optimal since the problem is trivially easy for q ≤ β. For LWE, we show that it remains hard even when
the errors are small (e.g., uniformly random from {0, 1}), provided that the number of samples is small
enough (e.g., linear in the dimension n of the LWE secret). Prior results required the errors to have
magnitude at least

√
n and to come from a Gaussian-like distribution.

1 Introduction

In modern lattice-based cryptography, two average-case computational problems serve as the foundation
of almost all cryptographic schemes: Short Integer Solution (SIS), and Learning With Errors (LWE). The
SIS problem dates back to Ajtai’s pioneering work [1], and is defined as follows. Let n and q be integers,
where n is the primary security parameter and usually q = poly(n), and let β > 0. Given a uniformly
random matrix A ∈ Zn×mq for some m = poly(n), the goal is to find a nonzero integer vector z ∈ Zm
such that Az = 0 mod q and ‖z‖ ≤ β (where ‖·‖ denotes Euclidean norm). Observe that β should be
set large enough to ensure that a solution exists (e.g., β >

√
n log q suffices), but that β ≥ q makes the

problem trivially easy to solve. Ajtai showed that for appropriate parameters, SIS enjoys a remarkable
worst-case/average-case hardness property: solving it on the average (with any noticeable probability) is at
least as hard as approximating several lattice problems on n-dimensional lattices in the worst case, to within
poly(n) factors.

∗University of California, San Diego. 9500 Gilman Dr., Mail Code 0404, La Jolla, CA 92093, USA. Email:
daniele@cs.ucsd.edu. This material is based on research sponsored by DARPA under agreement number FA8750-11-C-0096
and NSF under grant CNS-1117936. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DARPA,
NSF or the U.S. Government.
†School of Computer Science, Georgia Institute of Technology. This material is based upon work supported by the National

Science Foundation under CAREER Award CCF-1054495, by DARPA under agreement number FA8750-11-C-0096, and by the
Alfred P. Sloan Foundation.

1

10. Hardness of SIS and LWE with Small Parameters

The LWE problem was introduced in the celebrated work of Regev [24], and has the same parameters n
and q, along with a “noise rate” α ∈ (0, 1). The problem (in its search form) is to find a secret vector
s ∈ Znq , given a “noisy” random linear system A ∈ Zn×mq , b = AT s + e mod q, where A is uniformly
random and the entries of e are i.i.d. from a Gaussian-like distribution with standard deviation roughly αq.
Regev showed that as long as αq ≥ 2

√
n, solving LWE on the average (with noticeable probability) is at

least as hard as approximating lattice problems in the worst case to within Õ(n/α) factors using a quantum
algorithm. Subsequently, Peikert [21] gave a classical reduction for a subset of the lattice problems and the
same approximation factors, but under the additional condition that q ≥ 2n/2 (or q ≥ 2

√
n/α based on some

non-standard lattice problems).
A significant line of research has been devoted to improving the tightness of worst-case/average-case

connections for lattice problems. For SIS, a series of works [1, 7, 14, 19, 12] gave progressively better
parameters that guarantee hardness, and smaller approximation factors for the underlying lattice problems.
The state of the art (from [12], building upon techniques introduced in [19]) shows that for q ≥ β·ω(

√
n log n),

finding a SIS solution with norm bounded by β is as hard as approximating worst-case lattice problems to
within Õ(β

√
n) factors. (The parameter m does not play any significant role in the hardness results, and

can be any polynomial in n.) For LWE, Regev’s initial result remains the tightest, and the requirement that
q ≥
√
n/α (i.e., that the errors have magnitude at least

√
n) is in some sense optimal: a clever algorithm

due to Arora and Ge [2] solves LWE in time 2Õ(αq)2 , so a proof of hardness for substantially smaller errors
would imply a subexponential time (quantum) algorithm for approximate lattice problems, which would be a
major breakthrough. Interestingly, the current modulus bound for LWE is in some sense better than the one
for SIS by a Ω̃(

√
n) factor: there are applications of LWE for 1/α = Õ(1) and hence q = Õ(

√
n), whereas

SIS is only useful for β ≥
√
n, and therefore requires q ≥ n according to the state-of-the-art reductions.

Further investigating the smallest parameters for which SIS and LWE remain provably hard is important
from both a practical and theoretical perspective. On the practical side, improvements would lead to
smaller cryptographic keys without compromising the theoretical security guarantees, or may provide greater
confidence in more practical parameter settings that so far lack provable hardness. Also, proving the hardness
of LWE for non-Gaussian error distributions (e.g., uniform over a small set) would make applications easier
to implement. Theoretically, improvements may eventually shed light on related problems like Learning
Parity with Noise (LPN), which can be seen as a special case of LWE for modulus q = 2, and which is
widely used in coding-based cryptography, but which has no known proof of hardness.

1.1 Our Results

We prove two complementary results on the hardness of SIS and LWE with small parameters. For SIS, we
show that the problem retains its hardness for moduli q nearly equal to the solution bound β. For LWE, we
show that it remains hard even when the errors are small (e.g., uniformly random from {0, 1}), provided that
the number m of noisy equations is small enough. This qualification is necessary in light of the Arora-Ge
attack [2], which for large enough m can solve LWE with binary errors in polynomial time. Details follow.

SIS with small modulus. Our first theorem says that SIS retains its hardness with a modulus as small as
q ≥ β · nδ, for any δ > 0. Recall that the best previous reduction [12] required q ≥ β ·ω(

√
n log n), and that

SIS becomes trivially easy for q ≤ β, so the q obtained by our proof is essentially optimal. It also essentially
closes the gap between LWE and SIS, in terms of how small a useful modulus can be. More precisely, the
following is a special case of our main SIS hardness theorem; see Section 3 for full details.

2

10. Hardness of SIS and LWE with Small Parameters

Theorem 1.1 (Corollary of Theorem 3.8). Let n and m = poly(n) be integers, let β ≥ β∞ ≥ 1 be reals,
let Z = {z ∈ Zm : ‖z‖2 ≤ β and ‖z‖∞ ≤ β∞}, and let q ≥ β · nδ for some constant δ > 0. Then solving
(on the average, with non-negligible probability) SIS with parameters n,m, q and solution set Z \ {0} is
at least as hard as approximating lattice problems in the worst case on n-dimensional lattices to within
γ = max{1, β · β∞/q} · Õ(β

√
n) factors.

Of course, the `∞ bound on the SIS solutions can be easily removed simply setting β∞ = β, so that
‖z‖∞ ≤ ‖z‖2 ≤ β automatically holds true. We include an explicit `∞ bound β∞ ≤ β in order to obtain
more precise hardness results, based on potentially smaller worst-case approximation factors γ. We point out
that the bound β∞ and the associated extra term max{1, β · β∞/q} in the worst-case approximation factor
is not present in previous results. Notice that this term can be as small as 1 (if we take q ≥ β · β∞, and in
particular if β∞ ≤ nδ), and as large as β/nδ (if β∞ = β). This may be seen as the first theoretical evidence
that, at least when using a small modulus q, restricting the `∞ norm of the solutions may make the SIS
problem qualitatively harder than just restricting the `2 norm. There is already significant empirical evidence
for this belief: the most practically efficient attacks on SIS, which use lattice basis reduction (e.g., [11, 8]),
only find solutions with bounded `2 norm, whereas combinatorial attacks such as [5, 25] (see also [20]) or
theoretical lattice attacks [9] that can guarantee an `∞ bound are much more costly in practice, and also
require exponential space. Finally, we mention that setting β∞ � β is very natural in the usual formulations
of one-way and collision-resistant hash functions based on SIS, where collisions correspond (for example)
to vectors in {−1, 0, 1}m, and therefore have `∞ bound β∞ = 1, but `2 bound β =

√
m. Similar gaps

between β∞ and β can easily be enforced in other applications, e.g., digital signatures [12].

LWE with small errors. In the case of LWE, we prove a general theorem offering a trade-off among
several different parameters, including the size of the errors, the dimension and number of samples in the
LWE problem, and the dimension of the underlying worst-case lattice problems. Here we mention just one
instantiation for the case of prime modulus and uniformly distributed binary (i.e., 0-1) errors, and refer the
reader to Section 4 and Theorem 4.6 for the more general statement and a discussion of the parameters.

Theorem 1.2 (Corollary of Theorem 4.6). Let n and m = n · (1+Ω(1/ log n)) be integers, and q ≥ nO(1)

a sufficiently large polynomially bounded (prime) modulus. Then solving LWE with parameters n,m, q and
independent uniformly random binary errors (i.e., in {0, 1}) is at least as hard as approximating lattice
problems in the worst case on Θ(n/ log n)-dimensional lattices within a factor γ = Õ(

√
n · q).

We remark that our results (see Theorem 4.6) apply to many other settings, including error vectors e ∈ X
chosen from any (sufficiently large) subset X ⊆ {0, 1}m of binary strings, as well as error vectors with
larger entries. Interestingly, our hardness result for LWE with very small errors relies on the worst-case
hardness of lattice problems in dimension n′ = O(n/ log n), which is smaller than (but still quasi-linear
in) the dimension n of the LWE problem; however, this is needed only when considering very small error
vectors. Theorem 4.6 also shows that if e is chosen uniformly at random with entries bounded by nε (which
is still much smaller than

√
n), then the dimension of the underlying worst-case lattice problems (and the

number m− n of extra samples, beyond the LWE dimension n) can be linear in n.
The restriction that the number of LWE samples m = O(n) be linear in the dimension of the secret can

also be relaxed slightly. But some restriction is necessary, because LWE with small errors can be solved
in polynomial time when given an arbitrarily large polynomial number of samples. We focus on linear
m = O(n) because this is enough for most (but not all) applications in lattice cryptography, including
identity-based encryption and fully homomorphic encryption, when the parameters are set appropriately.
(The one exception that we know of is the security proof for pseudorandom functions [3].)

3

10. Hardness of SIS and LWE with Small Parameters

1.2 Techniques and Comparison to Related Work

Our results for SIS and LWE are technically disjoint, and all they have in common is the goal of proving
hardness results for smaller values of the parameters. So, we describe our technical contributions in the
analysis of these two problems separately.

SIS with small modulus. For SIS, as a warm-up, we first give a proof for a special case of the problem
where the input is restricted to vectors of a special form (e.g., binary vectors). For this restricted version of
SIS, we are able to give a self-reduction (from SIS to SIS) which reduces the size of the modulus. So, we can
rely on previous worst-case to average-case reductions for SIS as “black boxes,” resulting in an extremely
simple proof. However, this simple self-reduction has some drawbacks. Beside the undesirable restriction on
the SIS inputs, our the reduction is rather loose with respect to the underlying worst-case lattice approximation
problem: in order to establish the hardness of SIS with small moduli q (and restricted inputs), one needs
to assume the worst-case hardness of lattice problems for rather large polynomial approximation factors.
(By contrast, previous hardness results for larger moduli [19, 12] only assumed hardness for quasi-linear
approximation factors.) We address both drawbacks by giving a direct reduction from worst-case lattice
problems to SIS with small modulus. This is our main SIS result, and it combines ideas from previous
work [19, 12] with two new technical ingredients:

• All previous SIS hardness proofs [1, 7, 14, 19, 12] solved worst-case lattice problems by iteratively
finding (sets of linearly independent) lattice vectors of shorter and shorter length. Our first new
technical ingredient (inspired by the pioneering work of Regev [24] on LWE) is the use a different
intermediate problem: instead of finding progressively shorter lattice vectors, we consider the problem
of sampling lattice vectors according to Gaussian-like distributions of progressively smaller widths.
To the best of our knowledge, this is the first use of Gaussian lattice sampling as an intermediate
worst-case problem in the study of SIS, and it appears necessary to lower the SIS modulus below n.
We mention that Gaussian lattice sampling has been used before to reduce the modulus in hardness
reductions for SIS [12], but still within the framework of iteratively finding short vectors (which in [12]
are used to generate fresh Gaussian samples for the reduction), which results in larger moduli q > n.

• The use of Gaussian lattice sampling as an intermediate problem within the SIS hardness proof yields
linear combinations of several discrete Gaussian samples with adversarially chosen coefficients. Our
second technical ingredient, used to analyze these linear combinations, is a new convolution theorem
for discrete Gaussians (Theorem 3.3), which strengthens similar ones previously proved in [22, 6].
Here again, the strength of our new convolution theorem appears necessary to obtain hardness results
for SIS with modulus smaller than n.

Our new convolution theorem may be of independent interest, and might find applications in the analysis of
other lattice algorithms.

LWE with small errors. We now move to our results on LWE. For this problem, the best provably hard
parameters to date were those obtained in the original paper of Regev [24], which employed Gaussian errors,
and required them to have (expected) magnitude at least

√
n. These results were believed to be optimal due

to a clever algorithm of Arora and Ge [2], which solves LWE in subexponential time when the errors are
asymptotically smaller than

√
n. The possibility of circumventing this barrier by limiting the number of LWE

samples was first suggested by Micciancio and Mol [17], who gave “sample preserving” search-to-decision
reductions for LWE, and asked if LWE with small uniform errors could be proved hard when the number

4

10. Hardness of SIS and LWE with Small Parameters

of available samples is sufficiently small. Our results provide a first answer to this question, and employ
concepts and techniques from the work of Peikert and Waters [23] (see also [4]) on lossy (trapdoor) functions.
In brief, a lossy function family is an indistinguishable pair of function families F ,L such that functions in
F are injective and those in L are lossy, in the sense that they map their common domain to much smaller
sets, and therefore lose information about the input. As shown in [23], from the indistinguishability of F and
L, it follows that the families F and L are both one-way.

In Section 2 we present a generalized framework for the study of lossy function families, which does not
require the functions to have trapdoors, and applies to arbitrary (not necessarily uniform) input distributions.
While the techniques we use are all standard, and our definitions are minor generalizations of the ones given
in [23], we believe that our framework provides a conceptual simplification of previous work, relating the
relatively new notion of lossy functions to the classic security definitions of second-preimage resistance and
uninvertibility.

The lossy function framework is used to prove the hardness of LWE with small uniform errors and
(necessarily) a small number of samples. Specifically, we use the standard LWE problem (with large
Gaussian errors) to set up a lossy function family F ,L. (Similar families with trapdoors were constructed
in [23, 4], but not for the parameterizations required to obtain interesting hardness results for LWE.) The
indistinguishability of F and L follows directly from the hardness of the underlying LWE problem. The
new hardness result for LWE (with small errors) is equivalent to the one-wayness of F , and is proved by
a relatively standard analysis of the second-preimage resistance and uninvertibility of certain subset-sum
functions associated to L.

Comparison to related work. In an independent work that was submitted concurrently with ours, Döttling
and Müller-Quade [10] also used a lossyness argument to prove new hardness results for LWE. (Their work
does not address the SIS problem.) At a syntactic level, they use LWE (i.e., generating matrix) notation and
a new concept they call “lossy codes,” while here we use SIS (i.e., parity-check matrix) notation and rely
on the standard notions of uninvertible and second-preimage resistant functions. By the dual equivalence of
SIS and LWE [15, 17] (see Proposition 2.9), this can be considered a purely syntactic difference, and the
high-level lossyness strategy (including the lossy function family construction) used in [10] and in our work
are essentially the same. However, the low-level analysis techniques and final results are quite different. The
main result proved in [10] is essentially the following.

Theorem 1.3 ([10]). Let n, q,m = nO(1) and r ≥ n1/2+ε · m be integers, for an arbitrary small con-
stant ε > 0. Then the LWE problem with parameters n,m, q and independent uniformly distributed errors in
{−r, . . . , r}m is at least as hard as (quantumly) solving worst-case problems on (n/2)-dimensional lattices
to within a factor γ = n1+ε ·mq/r.

The contribution of [10] over previous work is to prove the hardness of LWE for uniformly distributed
errors, as opposed to errors that follow a Gaussian distribution. Notice that the magnitude of the errors used
in [10] is always at least

√
n ·m, which is substantially larger (by a factor of m) than in previous results. So,

[10] makes no progress towards reducing the magnitude of the errors, which is the main goal of this paper.
By contrast, our work shows the hardness of LWE for errors smaller than

√
n (indeed, as small as {0, 1}),

provided the number of samples is sufficiently small.
Like our work, [10] requires the number of LWE samples m to be fixed in advance (because the error

magnitude r depends on m), but it allows m to be an arbitrary polynomial in n. This is possible because
for the large errors r �

√
n considered in [10], the attack of [2] runs in at least exponential time. So, in

principle, it may even be possible (and is an interesting open problem) to prove the hardness of LWE with

5

10. Hardness of SIS and LWE with Small Parameters

(large) uniform errors as in [10], but for an unbounded number of samples. In our work, hardness of LWE
for errors smaller than

√
n is proved for a much smaller number of samples m, and this is necessary in order

to avoid the subexponential time attack of [2].
While the focus of our work in on LWE with small errors, we remark that our main LWE hardness result

(Theorem 4.6) can also be instantiated using large polynomial errors r = nO(1) to obtain any (linear) number
of samples m = Θ(n). In this setting, [10] provides a much better dependency between the magnitude of the
errors and the number of samples (which in [10] can be an arbitrary polynomial). This is due to substantial
differences in the low-level techniques employed in [10] and in our work to analyze the statistical properties
of the lossy function family. For these same reasons, even for large errors, our results seem incomparable to
those of [10] because we allow for a much wider class of error distributions.

2 Preliminaries

We use uppercase roman letters F,X for sets, lowercase roman for set elements x ∈ X , bold x ∈ Xn

for vectors, and calligraphic letters F ,X , . . . for probability distributions. The support of a probability
distribution X is denoted [X]. The uniform distribution over a finite set X is denoted U(X).

Two probability distributions X and Y are (t, ε)-indistinguishable if for all (probabilistic) algorithms D
running in time at most t,

|Pr[x← X : D(x) accepts]− Pr[y ← Y : D(y) accepts]| ≤ ε.

2.1 One-Way Functions

A function family is a probability distribution F over a set of functions F ⊆ (X → Y) with common
domain X and range Y . Formally, function families are defined as distributions over bit strings (function
descriptions) together with an evaluation algorithm, mapping each bitstring to a corresponding function, with
possibly multiple descriptions associated to the same function. In this paper, for notational simplicity, we
identify functions and their description, and unless stated otherwise, all statements about function families
should be interpreted as referring to the corresponding probability distributions over function descriptions.
For example, if we say that two function families F and G are indistinguishable, we mean that no efficient
algorithm can distinguish between function descriptions selected according to either F or G, where F and
G are probability distributions over bitstrings that are interpreted as functions using the same evaluation
algorithm.

A function family F is (t, ε) collision resistant if for all (probabilistic) algorithms A running in time at
most t,

Pr[f ← F , (x, x′)← A(f) : f(x) = f(x′) ∧ x 6= x′] ≤ ε.

Let X be a probability distribution over the domain X of a function family F . We recall the following
standard security notions:

• (F ,X) is (t, ε)-one-way if for all probabilistic algorithms A running in time at most t,

Pr[f ← F , x← X : A(f, f(x)) ∈ f−1(f(x))] ≤ ε.

• (F ,X) is (t, ε)-uninvertible if for all probabilistic algorithms A running in time at most t,

Pr[f ← F , x← X : A(f, f(x)) = x] ≤ ε.

6

10. Hardness of SIS and LWE with Small Parameters

• (F ,X) is (t, ε)-second preimage resistant if for all probabilistic algorithmsA running in time at most t,

Pr[f ← F , x← X , x′ ← A(f, x) : f(x) = f(x′) ∧ x 6= x′] ≤ ε.

• (F ,X) is (t, ε)-pseudorandom if the distributions {f ← F , x ← X : (f, f(x))} and {f ← F , y ←
U(Y) : (f, y)} are (t, ε)-indistinguishable.

The above probabilities (or the absolute difference between probabilities, for indistinguishability) are
called the advantages in breaking the corresponding security notions. It easily follows from the definition
that if a function family is one-way with respect to any input distribution X , then it is also uninvertible with
respect to the same input distribution X . Also, if a function family is collision resistant, then it is also second
preimage resistant with respect to any efficiently samplable input distribution.

All security definitions are immediately adapted to the asymptotic setting, where we implicitly consider
sequences of finite function families indexed by a security parameter. In this setting, for any security definition
(one-wayness, collision resistance, etc.) we omit t, and simply say that a function is secure if for any t that is
polynomial in the security parameter, it is (t, ε)-secure for some ε that is negligible in the security parameter.
We say that a function family is statistically secure if it is (t, ε)-secure for some negligible ε and arbitrary t,
i.e., it is secure even with respect to computationally unbounded adversaries.

The composition of function families is defined in the natural way. Namely, for any two function families
with [F] ⊆ X → Y and [G] ⊆ Y → Z, the composition G ◦ F is the function family that selects f ← F and
g ← G independently at random, and outputs the function (g ◦ f) : X → Z.

2.2 Lossy Function Families

Lossy functions, introduced in [23], are usually defined in the context of trapdoor function families, where
the functions are efficiently invertible with the help of some trapdoor information, and therefore injective (at
least with high probability over the choice of the key). We give a more general definition of lossy function
families that applies to non-injective functions and arbitrary input distributions, though we will be mostly
interested in input distributions that are uniform over some set.

Definition 2.1. Let L,F be two probability distributions (with possibly different supports) over the same set
of (efficiently computable) functions F ⊆ X → Y , and let X be an efficiently sampleable distribution over
the domain X . We say that (L,F ,X) is a lossy function family if the following properties are satisfied:

• the distributions L and F are indistinguishable,

• (L,X) is uninvertible, and

• (F ,X) is second preimage resistant.

The uninvertibility and second preimage resistance properties can be either computational or statistical.
(The definition from [23] requires both to be statistical.) We remark that uninvertible functions and second
preimage resistant functions are not necessarily one-way. For example, the constant function f(x) = 0 is
(statistically) uninvertible when |X| is super-polynomial in the security parameter, and the identity function
f(x) = x is (statistically) second preimage resistant (in fact, even collision resistant), but neither is one-way.
Still, if a function family is simultaneously uninvertible and second preimage resistant, then one-wayness
easily follows.

Lemma 2.2. Let F be a family of functions computable in time t′. If (F ,X) is both (t, ε)-uninvertible and
(t+ t′, ε′)-second preimage resistant, then it is also (t, ε+ ε′)-one-way.

7

10. Hardness of SIS and LWE with Small Parameters

Proof. Let A be an algorithm running in time at most t and attacking the one-wayness property of (F ,X).
Let f ← F and x ← X be chosen at random, and compute y ← A(f, f(x)). We want to bound the
probability that f(x) = f(y). We consider two cases:

• If x = y, then A breaks the uninvertibility property of (F ,X).

• If x 6= y, then A′(f, x) = A(f, f(x)) breaks the second preimage property of (F ,X).

By assumption, the probability of these two events are at most ε and ε′ respectively. By the union bound, A
breaks the one-wayness property with advantage at most ε+ ε′.

It easily follows by a simple indistinguishability argument that if (L,F ,X) is a lossy function family,
then both (L,X) and (F ,X) are one-way.

Lemma 2.3. Let F and F ′ be any two indistinguishable, efficiently computable function families, and let X
be an efficiently sampleable input distribution. Then if (F ,X) is uninvertible (respectively, second-preimage
resistant), then (F ′,X) is also uninvertible (resp., second-preimage resistant). In particular, if (L,F ,X) is a
lossy function family, then (L,X) and (F ,X) are both one-way.

Proof. Assume that (F ,X) is uninvertible and that there exists an efficient algorithm A breaking the
uninvertibility property of (F ′,X). Then F and F ′ can be efficiently distinguished by the following
algorithm D(f): choose x← X , compute x′ ← A(f, f(x)), and accept if A succeeded, i.e., if x = x′.

Next, assume that (F ,X) is second preimage resistant, and that there exists an efficient algorithm A
breaking the second preimage resistance property of (F ′,X). Then F and F ′ can be efficiently distinguished
by the following algorithm D(f): choose x← X , compute x′ ← A(f, x), and accept if A succeeded, i.e., if
x 6= x′ and f(x) = f(x′).

It follows that if (L,F ,X) is a lossy function family, then (L,X) and (F ,X) are both uninvertible and
second preimage resistant. Therefore, by Lemma 2.2, they are also one-way.

The standard definition of (injective) lossy trapdoor functions [23], is usually stated by requiring the ratio
|f(X)|/|X| to be small. Our general definition can easily be related to the standard definition by specializing
it to uniform input distributions. The next lemma gives an equivalent characterization of uninvertible functions
when the input distribution is uniform.

Lemma 2.4. Let L be a family of functions on a common domain X , and let X = U(X) the uniform
input distribution over X . Then (L,X) is ε-uninvertible (even statistically, with respect to computationally
unbounded adversaries) for ε = Ef←L[|f(X)|]/|X|.

Proof. Fix a function f , and choose a random input x← X . The best (computationally unbounded) attack
on the uninvertibility of (L,X), given input f and y = f(x), outputs an x′ ∈ X such that f(x′) = y and
the probability of x′ under X is maximized. Since X is the uniform distribution over X , the conditional
distribution of x given y is uniform over f−1(y), and the attack succeeds with probability 1/|f−1(y)|. Each y
is output by f with probability |f−1(y)|/|X|. So, the success probability of the attack is

∑
y∈f(X)

|f−1(y)|
|X|

· 1

|f−1(y)|
=
|f(X)|
|X|

.

Taking the expectation over the choice of f , we get that the attacker succeeds with probability ε.

8

10. Hardness of SIS and LWE with Small Parameters

We conclude this section with the observation that uninvertibility behaves as expected with respect to
function composition.

Lemma 2.5. If (F ,X) is uninvertible and G is any family of efficiently computable functions, then (G ◦F ,X)
is also uninvertible.

Proof. Any inverter A for G ◦ F can be easily transformed into an inverter A′(f, y) for (F ,X) that chooses
g ← G at random, and outputs the result of running A(g ◦ f, g(y))

A similar statement holds also for one-wayness, under the additional assumption that G is second preimage
resistant, but it is not needed here.

2.3 Lattices and Gaussians

An n-dimensional lattice of rank k is the set Λ of integer combinations of k linearly independent vectors
b1, . . . ,bk ∈ Rn, i.e. Λ =

{∑k
i=1 xibi | xi ∈ Z for i = 1, . . . , k

}
. The matrix B = [b1, . . . ,bk] is called

a basis for the lattice Λ. The dual of a (not necessarily full-rank) lattice Λ is the set Λ∗ = {x ∈ span(Λ) :
∀y ∈ Λ, 〈x,y〉 ∈ Z}. In what follows, unless otherwise specified we work with full-rank lattices, where
k = n.

The ith successive minimum λi(Λ) is the smallest radius r such that Λ contains i linearly independent
vectors of (Euclidean) length at most r. A fundamental computational problem in the study of lattice
cryptography is the approximate Shortest Independent Vectors Problem SIVPγ , which, on input a full-rank
n-dimensional lattice Λ (typically represented by a basis), asks to find n linearly independent lattice vectors
v1, . . . ,vn ∈ Λ all of length at most γ · λn(Λ), where γ ≥ 1 is an approximation factor and is usually a
function of the lattice dimension n. Another problem is the (decision version of the) approximate Shortest
Vector Problem GapSVPγ , which, on input an n-dimensional lattice Λ, asks to output “yes” if λ1(Λ) ≤ 1
and “no” if λ1(Λ) > γ. (If neither is the case, any answer is acceptable.)

For a matrix B = [b1, . . . ,bk] of linearly independent vectors, the Gram-Schmidt orthogonalization B̃
is the matrix of vectors b̃i where b̃1 = b1, and for each i = 2, . . . , k, the vector b̃i is the projection of bi
orthogonal to span(b1, . . . ,bi−1). The Gram-Schmidt minimum of a lattice Λ is b̃l(Λ) = minB‖B̃‖, where
‖B̃‖ = maxi ‖b̃i‖ and the minimum is taken over all bases B of Λ. Given any basis D of a lattice Λ and
any set S of linearly independent vectors in Λ, it is possible to efficiently construct a basis B of Λ such that
‖B̃‖ ≤ ‖S̃‖ (see [16]).

The Gaussian function ρs : Rm → R with parameter s is defined as ρs(x) = exp(−π‖x‖2/s2). When s
is omitted, it is assumed to be 1. The discrete Gaussian distribution DΛ+c,s with parameter s over a lattice
coset Λ + c is the distribution that samples each element x ∈ Λ + c with probability ρs(x)/ρs(Λ + c), where
ρs(Λ + c) =

∑
y∈Λ+c ρs(y) is a normalization factor.

For any ε > 0, the smoothing parameter ηε(Λ) [19] is the smallest s > 0 such that ρ1/s(Λ
∗ \ {0}) ≤ ε.

When ε is omitted, it is some unspecified negligible function ε = n−ω(1) of the lattice dimension or security
parameter n, which may vary from place to place.

We observe that the smoothing parameter satisfies the following decomposition lemma. The general case
for the sum of several lattices (whose linear spans have trivial pairwise intersections) follows immediately by
induction.

Lemma 2.6. Let lattice Λ = Λ1 + Λ2 be the (internal direct) sum of two lattices such that span(Λ1) ∩
span(Λ2) = {0}, and let Λ̃2 be the projection of Λ2 orthogonal to span(Λ1). Then for any ε1, ε2, ε > 0 such

9

10. Hardness of SIS and LWE with Small Parameters

that 1 + ε = (1 + ε1)(1 + ε2), we have

ηε(Λ̃2) ≤ ηε(Λ) ≤ ηε(Λ1 + Λ̃2) ≤ max{ηε1(Λ1), ηε2(Λ̃2)}.

Proof. Let Λ∗, Λ∗1 and Λ̃∗2 be the dual lattices of Λ, Λ1 and Λ̃2, respectively. For the first inequality, notice
that Λ̃∗2 is a sublattice of Λ∗. Therefore, ρ1/s(Λ̃

∗
2 \ {0}) ≤ ρ1/s(Λ

∗ \ {0}) for any s > 0, and thus
ηε(Λ̃2) ≤ ηε(Λ).

Next we prove that ηε(Λ) ≤ ηε(Λ1 + Λ̃2). It is routine to verify that we can express the dual lattice Λ∗

as the sum Λ∗ = Λ̃∗1 + Λ̃∗2, where Λ̃1 is the projection of Λ1 orthogonal to span(Λ2), and Λ̃∗1 is its dual.
Moreover, the projection of Λ̃∗1 orthogonal to span(Λ̃∗2) is exactly Λ∗1. For any x̃1 ∈ Λ̃∗1, let x1 ∈ Λ∗1 denote
its projection orthogonal to span(Λ̃∗2). Then for any s > 0 we have

ρ1/s(Λ
∗) =

∑
x̃1∈Λ̃∗1

∑
x̃2∈Λ̃∗2

ρ1/s(x̃1 + x̃2)

=
∑

x̃1∈Λ̃∗1

∑
x̃2∈Λ̃∗2

ρ1/s(x1) · ρ1/s((x̃1 − x1) + x̃2)

=
∑

x̃1∈Λ̃∗1

ρ1/s(x1) · ρ1/s((x̃1 − x1) + Λ̃∗2)

≤ ρ1/s(Λ
∗
1) · ρ1/s(Λ̃

∗
2) = ρ1/s(Λ

∗
1 + Λ̃∗2) = ρ1/s((Λ1 + Λ̃2)∗),

where the inequality follows from the bound ρ1/s(Λ + c) ≤ ρ1/s(Λ) from [19, Lemma 2.9], and the last two
equalities follow from the orthogonality of Λ∗1 and Λ̃∗2. This proves that ηε(Λ) ≤ ηε(Λ1 + Λ̃2).

Finally, for s1 = ηε1(Λ1), s2 = ηε2(Λ̃2) and s = max{s1, s2}, we have

ρ1/s((Λ1 + Λ̃2)∗) = ρ1/s(Λ
∗
1) · ρ1/s(Λ̃

∗
2) ≤ ρ1/s1(Λ∗1) · ρ1/s2(Λ̃∗2) = (1 + ε1)(1 + ε2) = 1 + ε.

Therefore, ηε(Λ1 + Λ̃∗2) ≤ s.

Using the decomposition lemma, one easily obtains known bounds on the smoothing parameter. For
example, for any lattice basis B = [b1, . . . ,bn], applying Lemma 2.6 repeatedly to the decomposition into
the rank-1 lattices defined by each of the basis vectors yields η(B · Zn) ≤ maxi η(b̃i · Z) = ‖B̃‖ · ωn,
where ωn = η(Z) = ω(

√
log n) is the smoothing parameter of the integer lattice Z. Choosing a basis B

achieving b̃l(Λ) = minB ‖B̃‖ (where the minimum is taken over all bases B of Λ), we get the bound
η(Λ) ≤ b̃l(Λ) · ωn from [12, Theorem 3.1]. Similarly, choosing a set S ⊂ Λ of linearly independent vectors
of length ‖S‖ ≤ λn(Λ), we get the bound η(Λ) ≤ η(S ·Zn) ≤ ‖S̃‖ · ωn ≤ ‖S‖ ·ωn = λn(Λ) ·ωn from [19,
Lemma 3.3]. In this paper we use a further generalization of these bounds, still easily obtained from the
decomposition lemma.

Corollary 2.7. The smoothing parameter of the tensor product of any two lattices Λ1,Λ2 satisfies η(Λ1 ⊗
Λ2) ≤ b̃l(Λ1) · η(Λ2).

Proof. Let B = [b1, . . . ,bk] be a basis of Λ1 achieving maxi ‖b̃i‖ = b̃l(Λ1), and consider the natural
decomposition of Λ1 ⊗ Λ2 into the sum

(b1 ⊗ Λ2) + · · ·+ (bk ⊗ Λ2).

Notice that the projection of each sublattice bi ⊗ Λ2 orthogonal to the previous sublattices bj ⊗ Λ2 (for
j < i) is precisely b̃i⊗Λ2, and has smoothing parameter η(b̃i⊗Λ2) = ‖b̃i‖ · η(Λ2). Therefore, by repeated
application of Lemma 2.6, we have η(Λ1 ⊗ Λ2) ≤ maxi ‖b̃i‖ · η(Λ2) = b̃l(Λ1) · η(Λ2).

10

10. Hardness of SIS and LWE with Small Parameters

The following proposition relates the problem of sampling lattice vectors according to a Gaussian
distribution to the SIVP.

Proposition 2.8 ([24], Lemma 3.17). There is a polynomial time algorithm that, given a basis for an n-
dimensional lattice Λ and polynomially many samples from DΛ,σ for some σ ≥ 2η(Λ), solves SIVPγ on
input lattice Λ (in the worst case over Λ, and with overwhelming probability over the choice of the lattice
samples) for approximation factor γ = σ

√
n · ωn.

2.4 The SIS and LWE Functions

In this paper we are interested in two special families of functions, which are the fundamental building blocks
of lattice cryptography. Both families are parametrized by three integers m,n and q, and a set X ⊆ Zm of
short vectors. Usually n serves as a security parameter and m and q are functions of n.

The Short Integer Solution function family SIS(m,n, q,X) is the set of all functions fA indexed by
A ∈ Zn×mq with domain X ⊆ Zm and range Y = Znq , defined as fA(x) = Ax mod q. The Learning
With Errors function family LWE(m,n, q,X) is the set of all functions gA indexed by A ∈ Zn×mq with
domain Znq ×X and range Y = Zmq , defined as gA(s,x) = AT s + x mod q. Both function families are
endowed with the uniform distribution over A ∈ Zn×mq . We omit the set X from the notation SIS(m,n, q)
and LWE(m,n, q) when clear from the context, or unimportant.

In the context of collision resistance, we sometimes write SIS(m,n, q, β) for some real β > 0, without
an explicit domain X . Here the collision-finding problem is, given A ∈ Zn×mq , to find distinct x,x′ ∈ Zm
such that ‖x − x′‖ ≤ β and fA(x) = fA(x′). It is easy to see that this is equivalent to finding a nonzero
z ∈ Zm of length at most ‖z‖ ≤ β such that fA(z) = 0.

For other security properties (e.g., one-wayness, uninvertibility, etc.), the most commonly used classes of
domains and input distributionsX for SIS are the uniform distribution U(X) over the setX = {0, . . . , s−1}m
or X = {−s, . . . , 0, . . . , s}m, and the discrete Gaussian distribution Dm

Z,s. Usually, this distribution is
restricted to the set of short vectors X = {x ∈ Zm : ‖x‖ ≤ s

√
m}, which carries all but a 2−Ω(m) fraction

of the probability mass of Dm
Z,s.

For the LWE function family, the input is usually chosen according to distribution U(Znq)×X , where X
is one of the SIS input distributions. This makes the SIS and LWE function families essentially equivalent,
as shown in the following proposition.

Proposition 2.9 ([15, 17]). For any n, m ≥ n+ω(log n), q, and distribution X over Zm, the LWE(m,n, q)
function family is one-way (resp. pseudorandom, or uninvertible) with respect to input distribution U(Znq)×X
if and only if the SIS(m,m− n, q) function family is one-way (resp. pseudorandom, or uninvertible) with
respect to the input distribution X .

In applications, the SIS function family is typically used with larger input domains X for which the
functions are surjective but not injective, while the LWE function family is used with smaller domains X for
which the functions are injective, but not surjective. The results in this paper are more naturally stated using
the SIS function family, so we will use the SIS formulation to establish our main results, and then reformulate
them in terms of the LWE function family by invoking Proposition 2.9. We also use Proposition 2.9 to
reformulate known hardness results (from worst-case complexity assumptions) for LWE in terms of SIS.

Assuming the quantum worst-case hardness of standard lattice problems, Regev [24] showed that the
LWE(m,n, q) function family is hard to invert with respect to the discrete Gaussian error distribution Dm

Z,σ
for any σ > 2

√
n. (See also [21] for a classical reduction that requires q to be exponentially large in n.

11

10. Hardness of SIS and LWE with Small Parameters

Because we are concerned with small parameters in this work, we focus mainly on the implications of the
quantum reduction.)

Proposition 2.10 ([24], Theorem 3.1). For any m = nO(1), integer q and real α ∈ (0, 1) such that αq >
2
√
n, there is a polynomial time quantum reduction from sampling DΛ,σ (for any n-dimensional lattice Λ

and σ > (
√

2n/α)η(Λ)) to inverting the LWE(m,n, q) function family on input Y = DZm,αq.

Combining Propositions 2.8, 2.9 and 2.10, we get the following corollary.

Corollary 2.11. For any positive m,n such that ω(log n) ≤ m − n ≤ nO(1) and 2
√
n < σ < q, the

SIS(m,m−n, q) function family is uninvertible with respect to input distributionDm
Z,σ, under the assumption

that no (quantum) algorithm can efficiently sample from a distribution statistically close to DΛ,
√

2nq/σ.
In particular, assuming the worst-case (quantum) hardness of SIVPnωnq/σ over n-dimensional lattices,

the SIS(m,m− n, q) function family is uninvertible with respect to input distribution Dm
Z,σ.

We use the fact that LWE/SIS is not only hard to invert, but also pseudorandom. This is proved using
search-to-decision reductions for those problems. The most general such reductions known to date are given
in the following two theorems.

Theorem 2.12 ([17]). For any positive m,n such that ω(log n) ≤ m− n ≤ nO(1), any positive σ ≤ nO(1),
and any q with no divisors in the interval ((σ/ωn)m/k, σ · ωn), if SIS(m,m − n, q,Dm

Z,σ) is uninvertible,
then it is also pseudorandom.

Notice that when σ > ω
(m+k)/(m−k)
n , the interval ((σ/ωn)m/k, σ ·ωn) is empty, and Theorem 2.12 holds

without any restriction on the factorization of the modulus q.

Theorem 2.13 ([18]). Let q have prime factorization q = pe11 · · · p
ek
k for pairwise distinct poly(n)-bounded

primes pi with each ei ≥ 1, and let 0 < α ≤ 1/ωn. If LWE(m,n, q,Dm
Z,αq) is hard to invert for all

m(n) = nO(1), then LWE(m′, n, q,Dm
Z,α′q) is pseudorandom for any m′ = nO(1) and

α′ ≥ max{α, ω1+1/`
n · α1/`, ωn/p

e1
1 , . . . , ωn/p

ek
k },

where ` is an upper bound on number of prime factors pi < ωn/α
′.

In this work we focus on the use of Theorem 2.12, because it guarantees pseudorandomness for the same
value of m as for the assumed one-wayness. This feature is important for applying our results from Section 4,
which guarantee one-wayness for particular values of m (but not necessarily all m = nO(1)).

Corollary 2.14. For any positivem,n, σ, q such that ω(log n) ≤ m−n ≤ nO(1) and 2
√
n < σ < q < nO(1),

if q has no divisors in the range ((σ/ωn)1+n/k, σ · ωn), then the SIS(m,m − n, q) function family is
pseudorandom with respect to input distribution Dm

Z,σ, under the assumption that no (quantum) algorithm
can efficiently sample (up to negligible statistical errors) DΛ,

√
2nq/σ.

In particular, assuming the worst-case (quantum) hardness of SIVPnωnq/σ on n-dimensional lattices, the
SIS(m,m− n, q) function family is pseudorandom with respect to input distribution Dm

Z,σ.

12

10. Hardness of SIS and LWE with Small Parameters

3 Hardness of SIS with Small Modulus

We first prove a simple “success amplification” lemma for collision-finding in SIS, which says that any
inverse-polynomial advantage can be amplified to essentially 1, at only the expense of a larger runtime and
value of m (which will have no ill effects on our final results). Therefore, for the remainder of this section we
implicitly restrict our attention to collision-finding algorithms that have overwhelming advantage.

Lemma 3.1. For arbitrary n, q,m and X ⊆ Zm, suppose there exists a probabilistic algorithm A that has
advantage ε > 0 in collision-finding for SIS(m,n, q,X). Then there exists a probabilistic algorithm B that
has advantage 1− (1−ε)t ≥ 1−exp(−εt) = 1−exp(−n) in collision-finding for SIS(M = t ·m,n, q,X ′),
where t = n/ε and X ′ =

⋃t
i=1({0m}i−1 ×X × {0m}t−i). The runtime of B is essentially t times that of A.

Proof. The algorithm B simply partitions its input A ∈ Zn×Mq into blocks Ai ∈ Zn×mq and invokes A (with
fresh random coins) on each of them, untilA returns a valid collision x,x′ ∈ X for some Ai. Then B returns

(0m(i−1),x, 0m(t−i)), (0m(i−1),x′, 0m(t−i)) ∈ X ′

as a collision for A. Clearly, B succeeds if any call to A succeeds. Since all t calls to A are on independent
inputs Ai and use independent coins, some call will succeed, except with (1− ε)t probability.

3.1 SIS-to-SIS Reduction

Our first proof that the SIS(m,n, q, β) function family is collision resistant for moduli q as small as n1/2+δ

proceeds by a reduction between SIS problems with different parameters. Previous hardness results based on
worst-case lattice assumptions require the modulus q to be at least β · ω(

√
n log n) [12, Theorem 9.2], and

β ≥
√
n log q is needed to guarantee that a nontrivial solution exists. For such parameters, SIS is collision

resistant assuming the hardness of approximating worst-case lattice problems to within ≈ β
√
n factors.

The intuition behind our proof for smaller moduli is easily explained. We reduce SIS with modulus qc

and solution bound βc (for any constant integer c ≥ 1) to SIS with modulus q and bound β. Then as long as
(q/β)c ≥ ω(

√
n log n), the former problem enjoys worst-case hardness, hence so does the latter. Thus we can

take q = β · nδ for any constant δ > 0, and c > 1/(2δ). Notice, however, that the underlying approximation
factor for worst-case lattice problems is ≈ βc

√
n ≥ n1/2+1/(4δ), which, while still polynomial, degrades

severely as δ approaches 0. In the next subsection we give a direct reduction from worst-case lattice problems
to SIS with a small modulus, which does not have this drawback.

The above discussion is formalized in the following proposition. For technical reasons, we prove that
SIS(m,n, q,X) is collision resistant assuming that the domain X has the property that all SIS solutions
z ∈ (X −X) \ {0} satisfy gcd(z, q) = 1. This restriction is satisfied in many (but not all) common settings,
e.g., when q > β is prime, or when X ⊆ {0, 1}m is a set of binary vectors.

Proposition 3.2. Let n, q, m, β and X ⊆ Zm be such that gcd(x − x′, q) = 1 and ‖x − x′‖ ≤ β for any
distinct x,x′ ∈ X . For any positive integer c, there is a deterministic reduction from collision-finding for
SIS(mc, n, qc, βc) to collision-finding for SIS(m,n, q,X) (in both cases, with overwhelming advantage).
The reduction runs in time polynomial in its input size, and makes fewer than mc calls to its oracle.

Proof. LetA be an efficient algorithm that finds a collision for SIS(m,n, q,X) with overwhelming advantage.
We use it to find a nonzero solution for SIS(mc, n, qc, βc). Let A ∈ Zn×m

c

qc be an input SIS instance. Partition
the columns of A into mc−1 blocks Ai ∈ Zn×mqc , and for each one, invoke A to find a collision modulo q,
i.e., a pair of distinct vectors xi,x′i ∈ X such that Aizi = 0 mod q, where zi = xi − x′i and ‖zi‖ ≤ β.

13

10. Hardness of SIS and LWE with Small Parameters

For each i, since gcd(zi, q) = 1 and Aizi = 0 mod q, the vector a′i = (Aizi)/q ∈ Znqc−1 is uniformly

random, even after conditioning on zi and Ai mod q. So, the matrix A′ ∈ Zn×m
c−1

qc−1 made up of all these

columns is uniformly random. By induction on c, using A we can find a nonzero solution z′ ∈ Zmc−1
such

that A′z′ = 0 mod qc−1 and ‖z′‖ ≤ βc−1. Then it is easy to verify that a nonzero solution for the original
instance A is given by z = (z′1 · z1, . . . , z

′
mc−1 · zmc−1) ∈ Zmc

, and that ‖z‖ ≤ ‖z′‖ · maxi ‖zi‖ ≤ βc.
Finally, the total number of calls to A is

∑c−1
i=0 m

i < mc, as claimed.

3.2 Direct Reduction

As mentioned above, the large worst-case approximation factor associated with the use of Proposition 3.2 is
undesirable, as is (to a lesser extent) the restriction that gcd(X−X, q) = 1. To eliminate these drawbacks, we
next give a direct proof that SIS is collision resistant for small q, based on the assumed hardness of worst-case
lattice problems. The underlying approximation factor for these problems can be as small as Õ(β

√
n), which

matches the best known factors obtained by previous proofs (which require a larger modulus q). Our new
proof combines ideas from [19, 12] and Proposition 3.2, as well as a new convolution theorem for discrete
Gaussians which strengthens similar ones previously proved in [22, 6].

Our proof of the convolution theorem is substantially different and, we believe, technically simpler than
the prior ones. In particular, it handles the sum of many Gaussian samples all at once, whereas previous proofs
used induction from a base case of two samples. With the inductive approach, it is technically complex to
verify that all the intermediate Gaussian parameters (which involve harmonic means) satisfy the hypotheses.
Moreover, the intermediate parameters can depend on the order in which the samples are added in the
induction, leading to unnecessarily strong hypotheses on the original parameters.

Theorem 3.3. Let Λ be an n-dimensional lattice, z ∈ Zm a nonzero integer vector, si ≥
√

2‖z‖∞ · η(Λ),
and Λ + ci arbitrary cosets of Λ for i = 1, . . . ,m. Let yi be independent vectors with distributions DΛ+ci,si ,
respectively. Then the distribution of y =

∑
i ziyi is statistically close to DY,s, where Y = gcd(z)Λ + c,

c =
∑

i zici, and s =
√∑

i(zisi)
2.

In particular, if gcd(z) = 1 and
∑

i zici ∈ Λ, then y is distributed statistically close to DΛ,s.

Proof. First we verify that the support of y is∑
i

zi(Λ + ci) =
∑
i

ziΛ +
∑
i

zi · ci = gcd(z)Λ +
∑
i

zi · ci = Y.

So it remains to prove that each y ∈ Y has probability (nearly) proportional to ρs(y).
For the remainder of the proof we use the following convenient scaling. Define the diagonal matrices

S = diag(s1, . . . , sm) and S′ = S⊗ In, and the mn-dimensional lattice Λ′ =
⊕

i(s
−1
i Λ) = (S′)−1 · Λ⊕m,

where
⊕

denotes the (external) direct sum of lattices and Λ⊕m = Zm ⊗ Λ is the direct sum of m copies
of Λ. Then by independence of the yi, it can be seen that y′ = (S′)−1 · (y1, . . . ,ym) has discrete Gaussian
distribution DΛ′+c′ (with parameter 1), where c′ = (S′)−1 · (c1, . . . , cm).

The output vector y =
∑

i ziyi can be expressed, using the mixed-product property for Kronecker
products, as

y = (zT ⊗ In) · (y1, . . . ,ym) = (zT ⊗ In) · S′ · y′ = ((zTS)⊗ In) · y′.

So, letting Z = ((zTS)⊗ In), we want to prove that the distribution of y ∼ Z ·DΛ′+c′ is statistically close
to DY,s.

14

10. Hardness of SIS and LWE with Small Parameters

Fix any vectors x′ ∈ Λ′ + c′ and ȳ = Zx′ ∈ Y , and define the proper sublattice

L = {v ∈ Λ′ : Zv = 0} = Λ′ ∩ ker(Z) (Λ′.

It is immediate to verify that the set of all y′ ∈ Λ′ + c′ such that Zy′ = ȳ is (Λ′ + c′) ∩ ker(Z) = L+ x′.
Let x be orthogonal projection of x′ onto ker(Z) ⊃ L. Then we have

Pr[y = ȳ] =
ρ(L+ x′)

ρ(Λ′ + c′)
= ρ(x′ − x) · ρ(L+ x)

ρ(Λ′ + c′)
.

Below we show that η(L) ≤ 1, which implies that ρ(L+ x) is essentially the same for all values of x′, and
hence for all ȳ. Therefore, we just need to analyze ρ(x′ − x).

Since ZT is an orthogonal basis for ker(Z)⊥, each of whose columns has Euclidean norm s =
(
∑

i(zisi)
2)1/2, we have x′ − x = (ZTZx′)/s2, and

‖x′ − x‖2 = 〈x′,ZTZx′〉/s2 = ‖Zx′‖2/s2 = (‖ȳ‖/s)2.

Therefore, ρ(x′ − x) = ρs(ȳ), and so Pr[y = ȳ] is essentially proportional to ρs(ȳ), i.e., the statistical
distance between y and DY,s is negligible.

It remains to bound the smoothing parameter of L. Consider the m-dimensional integer lattice Z =
Zm ∩ ker(zT) = {v ∈ Zm : 〈z,v〉 = 0}. Because (Z ⊗ Λ) ⊆ (Zm ⊗ Λ) and S−1Z ⊂ ker(zTS), it is
straightforward to verify from the definitions that

(S′)−1 · (Z ⊗ Λ) = ((S−1Z)⊗ Λ)

is a sublattice of L. It follows from Corollary 2.7 and by scaling that

η(L) ≤ η((S′)−1 · (Z ⊗ Λ)) ≤ η(Λ) · b̃l(Z)/min si.

Finally, b̃l(Z) ≤ min
{
‖z‖,
√

2‖z‖∞
}

because Z has a full-rank set of vectors zi · ej − zj · ei, where index
i minimizes |zi| 6= 0, and j ranges over {1, . . . ,m} \ {i}. By assumption on the si, we have η(L) ≤ 1 as
desired, and the proof is complete.

Remark 3.4. Although we will not need it in this work, we note that the statement and proof of Theorem 3.3
can be adapted to the case where the yi respectively have non-spherical discrete Gaussian distributions
DΛi+ci,

√
Σi

with positive definite “covariance” parameters Σi ∈ Rn×n, over cosets of possibly different
lattices Λi. (See [22] for a formal definition of these distributions.)

In this setting, by scaling Λi and Σi we can assume without loss of generality that z = (1, 1, . . . , 1).
The theorem statement says that y’s distribution is close to a discrete Gaussian (over an appropriate lattice
coset) with covariance parameter Σ =

∑
Σi, under mild assumptions on

√
Σi. In the proof we simply

let S′ be the block-diagonal matrix with the
√

Σi as its diagonal blocks, let Λ′ = (S′)−1 ·
⊕

i Λi, and let
Z = (zT ⊗ In) · S′ = [

√
Σ1 | · · · |

√
Σm]. Then the only technical difference is in bounding the smoothing

parameter of L.

The convolution theorem implies the following simple but useful lemma, which shows how to convert
samples having a broad range of parameters into ones having parameters in a desired narrow range.

Lemma 3.5. There is an efficient algorithm which, given a basis B of some lattice Λ, some R ≥
√

2 and
samples (yi, si) where each si ∈ [

√
2, R] · η(Λ) and each yi has distribution DΛ,si , with overwhelming

probability outputs a sample (y, s) where s ∈ [R,
√

2R] · η(Λ) and y has distribution statistically close
to DΛ,s.

15

10. Hardness of SIS and LWE with Small Parameters

Proof. Let ωn = ω(
√

log n) satisfy ωn ≤
√
n. The algorithm draws 2n2 input samples, and works as

follows: if at least n2 of the samples have parameters si ≤ R · η(Λ)/(
√
n · ωn), then with overwhelming

probability they all have lengths bounded by R · η(Λ)/ωn and they include n linearly independent vectors.
Using such vectors we can construct a basis S such that ‖S̃‖ ≤ R ·η(Λ)/ωn, and with the sampling algorithm
of [12, Theorem 4.1] we can generate samples having parameter R · η(Λ).

Otherwise, at least n2 of the samples (yi, si) have parameters si ≥ max{R/n,
√

2} · η(Λ). Then by
summing an appropriate subset of those yi, by the convolution theorem we can obtain a sample having
parameter in the desired range.

The next lemma is the heart of our reduction. The novel part, corresponding to the properties described in
the second item, is a way of using a collision-finding oracle to reduce the Gaussian width of samples drawn
from a lattice. The first item corresponds to the guarantees provided by previous reductions.

Lemma 3.6. Let m,n be integers, S = {z ∈ Zm \ {0} | ‖z‖ ≤ β ∧‖z‖∞ ≤ β∞} for some real β ≥ β > 0,
and q an integer modulus with at most poly(n) integer divisors less than β∞. There is a probabilistic
polynomial time reduction that, on input any basis B of a lattice Λ and sufficiently many samples (yi, si)
where si ≥

√
2q · η(Λ) and yi has distribution DΛ,si , and given access to an SIS(m,n, q, S) oracle (that

finds collisions z ∈ S with nonnegligible probability) outputs (with overwhelming probability) a sample
(y, s) with min si/q ≤ s ≤ (β/q) ·max si, and y ∈ Λ such that:

• E[‖y‖] ≤ (β
√
n/q) · max si, and for any subspace H ⊂ Rn of dimension at most n − 1, with

probability at least 1/10 we have y 6∈ H .

• Moreover, if each si ≥
√

2β∞q · η(Λ), then the distribution of y is statistically close to DΛ,s

Proof. Let A be the collision-finding oracle. Without loss of generality, we can assume that whenever A
outputs a valid collision z ∈ S, we have that gcd(z) divides q. This is so because for any integer vector
z, if Az = 0 mod q then also A((g/d)z) = 0 mod q, where d = gcd(z) and g = gcd(d, q). Moreover,
(g/d)z ∈ S holds true and gcd((g/d)z) = gcd(z, q) divides q. Let d be such that A outputs, with non-
negligible probability, a valid collision z satisfying gcd(z) = d. Such a d exists because gcd(z) is bounded
by β∞ and divides q, so by assumption there are only polynomially many possible values of d. Let q′ = q/d,
which is an integer. By increasingm and using standard amplification techniques, we can make the probability
that A outputs such a collision (satisfying z ∈ S, Az = 0 (mod q) and gcd(z) = d) exponentially close
to 1.

Let (yi, si) for i = 1, . . . ,m be input samples, where yi has distribution DΛ,si . Write each yi as
yi = Bai mod q′Λ for ai ∈ Znq′ . Since si ≥ q′η(Λ) the distribution of ai is statistically close to uniform over
Znq′ . Let A = [a1 | · · · | am] ∈ Zn×mq , and choose A′ ∈ Zn×md uniformly at random. Since A is statistically
close to uniform over Zn×mq′ , the matrix A+ q′A′ is statistically close to uniform over Zn×mq . Call the oracle
A on input A+q′A′, and obtain (with overwhelming probability) a nonzero z ∈ S with gcd(z) = d, ‖z‖ ≤ β,
‖z‖∞ ≤ β∞ and (A + q′A′)z = 0 mod q. Notice that q′A′z = qA′(z/d) = 0 mod q because (z/d) is an
integer vector. Therefore Az = 0 mod q. Finally, the reduction outputs (y, s), where y =

∑
i ziyi/q and

s =
√∑

i(sizi)
2/q. Notice that ziyi ∈ qΛ + B(ziai) because gcd(z) = d, so y ∈ Λ.

Notice that s satisfies the stated bounds because z is a nonzero integer vector. We next analyze the
distribution of y. For any fixed ai, the conditional distribution of each yi is Dq′Λ+Bai,si , where si ≥√

2η(q′Λ). The claim on E[‖y‖] then follows from [19, Lemma 2.11 and Lemma 4.3] and Hölder’s inequality.
The claim on the probability that y 6∈ H was initially shown in the preliminary version of [19]; see also [24,
Lemma 3.15].

16

10. Hardness of SIS and LWE with Small Parameters

Now assume that si ≥
√

2β∞q · η(Λ) ≥
√

2‖z‖∞ · η(q′Λ) for all i. By Theorem 3.3 the distribution of
y is statistically close to DY/q,s where Y = gcd(z) · q′Λ + B(Az). Using Az = 0 mod q and gcd(z) = d,
we get Y = qΛ. Therefore y has distribution statistically close to DΛ,s, as claimed.

Building on Lemma 3.6, our next lemma shows that for any q ≥ β · nΩ(1), a collision-finding oracle can
be used to obtain Gaussian samples of width close to 2ββ∞ · η(Λ).

Lemma 3.7. Let m,n, q, S as in Lemma 3.6, and also assume q/β ≥ nδ for some constant δ > 0. There is
an efficient reduction that, on input any basis B of an n-dimensional lattice Λ, an upper bound η ≥ η(Λ), and
given access to an SIS(m,n, q, S) oracle (finding collisions z ∈ S with nonnegligible probability), outputs
(with overwhelming probability) a sample (y, s) where

√
2β∞ · η ≤ s ≤ 2β∞β · η and y has distribution

statistically close to DΛ,s.

Proof. By applying the LLL basis reduction algorithm [13] to the basis B, we can assume without loss
of generality that ‖B̃‖ ≤ 2n · η(Λ). Let ωn be an arbitrary function in n satisfying ωn = ω(

√
log n) and

ωn ≤
√
n/2.

The main procedure, described below, produces samples having parameters in the range [1, q] ·
√

2β∞ · η.
On these samples we run the procedure from Lemma 3.5 (with R =

√
2β∞q · η) to obtain samples having

parameters in the range [
√

2, 2] · β∞q · η. Finally, we invoke the reduction from Lemma 3.6 on those samples
to obtain a sample satisfying the conditions in the Lemma statement.

The main procedure works in a sequence of phases i = 0, 1, 2, In phase i, the input is a basis Bi

of Λ, where initially B0 = B. The basis Bi is used in the discrete Gaussian sampling algorithm of [12,
Theorem 4.1] to produce samples (y, si), where si = max{‖B̃i‖ · ωn,

√
2β∞η} ≥

√
2β∞η and yi has

distribution statistically close to DΛ,si . Phase i either manages to produce a sample (y, s) with s in the
desired range [1, q] ·

√
2β∞η, or it produces a new basis Bi+1 for which ‖B̃i+1‖ ≤ ‖B̃i‖/2, which is the

input to the next phase. The number of phases before termination is clearly polynomial in n, by hypothesis
on B.

If ‖B̃i‖·ωn ≤
√

2qβ∞η, then this already gives samples with si ∈ [1, q]
√

2β∞η in the desired range, and
we can terminate the main phase. So, we may assume that si = ‖B̃i‖·ωn ≥

√
2qβ∞η. Each phase i proceeds

in some constant c ≥ 1/δ number of sub-phases j = 1, 2, . . . , c, where the inputs to the first sub-phase
are the samples (y, si) generated as described above. We recall that these samples satisfy si ≥

√
2qβ∞η.

The same will be true for the samples passed as input to all other subsequent subphases. So, each subphase
receives as input samples (y, s) satisfying all the hypotheses of Lemma 3.6, and we can run the reduction
from that lemma to generate new samples (y′, s′) having parameters s′ bounded from above by si · (β/q)j ,
and from below by

√
2β∞η. If any of the produces samples satisfies s′ ≤ q

√
2β∞η, then we can terminate

the main procedure with (y′, s′) as output. Otherwise, all samples produced during the subphase satisfy
s′ > q

√
2β∞η, and they can be passed as input to the next sub-phase. Notice that the total runtime of all

the sub-phases is poly(n)c, because each invocation of the reduction from Lemma 3.6 relies on poly(n)
invocations of the reduction in the previous sub-phase; this is why we need to limit the number of sub-phases
to a constant c.

If phase i ends up running all its sub-phases without ever finding a sample with s′ ∈ [1, q]
√

2β∞η, then it
has produced samples whose parameters are bounded by (β/q)c ≤ si ≤ si/

√
n. It uses n2 of these samples,

which with overwhelming probability have lengths all bounded by si/
√
n, and include n linearly independent

vectors. It transforms those vectors into a basis Bi+1 with ‖B̃i+1‖ ≤ si/
√
n ≤ ‖B̃‖iωn/

√
n ≤ ‖B̃i‖/2, as

input to the next phase.

We can now prove our main theorem, reducing worst-case lattice problems with max{1, ββ∞/q} ·
Õ(β
√
n) approximation factors to SIS, when q ≥ β · nΩ(1).

17

10. Hardness of SIS and LWE with Small Parameters

Theorem 3.8. Let m,n be integers, S = {z ∈ Zm \ {0} | ‖z‖ ≤ β ∧ ‖z‖∞ ≤ β∞} for some real
β ≥ β∞ > 0, and q ≥ β · nΩ(1) be an integer modulus with at most poly(n) integer divisors less than β∞.
For some γ = max{1, ββ∞/q} ·O(β

√
n), there is an efficient reduction from SIVPηγ (and hence also from

standard SIVPγ·ωn) on n-dimensional lattices to S-collision finding for SIS(m,n, q) with non-negligible
advantage.

Proof. Given an input basis B of a lattice Λ, we can apply the LLL algorithm to obtain a 2n-approximation
to η(Λ), and by scaling we can assume that η(Λ) ∈ [1, 2n]. For i = 1, . . . , n, we run the procedure described
below for each hypothesized upper bound ηi = 2i on η(Λ). Each call to the procedure either fails, or returns
a set of linearly independent vectors in Λ whose lengths are all bounded by (γ/2) · ηi. We return the first
such obtained set (i.e., for the minimal value of i). As we show below, as long as ηi ≥ η(Λ) the procedure
returns a set of vectors with overwhelming probability. Since one ηi ∈ [1, 2) · η(Λ), our reduction solves
SIVPηγ with overwhelming probability, as claimed.

The procedure invokes the reduction from Lemma 3.7 with η = ηi to obtain samples with parameters
in the range [

√
2β∞,

√
2ββ∞] · η. On these samples we run the procedure from Lemma 3.5 with R =

max{
√

2q,
√

2ββ∞} to obtain samples having parameters in the range [R,
√

2R] · η. On such samples we
repeatedly run (using independent samples each time) the reduction from Lemma 3.6. After enough runs, we
obtain with overwhelming probability a set of linearly independent lattice vectors all having lengths at most
(γ/2) · η, as required.

4 Hardness of LWE with Small Uniform Errors

In this section we prove the hardness of inverting the LWE function even when the error vectors have very
small entries, provided the number of samples is sufficiently small. We proceed similarly to [23, 4], by using
the LWE assumption (for discrete Gaussian error) to construct a lossy family of functions with respect to
a uniform distribution over small inputs. However, the parameterization we obtain is different from those
in [23, 4], allowing us to obtain pseudorandomness of LWE under very small (e.g., binary) inputs, for a
number of LWE samples that exceeds the LWE dimension.

Our results and proofs are more naturally formulated using the SIS function family. So, we will first
study the problem in terms of SIS, and then reformulate the results in terms of LWE using Proposition 2.9.
We recall that the main difference between this section and Section 3, is that here we consider parameters
for which the resulting functions are essentially injective, or more formally, statistically second-preimage
resistant. The following lemma gives sufficient conditions that ensure this property.

Lemma 4.1. For any integers m, k, q, s and set X ⊆ [s]m, the function family SIS(m, k, q) is (statistically)
ε-second preimage resistant with respect to the uniform input distribution U(X) for ε = |X| · (s′/q)k,
where s′ is the largest factor of q smaller than s.

Proof. Let x ← U(X) and A ← SIS(m, k, q) be chosen at random. We want to evaluate the probability
that there exists an x′ ∈ X \ {x} such that Ax = Ax′ (mod q), or, equivalently, A(x − x′) = 0
(mod q). Fix any two distinct vectors x,x′ ∈ X and let z = x− x′. The vector Az (mod q) is distributed
uniformly at random in (dZ/qZ)k, where d = gcd(q, z1, . . . , zm). All coordinates of z are in the range
zi ∈ {−(s− 1), . . . , (s− 1)}, and at least one of them is nonzero. Therefore, d is at most s′ and |dZkq | =
(q/d)k ≥ (q/s′)k. By union bound (over x′ ∈ X \ {x}) for any x, the probability that there is a second
preimage x′ is at most (|X| − 1)(s′/q)k.

18

10. Hardness of SIS and LWE with Small Parameters

We remark that, as shown in Section 3, even for parameter settings that do not fall within the range
specified in Lemma 4.1, SIS(m, k, q) is collision resistant, and therefore also (computationally) second-
preimage-resistant. This is all that is needed in the rest of this section. However, when SIS(m, k, q) is not
statistically second-preimage resistant, the one-wayness proof that follows (see Theorem 4.5) is not very
interesting: typically, in such settings, SIS(m, k, q) is also statistically uninvertible, and the one-wayness
of SIS(m, k, q) directly follows from Lemma 2.2. So, below we focus on parameter settings covered by
Lemma 4.1.

We prove the one-wayness of F = SIS(m, k, q,X) with respect to the uniform input distribution
X = U(X) by building a lossy function family (L,F ,X) where L is an auxiliary function family that we
will prove to be uninvertible and computationally indistinguishable from F . The auxiliary family L is derived
from the following function family.

Definition 4.2. For any probability distribution Y over Z` and integer m ≥ `, let I(m, `,Y) be the prob-
ability distribution over linear functions [I | Y] : Zm → Z` where I is the ` × ` identity matrix, and
Y ∈ Z`×(m−`) is obtained choosing each column of Y independently at random from Y .

We anticipate that we will set Y to the Gaussian input distribution Y = D`
Z,σ in order to make L

indistinguishable from F under a standard LWE assumption. But for generality, we prove some of our results
with respect to a generic distribution Y .

The following lemma shows that for a bounded distribution Y (and appropriate parameters), I(m, `,Y)
is (statistically) uninvertible.

Lemma 4.3. Let Y be a probability distribution on [Y] ⊆ {−σ, . . . , σ}n, and let X ⊆ {−s, . . . , s}m. Then
I(m, `,Y) is ε-uninvertible with respect to U(X) for ε = (1 + 2s(1 + σ(m− `)))`/|X|.

Proof. Let f = [I | Y] be an arbitrary function in the support of I(m, `,Y). We know that |yi,j | ≤ σ for all
i, j. We first bound the size of the image |f(X)|. By the triangle inequality, all the points in the image f(X)
have `∞ norm at most

‖f(u)‖∞ ≤ ‖u‖∞(1 + σ(m− `)) ≤ s(1 + σ(m− `)).

The number of integer vectors (in Z`) with such bounded `∞ norm is

(1 + 2s(1 + σ(m− `)))`.

Dividing by the size of X and using Lemma 2.4, the claim follows.

Lemma 4.3 applies to any distribution Y with bounded support. When Y = D`
Z,σ is a discrete Gaussian

distribution, a slightly better bound can be obtained. (See also [4], which proves a similar lemma for a
different, non-uniform input distribution X .)

Lemma 4.4. Let Y = D`
Z,σ be the discrete Gaussian distribution with parameter σ > 0, and let X ⊆

{−s, . . . , s}m. Then I(m, `,Y) is ε-uninvertible with respect to U(X), for ε = O(σms/
√
`)`/|X|+2−Ω(m).

Proof. Again, by Lemma 2.4 it is enough to bound the expected size of f(X) when f ← I(m, `,Y) is
chosen at random. Remember that f = [I | Y] where Y ← D

`×(m−`)
Z,σ . Since the entries of Y ∈ R`×(m−`)

are independent mena-zero subgaussians with parameter σ, by a standard bound from the theory of random
matrices, the largest singular value s1(Y) = max06=x∈Rm ‖Yx‖/‖x‖ of Y is at most σ ·O(

√
`+
√
m− `) =

19

10. Hardness of SIS and LWE with Small Parameters

σ ·O(
√
m), except with probability 2−Ω(m). We now bound the `2 norm of all vectors in the image f(X).

Let u = (u1,u2) ∈ X , with u1 ∈ Z` and u2 ∈ Zm−`. Then

‖f(u)‖ ≤ ‖u1 + Yu2‖
≤ ‖u1‖+ ‖Yu2‖

≤
(√

`+ s1(Y)
√
m− `

)
s

≤
(√

`+ σ ·O(
√
m)
√
m− `

)
s

= O(σms).

The number of integer points in the `-dimensional zero-centered ball of radius R = O(σms) can be bounded
by a simple volume argument, as |f(X)| ≤ (R+

√
`/2)nV` = O(σms/

√
`)`, where V` = π`/2/(`/2)! is the

volume of the `-dimensional unit ball. Dividing by the size of X and accounting for the rare event that s1(Y)
is not bounded as above, we get that I(m, `,Y) is ε-uninvertible for ε = O(σms/

√
`)`/|X|+ 2−Ω(m).

We can now prove the one-wayness of the SIS function family by defining and analyzing an appropriate
lossy function family. The parameters below are set up to expose the connection with LWE, via Proposi-
tion 2.9: SIS(m,m− n, q) corresponds to LWE in n dimensions (given m samples), whose one-wayness
we are proving, while SIS(` = m − n + k,m − n, q) corresponds to LWE in k ≤ n dimensions, whose
pseudorandomness we are assuming.

Theorem 4.5. Let q be a modulus and let X ,Y be two distributions over Zm and Z` respectively, where
` = m− n+ k for some 0 < k ≤ n ≤ m, such that

1. I(m, `,Y) is uninvertible with respect to input distribution X ,

2. SIS(`,m− n, q) is pseudorandom with respect to input distribution Y , and

3. SIS(m,m− n, q) is second-preimage resistant with respect to input distribution X .

Then F = SIS(m,m− n, q) is one-way with respect to input distribution X .
In particular, if SIS(`,m − n, q) is pseudorandom with respect to the discrete Gaussian distribution

Y = D`
Z,σ, then SIS(m,m− n, q) is (2ε+ 2−Ω(m))-one-way with respect to the uniform input distribution

X = U(X) over any set X ⊆ {−s, . . . , s}m satisfying

(C ′σms/
√
`)`/ε ≤ |X| ≤ ε · (q/s′)m−n,

where s′ is the largest divisor of q that is smaller than or equal to 2s, and C ′ is the universal constant hidden
by the O(·) notation from Lemma 4.4.

Proof. We will prove that (L,F ,X) is a lossy function family, where F = SIS(m,m − n, q) and L =
SIS(`,m− n, q) ◦ I(m, `,Y). It follows from Lemma 2.3 that both F and L are one-way function families
with respect to input distribution X . Notice that F is second-preimage resistant with respect to X by
assumption. The indistinguishability of L and F follows immediately from the pseudorandomness of
SIS(`,m− n, q) with respect to Y , by a standard hybrid argument. So, in order to prove that (L,F ,X) is
a lossy function family, it suffices to prove that L is uninvertible with respect to X . This follows applying
Lemma 2.5 to the function family I(m, `,Y), which is uninvertible by assumption. This proves the first part
of the theorem.

20

10. Hardness of SIS and LWE with Small Parameters

Now consider the particular instantiation. Let X = U(X) be the uniform distribution over a set
X ⊆ {−s, . . . , s}m whose size satisfies the inequalities in the theorem statement, and let Y = D`

Z,σ.
Since |X|(s′/q)m−n ≤ ε, by Lemma 4.1, SIS(m,m− n, q) is (statistically) second-preimage resistant with
respect to input distribution X . Moreover, since (Cσms/

√
`)`/|X| ≤ ε, by Lemma 4.4, I(m, `,Y) is

(ε+ 2−Ω(m))-uninvertible with respect to input distribution X .

In order to conclude that the LWE function is pseudorandom (under worst-case lattice assumptions) for
uniformly random small errors, we combine Theorem 4.5 with Corollary 2.14, instantiating the parameters
appropriately. For simplicity, we focus on the important case of a prime modulus q. Nearly identical results
for composite moduli (e.g., those divisible by only small primes) are also easily obtained from Corollary 2.14,
or by using either Theorem 2.13 or Theorem 2.12.

Theorem 4.6. Let 0 < k ≤ n ≤ m − ω(log k) ≤ kO(1), ` = m − n + k, s ≥ (Cm)`/(n−k) for a large
enough universal constant C, and q be a prime such that max{3

√
k, (4s)m/(m−n)} ≤ q ≤ kO(1). For

any set X ⊆ {−s, . . . , s}m of size |X| ≥ sm, the SIS(m,m− n, q) (equivalently, LWE(m,n, q)) function
family is one-way (and pseudorandom) with respect to the uniform input distribution X = U(X), under the
assumption that SIVPγ is (quantum) hard to approximate, in the worst case, on k-dimensional lattices to
within a factor γ = Õ(

√
k · q).

A few notable instantiations are as follows. To obtain pseudorandomness for binary errors, we need s = 2
and X = {0, 1}m. For this value of s, the condition s ≥ (Cm)`/(n−k) can be equivalently be rewritten as

m ≤ (n− k) ·
(

1 +
1

log2(Cm)

)
,

which can be satisfied by taking k = n/(C ′ log2 n) and m = n(1 + 1/(c log2 n)) for any desired c > 1 and a
sufficiently large constant C ′ > 1/(1− 1/c). For these values, the modulus should satisfy q ≥ 8m/(m−n) =
8n3c = kO(1), and can be set to any sufficiently large prime p = kO(1).1

Notice that for binary errors, both the worst-case lattice dimension k and the number m− n of “extra”
LWE samples (i.e., the number of samples beyond the LWE dimension n) are both sublinear in the LWE
dimension n: we have k = Θ(n/ log n) and m − n = O(n/ log n). This corresponds to both a stronger
worst-case security assumption, and a less useful LWE problem. By using larger errors, say, bounded by
s = nε for some constant ε > 0, it is possible to make both the worst-case lattice dimension k and number
of extra samples m− n into (small) linear functions of the LWE dimension n, which may be sufficient for
some cryptographic applications of LWE. Specifically, for any constant ε < 1, one may set k = (ε/3)n and
m = (1 + ε/3)n, which are easily verified to satisfy all the hypotheses of Theorem 4.6 when q = kO(1)

is sufficiently large. These parameters correspond to (ε/3)n = Ω(n) extra samples (beyond the LWE
dimension n), and to the worst-case hardness of lattice problems in dimension (ε/3)n = Ω(n). Notice that
for ε < 1/2, this version of LWE has much smaller errors than allowed by previous LWE hardness proofs,
and it would be subject to subexponential-time attacks [2] if the number of samples were not restricted. Our
result shows that if the number of samples is limited to (1 + ε/3)n, then LWE maintains its provable security
properties and conjectured exponential-time hardness in the dimension n.

One last instantiation allows for a linear number of samples m = c · n for any desired constant c ≥ 1,
which is enough for most applications of LWE in lattice cryptography. In this case we can choose (say)

1Here we have not tried to optimize the value of q, and smaller values of the modulus are certainly possible: a close inspection of
the proof of Theorem 4.6 reveals that for binary errors, the condition q ≥ 8n3c can be replaced by q ≥ nc′ for any constant c′ > c.

21

10. Hardness of SIS and LWE with Small Parameters

k = n/2, and it suffices to set the other parameters so that

s ≥ (Cm)2c−1 and q ≥ (4s)c/(c−1) ≥ 4c/(c−1) · (Ccn)2c+1+1/(c−1) = kO(1).

(We can also obtain better lower bounds on s and q by letting k be a smaller constant fraction of n.) This
proves the hardness of LWE with uniform noise of polynomial magnitude s = nO(1), and any linear number
of samples m = O(n). Note that for m = cn, any instantiation of the parameters requires the magnitude s
of the errors to be at least nc−1. For c > 3/2, this is more noise than is typically used in the standard LWE
problem, which allows errors of magnitude as small as O(

√
n), but requires them to be independent and

follow a Gaussian-like distribution. The novelty in this last instantiation of Theorem 4.6 is that it allows for a
much wider class of error distributions, including the uniform distribution, and distributions where different
components of the error vector are correlated.

Proof of Theorem 4.6. We prove the one-wayness of SIS(m,m − n, q) (equivalently, LWE(m,n, q) via
Proposition 2.9) using the second part of Theorem 4.5 with σ = 3

√
k. Using ` ≥ k and the primality of q,

the conditions on the size of X in Theorem 4.5 can be replaced by simpler bounds

(3C ′ms)`

ε
≤ |X| ≤ ε · qm−n,

or equivalently, the requirement that the quantities (3C ′ms)`/|X| and |X|/qm−n are negligible in k. For the
first quantity, letting C = 4C ′ and using |X| ≥ sm and s ≥ (4C ′m)`/(n−k), we get that (3C ′ms)`/|X| ≤
(3/4)−` ≤ (3/4)−k is exponentially small (in k). For the second quantity, using |X| ≤ (2s + 1)m and
q ≥ (4s)m/(m−n), we get that |X|/qm−n ≤ (3/4)m is also exponentially small.

Theorem 4.5 also requires the pseudorandomness of SIS(`,m−n, q) with respect to the discrete Gaussian
input distribution Y = D`

Z,σ, which can be based on the (quantum) worst-case hardness of SIVP on k-
dimensional lattices using Corollary 2.14. (Notice the use of different parameters: SIS(m,m − n, q) in
Corollary 2.14, and SIS(m − n + k,m − n, q) here.) After properly renaming the variables, and using
σ = 3

√
k, the hypotheses of Corollary 2.14 become ω(log k) ≤ m− n ≤ kO(1), 3

√
k < q < kO(1), which

are all satisfied by the hypotheses of the Theorem. The corresponding assumption is the worst-case hardness
of SIVPγ on k-dimensional lattices, for γ = kωkq/σ =

√
kωkq/3 = Õ(

√
kq), as claimed. This concludes

the proof of the one-wayness of LWE.
The pseudorandomness of LWE follows from the sample-preserving search-to-decision reduction of

[17].

References

[1] M. Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1–32, 2004.
Preliminary version in STOC 1996.

[2] S. Arora and R. Ge. New algorithms for learning in presence of errors. In ICALP (1), pages 403–415,
2011.

[3] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In EUROCRYPT, pages
719–737, 2012.

[4] M. Bellare, E. Kiltz, C. Peikert, and B. Waters. Identity-based (lossy) trapdoor functions and applications.
In EUROCRYPT, pages 228–245, 2012.

22

10. Hardness of SIS and LWE with Small Parameters

[5] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the statistical
query model. J. ACM, 50(4):506–519, 2003.

[6] D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields and new tools for
lattice-based signatures. In Public Key Cryptography, pages 1–16, 2011.

[7] J.-Y. Cai and A. Nerurkar. An improved worst-case to average-case connection for lattice problems. In
FOCS, pages 468–477, 1997.

[8] Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In ASIACRYPT, pages 1–20,
2011.

[9] D. Dadush, C. Peikert, and S. Vempala. Enumerative lattice algorithms in any norm via M-ellipsoid
coverings. In FOCS, pages 580–589, 2011.

[10] N. Döttling and J. Müller-Quade. Lossy codes and a new variant of the learning-with-errors problem.
Manuscript. To appear in Eurocrypt 2013, 2013.

[11] N. Gama and P. Q. Nguyen. Predicting lattice reduction. In EUROCRYPT, pages 31–51, 2008.

[12] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In STOC, pages 197–206, 2008.

[13] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261(4):515–534, December 1982.

[14] D. Micciancio. Almost perfect lattices, the covering radius problem, and applications to Ajtai’s
connection factor. SIAM J. Comput., 34(1):118–169, 2004.

[15] D. Micciancio. Duality in lattice cryptography. In Public Key Cryptography, 2010. Invited talk.

[16] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic perspective, volume
671 of The Kluwer International Series in Engineering and Computer Science. Kluwer Academic
Publishers, Boston, Massachusetts, 2002.

[17] D. Micciancio and P. Mol. Pseudorandom knapsacks and the sample complexity of LWE search-to-
decision reductions. In CRYPTO, pages 465–484, 2011.

[18] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In EUROCRYPT,
pages 700–718, 2012.

[19] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures. SIAM
J. Comput., 37(1):267–302, 2007. Preliminary version in FOCS 2004.

[20] D. Micciancio and O. Regev. Lattice-based cryptography. In Post Quantum Cryptography, pages
147–191. Springer, February 2009.

[21] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In STOC, pages
333–342, 2009.

[22] C. Peikert. An efficient and parallel Gaussian sampler for lattices. In CRYPTO, pages 80–97, 2010.

23

10. Hardness of SIS and LWE with Small Parameters

[23] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In STOC, pages 187–196,
2008.

[24] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6):1–40,
2009. Preliminary version in STOC 2005.

[25] D. Wagner. A generalized birthday problem. In CRYPTO, pages 288–303, 2002.

24

10. Hardness of SIS and LWE with Small Parameters

How to Delegate Secure Multiparty Computation to the Cloud

Abstract

We study the problem of verifiable computation in the presence of many clients who rely on a server to
perform computations over inputs privately held by each client. This generalizes the single-client model for
verifiable outsourced computation previously studied in the literature.

We put forward a computational model and strong simulation-based security for this task. We then present
a new protocol that allow the clients to securely outsource an arbitrary polynomial-time computation over pri-
vately held inputs to a powerful server. At the end, the clients will be assured that the result of the computation
is correct, while at the same time protecting their data from the server and each other.

Our new protocol satisfies the crucial efficiency requirement of outsourced computation where the work
of the client is substantially smaller than what is required to compute the function. We use the Gennaro
et al. amortized model, where the clients are allowed to invest in a one-time computationally expensive
preprocessing phase. Our protocol is secure in the real/ideal paradigm even when dishonest clients can collude
with the server in order to learn honest party’s inputs or in order to maliciously change the output of the
computation.

Keywords: verifiable computation, secure multi-party computation

11. How to Delegate Secure Multiparty Computation to the Cloud

1 Introduction
Consider the following scenario: a set of computationally weak devices holding private inputs, wish to jointly
compute a function F over those inputs. Each device does not have the power to compute F on its own, let
alone engaging in a secure multiparty computation protocol such as [Yao82, GMW87, BOGW88, CCD88] for
computing F . They can however access the services of a “computation provider” who can “help” them compute
F . To maintain the privacy of their input, the clients need to engage in a cryptographic protocol where the
provider does the bulk of the computation (i.e., computes F), while the computation and communication of each
client is “low” (in particular, less than the time it takes to compute F). Nevertheless the clients must be able to
verify the correctness of the output of this protocol, even under the assumption that some corrupted clients might
cooperate with a malicious provider to fool them into accepting an incorrect ouput or to learn their input.

One can think of this problem, called multi-client verifiable computation or multi-client delegation of com-
putation, as a secure multi-party computation protocol between the clients and the provider (the cloud service),
where however only the provider’s work is allowed to be proportional to the complexity of the function being
computed (the function that computes the joint statistics). In this paper, we solve the above problem, by relying
on only standard polynomial time cryptographic assumptions. We present a protocol that allows many compu-
tationally weak clients to securely outsource a computation over privately held inputs to a powerful server, in
the presence of the most powerful adversarial model that can be considered, and by minimizing the “on-line”
computation by the clients. The round complexity being of paramount importance in this line of work, we follow
the convention of obtaining a solution in which the clients delegates the computation non-interactively (i.e., the
clients and the server exchange a single message).

While a lot of work has been devoted to secure outsourced computation in the case of a single client inter-
acting with a single server (see for example [Mic94, GKR08, GGP10, CKV10, AIK10]), the research effort for
the multi-client case is still in the preliminary stages with very few works that consider much weaker models of
security (we shall discuss these works in detail later on).

1.1 Our Model
Before we state our main results, we shall first take a closer look at the model in which we work in. In a nutshell,
we obtain our results a) based on standard cryptographic hardness assumptions; b) in the strongest adversarial
model - i.e., simulation based security in the ideal/real paradigm when malicious clients may collude with the
server; and c) with minimal communication between the clients and that too only when verifying the results of the
computation. In explaining our model, we consider three important design principles that influence our choice -
first, the cryptographic hardness assumption that we make; second, the corruption model (which parties can the
adversary corrupt), and finally, the communication model (how much do clients need to interact with each other
and with the server).

Hardness assumptions: standard cryptographic assumptions. Following the standard convention in cryptog-
raphy, we are interested in constructing multi-client verifiable computation protocols based on standard crypto-
graphic assumptions (i.e., without resorting to random oracles or non-falsifiable hardness assumptions). Further-
more, we are interested in obtaining solutions where the interaction between the clients and the server is minimal,
i.e., only one message is sent in each direction between the client and the server. We note that obtaining such
solutions is a difficult problem even in the single-client setting, exemplified by the small number of known solu-
tions [GGP10, CKV10, AIK10]. In particular, all known single-client non-interactive solutions based on standard
assumptions work in an “amortized” computational model (also known as the pre-processing model) [GGP10].
In view of the above, in this work, we will also work in (a natural extension of) the pre-processing model, which
we discuss later on in this section.

Corruption model: simulation based security. As we discussed earlier, it is quite natural to have a situation
where one of the clients might collude with a corrupt server in order to either learn something about the honest
client’s inputs or to force the output of the computation to some value. Naturally, it would be highly desirable to

1

11. How to Delegate Secure Multiparty Computation to the Cloud

construct protocols that are secure even against such adversaries. Furthermore, simulation-based security in the
real/ideal security paradigm being the benchmark for security in cryptography, we would like to obtain protocols
that are secure in this sense. Finally, we would like our protocols to be as widely applicable as possible, thus we
choose to work in the strongest corruption model.

We remark that the outsourcing of multi-party computation has been studied in weaker security mod-
els [KMR11, CKKC13]. We shall discuss these works more in detail later on in this section.

Communication model: minimal interaction between parties. Since we wish to only rely on standard crypto-
graphic assumptions, we shall work in the pre-processing model. In the pre-processing model, the clients, at the
start of the protocol, execute a preprocessing phase which is a one-time stage in which the clients compute public
as well as private information associated with the function F that they wish to outsource. The computation of
each client in this phase is allowed to be proportional to the computational complexity of evaluating F . Commu-
nication being at a premium, one would like to have protocols in which the interaction between the clients and
the server (and amongst the clients) is minimized. Now, ideally, it would be great if one could obtain a protocol
in which the clients interacted only in the pre-processing phase, then interacted with the server once individually
(by sending and receiving exactly one message) and then obtained the results of the computation. Unfortunately,
this is impossible to achieve in our security model - one can easily see that if the clients did not interact with each
other, after exchanging one message with the server, then one cannot obtain a simulation-based secure protocol
that is secure against a colluding client and server (more specifically, for a fixed input of the honest client, the
colluding client and server would be able to obtain the output of the computation on several inputs of their choice,
thus violating the requirements of a simulation-based definition). Thus, clients need to interact with each other
in order to obtain the results of the computation; the focus would then be on minimizing this interaction.

The above choices (allowing the clients to perform expensive computation and communication during the
off-line phase, but then restricting them to a single message exchange during the on-line phase) might seem
artificial. Yet there are several practical scenarios where this are relevant. Consider the case of military coalitions
where the clients are armies from different countries and are in need to perform joint computations on data that
might need to be kept private by each army. It is conceivable that the off-line phase will be performed over a
trusted network before the deployment of soldiers in the field, and therefore computation and communication are
not at a premium. The situation however changes dramatically during the on-line phase where the input to the
computation is obtained during actual combat operations where battery power and communication bandwidth
might be severely limited.

Advantages of the communication model. Our communication model has two further advantages:

- The foremost advantage of our communication model is that of asynchronicity. Note that during the out-
sourcing of computation, none of the clients need be present at the same time. They can send their respec-
tive messages to the servers at various points of time. Only when they wish to verify the computation do
clients have to synchronize and run a computation (which is unavoidable within our framework of security).

- Another advantage of the clients not communicating during the online phase is that clients could batch
together multiple computations and at the end could verify all the computations together.

Description of our model. Given the most natural and useful design choices above, we now describe the model
in which we obtain our protocols. Our protocol for outsourcing multi-party computation consists of three phases:
the preprocessing phase, the online phase, and the offline phase.

The preprocessing phase is a one-time stage in which the clients compute public as well as private information
associated with the function F that they wish to outsource. The computation of each client in this phase is allowed
to be proportional to the computational complexity of evaluating F . We also allow clients to interact with each
other in an arbitrary manner in this phase. This phase is executed only once and is independent of the client’s
inputs.

2

11. How to Delegate Secure Multiparty Computation to the Cloud

In the online phase clients individually prepare public and private information about their respective inputs
and send a single message to the server. The server, upon receiving these messages from all the clients, sends
back a single message to each of the clients (the messages sent by the server to each of the clients can potentially
be different from one another). Note that we do not allow the clients to communicate directly with each other in
this phase. The computational complexity of the clients in this phase is required to be independent of F .

Finally, in the offline phase, the clients interact with each other to decode the response provided to them by
the server and obtain the result of the computation. We will focus on minimizing the interaction between the
clients in this phase. Furthermore, the computational complexity of the clients in this phase is also required to be
independent of F .

We obtain a protocol that enjoys simulation-based security in the real/ideal paradigm and is secure even
against an adversarial client who colludes with a malicious server. As we will show, requiring security against
a colluding adversary and requiring a simulation based definition of security to be met, present significant
challenges that need to be overcome in order to construct a protocol for outsourcing multi-party computa-
tion. Finally, our protocol makes use of standard cryptographic assumptions (and not random oracles or non-
falsifiable assumptions). We note here that our solution, just like the solutions for single-party verifiable compu-
tation [GGP10, CKV10], require that the pre-processing phase be executed again, in the event that the output of
a computation is rejected by one of the clients. In other words, we cannot reveal to a malicious server that the
result of the computation was rejected, and then continue with another verifiable computation protocol with the
same pre-processing information.

Alternative approaches to delegating multi-party computation. Note, that if one were to resort to using
random oracles or making use of non-falsifiable hardness assumptions [Nao03], then it is easy to construct multi-
client verifiable computation protocols. Very briefly, the clients can simply send their inputs to the server and
the server can return the result of the computation along with a succinct non-interactive argument (SNARG)
[Mic94, GW11, BCCT12, GLR11, DFH12] proving that it evaluated the output honestly. Privacy of the clients
inputs can be obtained through standard techniques (e.g., via the use of fully homomorphic encryption). However,
this solution is uninteresting from the point of view of the non-standard hardness assumption required to prove it
secure.

Also if we relax the security notion to only consider non-colluding adversaries (that is a malicious client and
a malicious server do not collude), and if we do not wish to obtain the stronger simulation-based definition of
security, then the work of Kamara, Mohassel, and Raykova [KMR11] shows how to outsource multi-party com-
putation. With the important focus on removing interaction between clients, the work of Choi et al. [CKKC13]
consider multi-client non-interactive verifiable computation in which soundness guarantees are provided against
a malicious server when all clients are honest; they also define privacy guarantees separately against a server and
against a client. We note that this is much weaker than the simulation based security model that we work in that
captures soundness and privacy against malicious clients and server colluding with each other.

Finally, we remark that if we did allow the clients to interact in the online phase (and sacrifice on asyn-
chronicity), then one can trivially obtain a protocol for outsourcing multi-party computation from any single-
party protocol for outsourcing computation [GGP10, CKV10, AIK10]; in the online phase, the clients simply
“simulate” a single party by running a secure computation protocol to compute the message sent by the client in
the single-party protocol. As discussed above, in our view, this is a particularly unsatisfactory approach, and of
limited interest.

1.2 Our Results
In this work, we show how to construct a secure protocol for two-party verifiable computation in the pre-
processing model. We highlight the key features in our protocol:

• In our solution, the clients perform work proportional to F only in the pre-processing phase (executed
once), and have computational complexity independent of F in the remainder of the protocol (the online

3

11. How to Delegate Secure Multiparty Computation to the Cloud

phase and the offline phase).

• The clients exchange only a single message with the server (in the online phase) and hence our protocols
are “non-interactive” with regards to interaction with the server.

• Furthermore, a critical point of our protocol is that the clients do not have to interact with each other in the
online phase - this allows the clients to batch together several (unbounded) computations together before
running the verification to obtain the results of the computations.

• We provide simulation-based security via the real/ideal security paradigm and our protocol is secure against
a colluding adversarial client and adversarial server. This provides both soundness of the computation (an
honest client never accepts an incorrect output) and privacy of the honest client’s inputs.

We then show how to extend our two-party protocol to the multi-party setting and obtain a multi-party outsourcing
computation protocol with the same features as above (our protocol is secure against a constant fraction of
adversarial clients who may collude with a malicious server). Finally, we show how to reduce the interaction
between the clients in the offline phase.

In other words, our protocol works in the strongest possible adversarial model, and apart from the prepro-
cessing phase, has minimal interaction.

1.3 Overview
Starting point. We start with the goal of trying to “bootstrap” a single-client delegation scheme into a dele-
gation scheme for multiple clients. Thus, our first consideration is what kind of properties are desirable from
a single client delegation scheme in order to achieve our goal. Interestingly, we observe that constructing a
multi-client delegation scheme against colluding adversaries turns out to be very sensitive to the choice of the
underlying single-client delegation scheme. Specifically, recall that the construction of [GGP10] uses the authen-
ticity property of Yao’s garbled circuits to enforce correctness of computation. However, analyzing the security
of garbled circuits in the setting where the honest client may share secret keys with the adversary (which seems
necessary for security against colluding adversaries) does not seem very amenable.

In light of the above, we choose to instead work with the delegation scheme of Chung, Kalai, and Vad-
han [CKV10]. We briefly recall it below.

Delegation Scheme of [CKV10]. Let F be the functionality that we wish to outsource. The client picks a
random r and computes F (r) in the preprocessing phase. Next, in the online phase, after receiving the input
x, the client picks a random bit b and sends either (x, r) or (r, x) to the server (depending on the bit b). The
server must compute F on both x and r and return the responses back to the client. The client will check
that F (r) is correct and if so accept F (x). Now, suppose x comes from the uniform distribution, then this
protocol is a sound protocol and a cheating server can succeed only with probability 1

2 (as he cannot distinguish
(x, r) from (r, x) with probability better than 1

2). For arbitrary distributions, this approach fails, but this can
be rectified by having the client additionally pick a public key for an FHE scheme (in the preprocessing phase)
and sending (Encpk(x),Encpk(r)) or (Encpk(r),Encpk(x)), depending on bit b in the online phase. The server
will homomorphically evaluate the function F and respond back with Encpk(F (x)) and Encpk(F (r)). Now, this
protocol is sound for arbitrary distributions of x. One can boost the soundness error to be negligibly small by
picking random r1, · · · , rκ and having the client pick b1, · · · , bκ and send (Encpk(x),Encpk(ri)) (or the other
way around, depending on bi). In order to make this protocol re-usable with the same values of r1, · · · , rκ,
[CKV10] need to run this entire protocol under one more layer of fully homomorphic Encryption.

One might hope that we can apply this protocol directly by having the clients simulate the single client using
multiparty computation. More specifically: the clients jointly generate the pre-processing information needed in
the single-client case in the pre-processing phase of the protocol. In the online phase, the clients jointly generate
the message sent by the single client (using a secure computation protocol) and similarly, in the offline phase,

4

11. How to Delegate Secure Multiparty Computation to the Cloud

the clients jointly run a secure computation to verify the results of the computation sent by the server. The main
issue with this approach is that this solution requires the clients to interact (heavily) with each other in the online
phase - which we believe, as discussed earlier, to be a significant drawback.

A Failed Approach. Towards that end, we consider the following approach. Let us consider the two-client
setting first (where client Di holds input xi). As before the clients will jointly generate the information needed
for pre-processing via a secure computation protocol. Our first idea is to have each client independently generate
a bit bi in the online phase and send either (Encpk(xi),Encpk(ri)) or (Encpk(ri),Encpk(xi)) to the server in the
online phase. Now, the server instead of computing two outputs will compute 4 ciphertexts (since the server
does not know bits b1 and b2, it will compute ciphertexts corresponding to F (x1, x2), F (x1, r2), F (r1, x2), and
F (r1, r2). The clients can then in the offline phase verify the appropriate responses of the server and accept
F (x1, x2) if all checks succeed.

Unfortunately, this solution completely fails in the case when a client (say D2 colludes with the server). Very
briefly, the main problem with the above approach is that it does not guarantee any input independence, a key
requirement for a secure computation protocol. To see the concrete problem, recall that in order to realize the
standard real/ideal paradigm for secure computation, we need to construct a simulator that simulates the view
of the adversary in such a manner that output distributions of the real and ideal world executions are indistin-
guishable. The standard way such a simulator works is by “extracting” the input of the adversary in order to
compute the “correct” protocol output (by querying the ideal functionality), and then “enforcing” this output in
the protocol. The main issue that arises in the above approach is that we cannot guarantee that the adversary’s
input extracted by the simulator is consistent with the output of the honest client in the real world execution. In
particular, note that in the real world execution, the clients simply check whether the output of the server contains
the correct F (r1, r2) value, and if the check succeeds, then they decrypt the appropriate output value and accept it
as their final output. Then, to argue indistinguishability of the real and ideal world executions, we would need to
argue that the simulator extracts the specific input of the corrupted client that was used to compute the output by
the (colluding) worker. However, the above approach provides no way of enforcing this requirement. As such, a
colluding server and client pair can lead the simulator to compute an output which is inconsistent with the output
generated by the server, in which case the simulator must abort. Yet, in the real world execution, the honest client
would have accepted the output of the server. Thus, the simulator fails to generate an indistinguishable view of
the adversary.

Indeed, the above attack demonstrates that when requiring simulation-based security against malicious coali-
tions, current techniques for single-client verifiable computation are not sufficient and new ideas are needed. The
main contribution of our paper is a technique to overcome the above problem.

Our Solution. On careful inspection of the above approach, one can observe that it does provide some weak
form of guarantee – that the server actually correctly computes the function F ; however, F is computed correctly
w.r.t. “some” input for the corrupted client. In particular, the input of corrupted client may not be chosen
independently of the honest client’s input.

In order to solve our problem, our main idea is to leverage the above weak guarantee by changing the func-
tionality that is being delegated to the worker. Roughly speaking, we essentially “delegate the delegation func-
tionality”. More concretely, we change the delegation functionality toG(X,Y) = Evalpk(X,Y, F), X, Y , where
X and Y are encryptions of the inputs x and y of the clients under the public key pk of the FHE scheme.

In order to understand why the above solution works, let us first consider an intermediate attempt where we
delegate the functionality F̄ (x, y) = F (x, y), x, y. The underlying idea is to use the weak correctness guarantee
(discussed above) to validate the input of the corrupted client. In more detail, note that if we delegate the func-
tionality F̄ , then in the real world execution, we can have the clients perform the check (during the verification
protocol) that the output value contains the same y value that is extracted by the simulator. Indeed, a priori, it
may seem that this approach should indeed solve the above problem as we obtain a guarantee that the input of
the malicious party in the output value (y) was indeed the same input used in the computation (as we are guar-

5

11. How to Delegate Secure Multiparty Computation to the Cloud

anteed correctness of the computation). Unfortunately, a subtle issue arises when trying to argue correctness of
the simulator. Note that the above discussed check involves decrypting the output. While this is indeed possible
in the real world execution, it is not clear how to perform the same check during simulation. Indeed, in the proof
of security, we would need to rely on the semantic security of the underlying FHE scheme, which conflicts with
performing decryption. We remark that the natural approach of having the simulator perform a related check
(e.g., perform Eval operation of the FHE scheme to match the ciphertexts) rather than perform decryptions can
be defeated by specific attacks by the adversary. We do not elaborate on this issue further here, but note that in
order to argue correctness of simulation, we need to ensure that the verification checks performed in the honest
execution and the simulated executions must be the same.

The above issue is resolved by delegating the functionality G (described above) instead of F̄ . The key idea
is that instead of performing the aforementioned consistency check via decryption (of the single layer of FHE),
we can now perform a similar check by first decrypting the outer layer, and then re-encrypting the input of the
client (the clients are supposed to provide the encryption randomness in the verification protocol) and matching
it with the values X and Y , respectively. The simulator can now be in possession of the outer layer FHE secret
key since we can rely on the semantic security of the inner layer FHE.

The above description is somewhat oversimplified for lack of space. We refer the reader to the protocol
description for more details.

Handling more than two clients. It is easy to see that the obvious extension of the above protocol to the case
of n clients requires the server to compute and return 2n values. Here we informally describe how to avoid this
problem. Recall that each client picked a random bit bi and sent either (xi, ri) or (ri, xi), both doubly encrypted,
depending on the bit bi. To avoid the exponential blow up, we have the n clients jointly generate random bits
b1, · · · , bn such that exactly one bi = 1 (where i is random in [n]) and all other bj = 0, j 6= i (Doing this without
interaction is a significant challenge, but we show that this can be achieved.). Now, the server only needs to
compute 2n ciphertexts: n that encrypt F (x1, . . . , xn) and n that encrypt F (r1, . . . , rn). In this case, we can
prove security of our protocol as long as at most a fraction of the clients are corrupted (even if they collude with
the worker). More details in Section 5.1.

1.4 Related Work
The problem of efficiently verifiying computations performed by an untrusted party has been extensively studied
in the literature for the case of a single client outsourcing the computation to a server. Various approaches have
been used: interactive solutions [GKR08], SNARG-based solutions [BCC88, Kil92, Mic94, BCCT12, GLR11,
DFH12, Gro10, Lip12, GGPR12], and pre-processing model based solutions [GGP10, CKV10, AIK10]. The
works of [KMR11] and [CKKC12] consider outsourcing of multi-party computation but consider only the case
where adversarial parties do not collude with each other or a semi-honest setting. Finally, with a focus on
minimizing interaction, the work of [CKKC13] considers non-interactive multi-client verifiable computation, but
only consider soundness against a malicious server when clients are honest and privacy, independently, against a
malicious server and a malicious client. For a more detailed description of related works, see Appendix A.

2 Preliminaries
2.1 Our Model
In this section, we present in detail, the computation and communication model as well as the security definition
considered in this paper. For simplicity, we shall deal with the two-party case of our protocol first and then show
how to extend this to the mult-party case. In other words, we consdier the setting of 2 clients (or delegators)
D = {D1,D2} who wish to jointly outsource the computation of any PPT function over their private inputs to
a worker W. Specifically, we consider the case where the clients wish to perform arbitrarily many evaluations
of a function F of their choice over different sets of inputs. Unlike the standard multiparty computation setting,
we wish to ensure that the computation of each client is independent of the amount of computation needed

6

11. How to Delegate Secure Multiparty Computation to the Cloud

to compute F from scratch. The worker W, however, is expected to perform computation proportional to the
size of the circuit representing F . Similar to standard multiparty computation, our corruption model allows an
adversary to maliciously corrupt the worker and one of the clients (a subset of the clients in the multi-party case).
Informally speaking, we require that no such adversary learns anymore than what can be learned from the inputs
of the corrupted clients and their outputs (and any additional auxiliary information that the adversary may have).

Note that the above problem is non-trivial even in the setting where a single client wishes to outsource
its computation to a worker. Specifically, all the known solutions require either the random oracle model, or
appropriate non-black-box assumptions, or allow for a one-time pre-processing phase where the computation of
the client(s) is allowed to be proportional to the size of the circuit representing F .1 In this work, we wish to only
rely on standard cryptographic assumptions; as such, we choose to work in the pre-processing model.

We now proceed to give a formal description of our model in the remainder of this section. We first present
the syntax for a two-party verifiable computation protocol. We then define security as per the the standard
real/ideal paradigm for secure computation. Throughout this work, for simplicity of exposition, we assume that
the function to be evaluated on the clients’ inputs gives the same outputs to all clients. We note that the general
scenario where the function outputs may be different for each client can be handled using standard techniques.

Two-party Verifiable Computation Protocol. A 2-party verifiable computation protocol between 2 clients (or
delegators) D = {D1,D2} and a worker W consists of three phases, namely, (a) pre-processing phase, (b) online
phase, and (c) offline phase. Here, the pre-processing phase is executed only once, while the online phase is
executed every time the clients wish to compute F over a new set of inputs. The offline phase may also be
executed each time following the online phase. Alternatively (and crucially), multiple executions of the offline
phase can be batched together (i.e., the clients can outsource several (not fixed apriori) computations of F on
different sets of inputs before they verify and obtain the results of these computations). We now describe the
three phases in detail:

Preprocessing Phase: This is a one-time stage in which the clients compute some public, as well as private,
information associated with the function F . The computation of each client in this phase is allowed to
be proportional to the amount of computation needed to compute F from scratch. Clients are allowed to
interact with each other in an arbitrary manner in this phase. Note that this phase is independent of the
clients inputs and is executed only once.

Online Phase: In this phase, the clients interact with the server in a single round of communication. Let xi the
input held by client Di. In order to outsource the computation of F (on a chosen set of inputs x1, x2) to
the worker W, each client Di individually prepares some public and private information about xi and sends
the public information to the worker. On receiving the encoded inputs from each client, W computes an
encoded output and sends it to all the clients. Note that the clients do not directly interact with each other
in this phase. This ensures that clients do not need to interact (and be available online) whenever they wish
to perform some computation.

Offline Phase: On receiving the encoded output from the worker, the clients interact with each other to compute
the actual output F (x1, x2) and verify its correctness. We require that the computation of each client in
this phase be independent of F . As we see, we will also minimize the interaction between the clients in
this phase.

Note that the above protocol allows only for a single round of interaction between the clients and the worker.
We require that the computation time of the clients in steps 2 and 3 above be, in total, less than the time required
to compute F from scratch (in fact, in our protocol the computational complexity will be independent of F).
Furthermore, we would like the worker to perform computation that is roughly the same as computing F .

1In fact, this is the state of affairs even if we relax the security requirement to only output correctness, and do not require input privacy.

7

11. How to Delegate Secure Multiparty Computation to the Cloud

This completes the description of our computation and communication model. We now formally describe
the key requirements from a 2-party verifiable computation protocol. Intuitively, we require that a verifiable
computation protocol be both efficient and secure, in the sense as discussed below. We formally define both of
these requirements below.

Security. To formally define security, we turn to the real/ideal paradigm for secure computation. We stress that
we allow for an adversary that may corrupt either D1 or D2 (or none) as well as the worker. Since we consider
the case of dishonest majority, we only obtain security with abort: i.e., the adversary first receives the function
output, and then chooses whether the honest parties also learn the output, or to prematurely abort. Further, we
only consider static adversaries, who choose the parties they wish to corrupt at the beginning of the protocol.
Finally, we consider computational security, and thus we restrict our attention to PPT adversaries. We formally
describe the ideal and real models of computation and then give our security definition in Appendix B.

Efficiency. Let the time required to compute function F be denoted by tF ; we say that the time complexity of
F is tF .

Definition 1 We say that a verifiable computation protocol for computing a function F is efficient if it satisfies
the following conditions:

- The running time of every client in the pre-processing phase is O(tF).
- The running time of every client in the online phase is o(tF).
- The running time of the worker in the online phase is O(tF).
- The running time of every client in the offline phase is o(tF).

2.2 Building Blocks
In our construction, we make use of several cryptographic primitives, listed as follows. We require pseudo-
random functions, statistically binding commitments, fully homomorphic encryption, multi-key fully homomor-
phic encryption, the single client verifiable computation protocol from [CKV10] and a standard secure computa-
tion protocol. Due to lack of space, we describe these building blocks in detail in Appendix C.

3 Two-party Verifiable Computation Protocol
We now describe our two-party verifiable computation protocol Π for securely computing a functionality F .
We proceed in two steps. First, in Section 3.1, we describe a one-time verifiable computation protocol where
the pre-processing stage is useful only for one computation. Then, in Section 3.2, we show how our one-time
construction can be modified to allow for multiple uses of the pre-processing phase.

3.1 One-Time Verifiable Computation Protocol
Let D1, D2 denote the two clients (or delegators) and W denote the worker.

Function outsourced to W. In order to securely compute function F over their private inputs, D1 and D2 outsource
the computation of the following function G to W:

Inputs: X1, X2, where Xi ← Encpk(xi).

Output: G(X1, X2) = Evalpk(X1, X2, F), X1, X2.

We now proceed to describe the three phases of our protocol Π.

8

11. How to Delegate Secure Multiparty Computation to the Cloud

I. Pre-processing phase. In this phase, the clients interact with each other to perform the following computa-
tions:

1. D1 and D2 engage in the execution of a standard secure computation protocol Πfhe to compute the (ran-
domized) functionality Ffhe described as follows:

• Generate key pairs (sk, pk) ← Gen(1κ) and (SK,PK) ← Gen(1κ) for the FHE scheme
(Gen,Enc,Dec).

• Compute 2-out-of-2 shares of the FHE secret keys sk, SK. That is, compute sk1, sk2 s.t. sk1⊕sk2 =
sk, and SK1, SK2 s.t. SK1 ⊕ SK2 = SK.

• Output (pk, PK, ski, SKi) to Di.

2. D1 and D2 engage in the execution of a standard secure computation protocol Πprf to compute the (ran-
domized) functionality Fprf described as follows:

• Sample keys K1 and K2 for a pseudo-random function PRF : {0, 1}κ × {0, 1}κ → {0, 1}.
• For every j ∈ [2], compute (cprfj , dprfj)← COM(Ki).

• Output ({cprfj }, d
prf
i ,Ki) to Di.

3. D1 and D2 engage in the execution of a standard secure computation protocol Πtest to compute the (ran-
domized) functionality Ftest described as follows. Ftest takes as input the public key pk for FHE (as
computed above) from D1, D2 and computes the following:

• For every i ∈ [2], j ∈ [n], generate random strings ri,j and compute R̂i,j ← EncPK(Encpk(ri,j)).

• For every j ∈ [n],

(a) Compute secretj = EvalPK(R̂1,j , R̂2,j ;G).
(b) Compute (ctestj , dtestj)← COM(secret).
(c) Choose random strings dtest1,j , dtest2,j s.t. dtestj = dtest1,j ⊕ dtest2,j .

• Output (R̂i,j , c
test
j , dtesti,j) to Di.

(Note that the three steps above can be combined into a single secure computation protocol execution. We choose
to split them into separate executions for simplicity of explanation and proof.)

II. Online phase. In this phase, the clients interact with the worker in a single round of communication to
compute the functionality G. For simplicity of exposition, we assume that the public keys (pk, PK) were given
to W at the end of the pre-processing phase; we do not include them in the description below.

More specifically, this phase proceeds as follows:

Di →W: Let xi denote the private input of Di. The client Di performs the following steps:

1. For every j ∈ [n],

• Compute X̂i,j ← EncPK(Encpk(xi)).
• Let s be the session number. Then, compute bit bi,j ← prfKi

(s‖j). Let (v0i,j , v
1
i,j) be such that

v
bi,j
i,j = X̂i,j and v1−bi,ji,j = R̂i,j .

Di sends the tuple {v0i,j , v1i,j}nj=1 to W.

W→ (D1,D2): On receiving the tuples {v0i,j , v1i,j}nj=1 from each client Di, W performs the following steps. For
every j ∈ [n], homomorphically compute the following four values:

9

11. How to Delegate Secure Multiparty Computation to the Cloud

1. z0j = EvalPK(v01,j , v
0
2,j ;Evalpk(·, ·,G)).

2. z1j = EvalPK(v01,j , v
1
2,j ;Evalpk(·, ·,G)).

3. z2j = EvalPK(v11,j , v
0
2,j ;Evalpk(·, ·,G)).

4. z3j = EvalPK(v11,j , v
1
2,j ;Evalpk(·, ·,G)).

W sends the tuples (v0i,j , v
1
i,j , z

`
j) to both the clients, where ` ∈ {0, . . . , 3}, i ∈ [2], j ∈ [n].

III. Offline Phase. In this phase, the clients interact with each other to decode the output from the worker and
verify its correctness. More specifically, D1 and D2 engage in an execution of a standard secure computation
protocol Πver to compute the functionality Fver described below.

Functionality Fver. The input of client Di to Fver is the set of following values:

Public values: s, pk, PK, ctesti,j , cprfi , (v0i,j , v
1
i,j), z`j , where i ∈ [2], j ∈ [n], ` ∈ {0, . . . , 3}.

Private values: xi, ρi,j , ski, SKi, dtesti,j , dprfi , where j ∈ [n].

On receiving the above set of inputs from D1 and D2, Fver computes the following:

1. Match all the public input values of D1 and D2. If any of the corresponding values are not equal, output ⊥.

2. For every i ∈ [2], if ⊥ ← OPEN(cprfi , dprfi), then output ⊥. Otherwise, let Ki ← OPEN(cprfi , dprfi).

3. For every j ∈ [n], do the following:

(a) If ⊥ ← OPEN(ctestj , dtest1,j ⊕ dtest2,j), then output ⊥. Otherwise, let secret∗j = OPEN(ctestj , dtest1,j ⊕ dtest2,j).

(b) For every i ∈ [2], compute bi,j = PRFKi(s‖j). Let pj = 2b1,j + b2,j + 1. If secret∗j 6= z
4−pj
j , then

output ⊥.

(c) Compute (Yj [0], Yj [1], Yj [2])← DecSK1⊕SK2(z
pj
j). For any i ∈ [2], do the following:

• If Yj [i] 6= DecSK1⊕SK2(v
bi,j
i,j), then output ⊥.

• If Yj [i] 6= Encpk(xi; ρi,j), then output ⊥.

4. Output y = Decsk1⊕sk2(Y1[0]).

This completes the description of our protocol. We now claim the following:

Theorem 1 Assuming the existence of a fully homomorphic encryption scheme, protocol Π is a secure and
efficient one-time verifiable computation protocol for any efficiently computable functionality f .

It follows from observation that protocol Π is an efficient verifiable computation protocol as per Definition 1.
In Section 4, we prove its security as per Definition 2.

3.2 Many-time Verifiable Computation
We now explain how our one-time verifiable computation protocol Π described in previous subsection can be
extended to allow for multiple uses of the pre-processing phase.

Similar to [GGP10, CKV10], we achieve reusability of the pre-processing phase by executing the online
phase under an additional layer of FHE (and performing necessary decryptions in the offline phase). However,
since we wish to avoid interaction between the clients during the online phase, a priori, it is not clear how the
new public key must be chosen during each execution of the online phase. We resolve this issue by making use
of a multi-key homomorphic encryption scheme (MFHE) (see Section C.3 for definition). More specifically, we
make the following changes to our one-time verifiable computation protocol:

10

11. How to Delegate Secure Multiparty Computation to the Cloud

Online Phase:
1. Each client Di generates a key pair (MPKi,MSKi) ← MGen(1κ) for the MFHE scheme. For every

j ∈ [n], it computes ̂̂
Xi,j ← MEncMPKi(X̂i,j) and ̂̂

Ri,j ← MEncMPKi(R̂i,j), where X̂i,j and R̂i,j are as

defined earlier. The values sent to W are (v̂0i,j and v̂1i,j), where v̂bi,ji,j =
̂̂
Xi,j and v̂1−bi,ji,j =

̂̂
Ri,j .

2. The worker W now computes the following values: for every j ∈ [n],

(a) ẑ0j = MEvalMPK1,MPK2(v̂01,j , v̂
0
2,j ,EvalPK(·, ·,Evalpk(·, ·,G))).

(b) ẑ1j = MEvalMPK1,MPK2(v̂01,j , v̂
1
2,j ,EvalPK(·, ·,Evalpk(·, ·,G))).

(c) ẑ2j = MEvalMPK1,MPK2(v̂11,j , v̂
0
2,j ,EvalPK(·, ·,Evalpk(·, ·,G))).

(d) ẑ3j = MEvalMPK1,MPK2(v̂11,j , v̂
1
2,j ,EvalPK(·, ·,Evalpk(·, ·,G))).

Offline Phase:
1. Each client Di uses (MPK1,MPK2) and MSKi as additional inputs in the protocol Πver.

2. For every j ∈ [n], the functionality Fver computes the values zpjj ← MDecMSK1,MSK2(ẑ
pj
j) and z4−pjj ←

MDecMSK1,MSK2(ẑ
4−pj
j), and then performs the same computations as described earlier.

This completes the description of the many-time verifiable computation protocol. We discuss its security in
Section D.2.

4 Proof of Security
In order to prove Theorem 1, we will first a construct a PPT simulator S that simulates the view of any adversary
A who corrupts one of the clients and the worker. We will then argue that the output distributions in the real
and ideal world executions are computationally indistinguishable. We start by describing the construction of S
in Section 4.1. We complete the proof by arguing the correctness of simulation in Appendix D.1.

4.1 Description of Simulator
Without loss of generality, below we assume that the client D2 and the worker W are corrupted by the adversary.
We will denote them as D∗2 and W∗, respectively. The opposite case where D1 and W are corrupted can be
handled analogously.

We describe how the simulator S works in each of the three phases:

Pre-processing phase:
1. Let Sfhe denote the simulator for the two-party computation protocol Πfhe. In the first step, S runs Sfhe

with D∗2 to generate a simulated execution of Πfhe. During the simulation, when Sfhe makes a query to the
ideal functionality Ffhe, S evaluates Ffhe on its own using fresh randomness and returns the output to Sfhe.
Let pk, PK denote the output public keys in this protocol.

2. Let Sprf denote the simulator for the two-party computation protocol Πprf . In the second step, S runs Sprf
with D∗2 to generate a simulated execution of Πfhe. During the simulation, when Sprf makes a query to
the ideal functionality Ffhe, S evaluates Fprf on its own using fresh randomness and returns the output to
Sprf . Let ({cprfj }, d

prf
i ,Ki) denote the output of Di, where each variable is defined in the same way as in

the protocol description in the previous section.

3. Let Stest denote the simulator for the two-party computation protocol Πtest. In the final step of the pre-
processing phase, S runs Stest with D∗2 to generate a simulated execution of Πtest. During the simulation,
when Stest makes a query to the ideal functionality Ftest, S evaluates Ftest on its own using fresh random-
ness and returns the output to Stest. Let (R̂i,j , c

test
j , dtesti,j) denote the output of Di, where each variable is

defined in the same way as in the protocol description in the previous section.

11

11. How to Delegate Secure Multiparty Computation to the Cloud

Online Phase. In this phase, S works in essentially the same manner as the honest client D1, except that it uses
the all zeros string 0κ as its input and uses random bits bi,j (instead of pseudorandom bits).
S behaves honestly for the rest of the online phase. Let (v0i,j , v

1
i,j , z

`
j) be the tuple S receives from W∗, where

` ∈ {0, . . . , 3}, i ∈ [2], j ∈ [n].

Offline Phase. Let Sver denote the simulator for the two-party computation protocol Πver. In the offline phase,
S runs the simulator Sver with the corrupted client D∗2 to generate a simulated execution of Πver. At some point
during the simulation, Sver makes a query to the ideal functionality Fver with some input (say) Z̃, S does the
following:

1. Parse Z̃ as follows:

Public values: s̃, p̃k, ˜PK, c̃testi,j , c̃prfi , (ṽ0i,j , ṽ
1
i,j), z̃`j , where i ∈ [2], j ∈ [n], ` ∈ {0, . . . , 3}.

Private values: x̃2, ρ̃2,j , b̃2,j , s̃k2, ˜SK2, d̃test2,j , d̃prfi , where j ∈ [n].

2. Perform the verification checks in the same manner manner as Fver, except the check regarding the PRF
key K1. (In particular, use the bits b1,j directly computed for the checks. If any of the checks fail, then
output ⊥ to Sver. Else, if all of the checks succeed, then query the ideal functionality for F on input x̃2.
Let y be the output. Return y as the output to Sver.

On receiving the output value y from S, Sver continues the simulation of Πver where it forces the output y on A,
and finally stops. At this point, S stops as well and outputs the entire simulated view of A.

5 Extensions
5.1 Handling Multiple Clients
In this section, we shall show how we can extend our two-party verifiable computation protocol to obtain an
n-party verifiable computation that is secure against a constant fraction (α) of corrupted clients (who can collude
arbitrarily with a corrupted server).

Let us first recall a basic idea that we used in our protocol for two-party verifiable computation. The two
clients D1 and D2 picked random strings r1 and r2 in the pre-processing phase and computed an encryption
of G(r1, r2). In the online phase, D1 picked a random bit b1 and sent either (x1, r1) or (r1, x1), both doubly
encrypted, depending on the bit b1. D2 picked a random b2 and sent either (x2, r2) or (r2, x2), both doubly
encrypted, depending on the bit b2. Let the ciphertexts sent by D1 be denoted by (v01, v

1
1) and those sent by

D2 be denoted by (v02, v
1
2) respectively. The server W, then responded with 4 ciphertexts, computed homo-

morphically: namely, z0 = MEvalPK1,PK2(v01, v
0
2;Evalpk(·, ·,G)), z1 = MEvalPK1,PK2(v01, v

1
2;Evalpk(·, ·,G)),

z2 = MEvalPK1,PK2(v11, v
0
2;Evalpk(·, ·,G)), and z3 = MEvalPK1,PK2(v11, v

1
2;Evalpk(·, ·,G)) (In the real pro-

tocol, the clients actually picked κ such random strings each and the server sent back 4κ ciphertexts evaluated
homomorphically back to the clients; but for simplicity, we will only consider one such instance here.). Note that
out of the 4 ciphertexts, one of them contained an encryption of G(r1, r2), that was used for verification, and one
of them contained an encryption of G(x1, x2), that was used to obtain the result of the computation.

Now, suppose we tried to extend the above idea as it is, to the n-party case. That is, the n clients each pick
r1, ·, rn in the pre-processing phase and compute G(r1, ·, rn). In the online phase, each client Di picks a private
random bit bi and sends either (xi, ri) or (ri, xi), both doubly encrypted, depending on the bit bi. Unfortunately
now, since the server does not (and cannot) know the bits bi, the server must send back 2n ciphertexts in order to
be sure that he has sent back both an encryption of G(r1, · · · , rn) (to be used for verification by the n clients) as
well as encryption of G(x1, · · · , xn) (to be used to obtain the result of the computation by the n clients). This
solution ends up having a non-polynomial time complexity for all parties.

Our idea to solve the above problem is to have the n clients jointly generate random bits b1, · · · , bn such that
exactly 1 bi = 1 (where i is random in [n]) and all other bj = 0, j 6= i. Now, the server only needs to compute

12

11. How to Delegate Secure Multiparty Computation to the Cloud

2n ciphertexts in order to be sure that he has returned the required ciphertexts. In other words, W computes the
following 2n sets of ciphertexts:

1. The n ciphertexts, one of which encrypts G(x1, · · · , xn), namely:

(a) z0 = MEvalPK1,PK2(v11, v
0
2, · · · , v0n;Evalpk(·, ·, · · · , ·,G)),

(b) z1 = MEvalPK1,PK2(v01, v
1
2, v

0
3, · · · , v0n;Evalpk(·, ·, ·, · · · , ·,G)),

· · ·
(c) zn = MEvalPK1,PK2(v01, · · · , v0n−1, v1n;Evalpk(·, · · · , ·, ·,G))

2. and the n ciphertexts, one of which encrypts G(r1, · · · , rn), namely:

(a) zn+1 = MEvalPK1,PK2(v01, v
1
2, · · · , v1n;Evalpk(·, ·, · · · , ·,G)),

(b) zn+2 = MEvalPK1,PK2(v11, v
0
2, v

1
3, · · · , v1n;Evalpk(·, ·, ·, · · · , ·,G)),

· · ·
(c) z2n = MEvalPK1,PK2(v11, · · · , v1n−1, v0n;Evalpk(·, · · · , ·, ·,G))

The above idea ensures that the complexity of the worker remains polynomial (the complexity of the clients
are still independent of F except for the pre-processing phase). Two (linked) issues remain to be addressed: 1)
How do the clients generate the bits b1, · · · , bn with the required distribution without interacting with each other?
and 2) the security of the protocol. These issues are addressed in Appendix E.

5.2 Minimizing Interaction in Offline Phase
Recall that in the offline phase, the clients need to execute a secure computation protocol in order to verify and
obtain the output of the computation. Note that since we work in the pre-processing model, we can use a specific
multi-party computation protocol in order to reduce the round complexity of the clients in this phase. More
specifically, we can use any secure computation protocol, even one that makes use of pre-processing, so long as
this pre-processing is re-usable for multiple runs of the protocol. Such a protocol exists due to the construction
of Asharov et al. [AJLA+12], which is a 2-round secure computation protocol in the re-usable pre-processing
model with CRS (note that in our case, the clients can compute the CRS needed for this protocol during the initial
pre-processing phase). Using this protocol, we can obtain a multi-party verifiable computation protocol in which
the round complexity of the clients in the offline phase is 2.

References
[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In TCC, pages 118–136,

2007.

[AIK10] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification via
secure computation. In ICALP, 2010.

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low communication, computation and interaction via threshold
fhe. In EUROCRYPT, pages 483–501, 2012.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge. J.
Comput. Syst. Sci., 37(2):156–189, 1988.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In ITCS, pages 326–349,
2012.

13

11. How to Delegate Secure Multiparty Computation to the Cloud

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption without
bootstrapping. In ITCS, 2012.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages 1–10,
1988.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) lwe. In FOCS, pages 97–106, 2011.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols
(extended abstract). In STOC, pages 11–19, 1988.

[CKKC12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Carlos Cid. Multi-user non-interactive
verifiable computation. ACITA Conference, 2012.

[CKKC13] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Carlos Cid. Multi-client non-interactive
verifiable computation. In TCC, pages 499–518, 2013.

[CKV10] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of computation
using fully homomorphic encryption. In CRYPTO, pages 483–501, 2010.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low com-
munication. In TCC, pages 54–74, 2012.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourc-
ing computation to untrusted workers. In CRYPTO, pages 465–482, 2010.

[GGPR12] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct nizks without pcps. IACR Cryptology ePrint Archive, 2012:215, 2012.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: interactive
proofs for muggles. In STOC, pages 113–122, 2008.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation without rejection
problem from designated verifier CS-proofs. IACR Cryptology ePrint Archive, 2011:456, 2011.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT, pages
321–340, 2010.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In STOC, pages 99–108, 2011.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public key cryptosystem.
In ANTS, pages 267–288, 1998.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In STOC,
pages 723–732, 1992.

14

11. How to Delegate Secure Multiparty Computation to the Cloud

[KMR11] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-party computation.
IACR Cryptology ePrint Archive, 2011:272, 2011.

[KMR12] Seny Kamara, Payman Mohassel, and Ben Riva. Salus: a system for server-aided secure function
evaluation. In ACM Conference on Computer and Communications Security, pages 797–808, 2012.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge
arguments. In TCC, volume 7194 of Lecture Notes in Computer Science, pages 169–189. Springer,
2012.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on
the cloud via multikey fully homomorphic encryption. In STOC, pages 1219–1234, 2012.

[Mic94] Silvio Micali. Cs proofs (extended abstracts). In FOCS, pages 436–453, 1994.

[Nao89] Moni Naor. Bit commitment using pseudo-randomness. In CRYPTO, pages 128–136, 1989.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, pages 96–109, 2003.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and verify in public:
Verifiable computation from attribute-based encryption. In TCC, pages 422–439, 2012.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC,
pages 84–93, 2005.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages
160–164, 1982.

A Related works
Interactive Solutions. Goldwasser et al. [GKR08] show how to build an interactive proof between a client and
a server to verify arbitrary polynomial time computations in almost linear time. Because of the interactive nature,
this protocol is not suited to the multi-client case (as we discussed above this would require the clients to be all
present and interacting with the server during the computation – our model enforces a single message exchanged
between server and client during the online phase)2.

SNARGs. A class of solutions is based on succint non-interactive arguments (or SNARGs): (computationally
sound [BCC88]) proofs that are very short and very efficient to verify, regardless of the complexity of the function
being evaluated. Solutions of this type are usually constructed using Probabilistically Checkable Proofs (PCPs),
long proofs that the verifier can check in only very few places (in particular only a constant number of bits
of the proofs are needed for NP languages). Kilian [Kil92] showed how to use PCPs to construct interactive
succint arguments by committing to the entire PCP string using a Merkle tree. Micali [Mic94] removed the
interaction by use of a random oracle. Recent work [BCCT12, GLR11, DFH12] has replaced the random oracle
with an “extractable collision-resistant hash functions” (ECRHs), a non-falsifiable [Nao03], assumption that any
algorithm that computes an image of the ECRH must ”know” the corresponding pre-image.

There are alternative constructions of SNARGs based on different forms of arithmetization of Boolean com-
putations used together with cryptographic constructions based on bilinear maps (e.g. [Gro10, Lip12, GGPR12]).
Those protocols also rely on non-falsifiable ”knowledge” assumptions over the cryptographic groups used in the

2A non-interactive argument for a restricted class of functions is also presented in [GKR08]. We did not investigate if this could be
turned into a multi-client non-interactive protocol (though we suspect it could, when coupled with an FHE), because the focus of this
paper is a general solution for arbitrary polynomial computations.

15

11. How to Delegate Secure Multiparty Computation to the Cloud

constructions. We note that following [AF07, GW11] such “knowledge” assumptions seem unavoidable when
using SNARGs.

As we pointed out in the previous Section, SNARGs coupled with FHE would yield a conceptually simple
protocol for the multi-client case, but at the cost of using either the random oracle or a falsifiable assumption.
Our protocol instead relies on standard cryptographic assumptions (in particular the existence of FHE).

Verifiable Computation. Gennaro, Gentry and Parno [GGP10] and subsequent works [CKV10, AIK10]
present a verifiable computation (VC) scheme that allows a client to outsource any efficiently computable func-
tion to a worker and verify the worker’s computation in constant time, where the worker’s complexity is only
linear in the size of the circuit, assuming a one-time expensive preprocessing phase depending on the function
being outsourced. We use their approach, and most specifically we use the protocol from [CKV10] as our start-
ing point. [PRV12] show how to construct a protocol for outsourcing computation of a smaller class of functions
starting from any attribute-based encryption scheme. Their solution does not handle input privacy however.

Server-Aided Secure Function Evaluation. The first work to explicitly consider outsourced computation in
the multi-client case is by Kamara et al [KMR11] (see also [KMR12] which reports on some optimizations of
[KMR11] and implementation results). The main limitation of these works is a non-colluding adversarial model
where the server and the clients may maliciously depart from the protocol specifications but without a common
strategy or communication. A simpler protocol is also presented in [CKKC12] but it assumes only semi-honest
parties. We stress that our work is the first to achieve full simulation security in the most stringent adversarial
model.

B Security definition
We now formally describe the ideal and real models of computation and then give our security definition.
IDEAL WORLD. In the ideal world, there is a trusted party T that computes the desired functionality F on
the inputs of all parties. Unlike the standard ideal world model, here we allow for multiple evaluations of the
functionality on different sets of inputs. An execution of the ideal world consists of (unbounded) polynomial
number of repetitions of the following:

Inputs: D1 and D2 have inputs x1 and x2 respectively. The worker has no input. All parties send their inputs to
the trusted party T. Additionally, corrupted parties may change their inputs before sending them to T.

Trusted party computes output: T computes F (x1, x2).

Adversary learns output: T returns F (x1, x2) to A.

Honest parties learn output: A prepares a list of (possibly empty) set of honest clients that should get the
output and sends it to T. T sends F (x1, x2) to this set of honest clients and ⊥ to other honest clients in the
system.

Outputs: All honest parties output whatever T gives them. Corrupted parties, wlog, output ⊥. The view of A
in the ideal world execution above includes the inputs of corrupt parties, the outputs of all parties, as well
as the entire view of all corrupt parties in the system. A can output any arbitrary function of its view and
we denote the random variable consisting of this output, along with the outputs of all honest parties, by
IDEALF,A(x1, x2).

REAL WORLD. In the real world, there is no trusted party and the parties interact directly with each other
according to a protocol Π. Honest parties follow all instructions of Π, while adversarial parties are coordinated
by a single adversary A and may behave arbitrarily. At the conclusion of the protocol, honest clients compute
their output as prescribed by the protocol.

16

11. How to Delegate Secure Multiparty Computation to the Cloud

For any set of adversarial parties (that may include a corrupt worker and a corrupt D1 or D2) controlled by A
and protocol Π for computing function F , we let REALπ,A(x1, x2) be the random variable denoting the output
of A in the real world execution above, along with the output of the honest parties. REALπ,A(x1, x2) can be an
arbitrary function of the view of A that consists of the inputs (and random tape) of corrupt parties, the outputs of
all parties in the protocol, as well as the entire view of all corrupt parties in the system.

Security Definition. Intuitively, we require that for every adversary in the real world, there exists an adversary
in the ideal world, such that the views of these two adversaries are computationally indistinguishable. Formally,

Definition 2 Let F and Π be as above. We say that Π is a secure verifiable computation protocol for computing
F if for every PPT adversary A that corrupts either D1 or D2, and additionally possibly corrupts the worker, in
the real model, there exists a PPT adversary S (that corrupts the same set of parties asA) in the ideal execution,
such that:

IDEALF,A(x1, x2)
c≡ REALπ,A(x1, x2)

C Building Blocks
We now describe the building blocks we require in our protocol.

C.1 Statistically Binding Commitments
We shall make use of statistically binding commitments in our protocol. A statistically binding commitment
consists of two probabilistic algorithms: COM and OPEN. COM takes as input a message m from the sender and
outputs a “commitment” to m, denoted by c to the receiver and a “decommitment” to m, denoted by d, to the
sender. OPEN takes as input c and d and outputs a message m (denoting the message that was committed to)
or outputs ⊥ denoting reject. The correctness property of a commitment scheme requires that for all honestly
executed COM and OPEN, we have that OPEN(COM(m)) = m, except with negligible probability. Informally, a
statistically binding commitment scheme has the security property that no (computationally unbounded) sender
can commit to a message m and have it decommit to some other message. In other words, no computationally
unbounded sender can come up with a commitment c and two decommitments d and d′ such that OPEN(c, d) = m
and OPEN(c, d′) = m′ for differentm andm′. In our protocol, we shall make use of Naor’s two-round statistically
binding commitment scheme [Nao89]. At a high level, the commitment scheme, based on any pseudorandom
generator, G, from κ bits to 3κ bits, works as follows: in the commitment phase, the receiver sends a random 3κ
bit string, r to the sender. The sender picks a seed s (of length κ) to the pseudorandom generator at random and
sends G(s) to commit to 0 and G(s) ⊕ r to commit to 1. The decommitment is simply the bit and the seed s.
This scheme is statistically binding and computationally hiding.

C.2 Fully homomorphic Encryption
In our constructions, we shall make use of a fully homomorphic encryption (FHE) scheme [Gen09, BV11,
BGV12]. An FHE scheme consists of four algorithms: (a) a key generation algorithm Gen(1κ) that takes as
input the security parameter and outputs a public key/secret key pair (pk, sk), (b) a randomized encryption algo-
rithm Encpk(m) that takes as input the public key and a message m and produces ciphertext c, (c) a decryption
algorithm Decsk(c) that takes as input the secret key, ciphertext c and produces a message m, and (d) a determin-
istic3 evaluation algorithm Evalpk(c, F) that takes as input a ciphertext c (that encrypts a message m), the public
key, and (the circuit description of) a PPT function F and produces a ciphertext c∗.

The correctness of the encryption, decryption, and evaluation algorithms require that for all key
pairs output by Gen, Decsk(Encpk(m)) = m, for all m (except with negligible probability) and that
Decsk(Evalpk(Encpk(m), F)) = F (m), for all m and PPT F , (except with negligible probability). The com-
pactness property of an FHE scheme requires the following: let c∗ ← Evalpk(c, F). There exists a polynomial

3The Eval algorithm need not be deterministic in general, but we require that the algorithm be deterministic. There are plenty of such
schemes available based on a variety of assumptions.

17

11. How to Delegate Secure Multiparty Computation to the Cloud

P such that |c∗| ≤ P (κ). (In other words, the size of c∗ is independent of the size of circuit description of F .)
Finally, the security definition for an FHE scheme is that of standard semantic security for encryption schemes.

We note that FHE schemes are known to exist from a variety of cryptographic assumptions such as the
learning with errors (LWE) assumption [Reg05].

C.3 Multikey Fully Homomorphic Encryption
In our construction, we will use a multikey fully homomorphic encryption (MFHE) scheme [LTV12] to avoid in-
teraction between the players during the online phase of our protocol. An MFHE scheme is defined as a four-tuple
of algorithms (MGen,MEnc,MEval,MDec): (a) a key generation algorithm (MPK,MSK) ← MGen(1κ)
that takes as input the security parameter and outputs a public key/secret key pair (MPK,MSK), (b) a ran-
domized encryption algorithm c ← MEncMPK(m) that takes as input the public key and a message m and
produces a ciphertext c, (c) a decryption algorithm m ← MDecMSK1,...,MSKn(c) that takes as input n se-
cret keys MSKi and a ciphertext c, and outputs a message m, and (d) a deterministic evaluation algorithm
c∗ ← MEvalMPK1,...,MPKn(c1, . . . , cn, C) that takes as a input (the circuit description of) a PPT function F , a
list of ciphertexts c1, . . . , cn along with the corresponding public keys MPK1, . . . ,MPKn, and produces a new
ciphertext c∗.

An MFHE scheme must satisfy the following two requirements:(a) Correctness: For every c∗ ←
MEvalMPK1,...,MPKn(c1, . . . , cn, F), where ci ← MEncMPKi(mi), it must be that MDecMSK1,...,MSKn(c∗) =
C(m1, . . . ,mt). (b) Compactness: Let c∗ ← MEvalMPK1,...,MPKn(c1, . . . , cn, F). Then, there exists a polyno-
mial P such that |c∗| ≤ P (κ, n).

The security definition for an MFHE scheme is that of standard semantic security for encryption schemes. We
remark that in the above description, for simplicity of notation, we do not explictly mention “evaluation keys”,
and simply assume that they are part of the public keys.

We note that an MFHE scheme was recently constructed by López-Alt et al. [LTV12] based on NTRU
[HPS98].

C.4 Single-Client Verifiable Computation
As a building block for our solution we use the recently proposed method for single-client verifiable computations
[CKV10]. For concreteness, we briefly describe the solution in [CKV10] which can be based on any Fully
Homomorphic Encryption (FHE) scheme [Gen09]. The high level idea for their protocol to outsource a function
F is as follows. The client picks a random r and computes F (r) in the preprocessing phase. Next, in the online
phase, after receiving the input x, the client picks a random bit b and sends either (x, r) or (r, x) to the server
(depending on the bit b). The server must compute F on both x and r and return the responses back to the
client. The client will check that F (r) matches the pre-computed value and if so accept the other response as the
correct F (x). Now, suppose x comes from the uniform distribution, then this protocol is a sound protocol and a
cheating server can succeed only with probability 1

2 (as he cannot distinguish (x, r) from (r, x) with probability
better than 1

2). For arbitrary distributions, this approach fails, but this can be rectified by having the client
additionally pick a public key for an FHE scheme (in the preprocessing phase) and sending (Encpk(x),Encpk(r))
or (Encpk(r),Encpk(x)), depending on bit b in the online phase. The server will homomorphically evaluate the
function F and respond back with Encpk(F (x)) and Encpk(F (r)). Now, this protocol is sound for arbitrary
distributions of x (as a cheating server cannot distinguish (Encpk(x),Encpk(r)) from (Encpk(r),Encpk(x))).
One can boost the soundness error to be negligibly small by picking random r1, · · · , rκ and having the client
pick b1, · · · , bκ and send (Encpk(x),Encpk(ri)) (or the other way around, depending on bi). The client will
check that all values of F (ri) were correct and that the κ different values for F (x) were identical and if so,
accept F (x). In order to make this protocol re-usable with the same values of r1, · · · , rκ, [CKV10] need to run
this entire protocol under one more layer of fully homomorphic Encryption.

18

11. How to Delegate Secure Multiparty Computation to the Cloud

C.5 Secure Computation
We make use of a two-party secure computation protocol (between parties D1 and D2). We make use of such a
protocol that is secure in the standard ideal/real world paradigm.
IDEAL WORLD. In the ideal world, there is a trusted party T that computes the desired functionality F on the
inputs of the two parties. An execution of the ideal world consists of the following:

Inputs: D1 and D2 have inputs x1 and x2 respectively and send their inputs to the trusted party T. Additionally,
a corrupted party may change its input before sending them to T.

Trusted party computes output: T computes F (x1, x2).

Adversary learns output: T returns F (x1, x2) to A (here, either D1 or D2 is controlled by the adversary A).

Honest parties learn output: A determines if the honest party should get the output and sends this to T. T
sends F (x1, x2) to this honest party (if the adversary says so) and ⊥ otherwise.

Outputs: Honest parties output whatever T gives them. Corrupted parties, wlog, output ⊥. The view of A in
the ideal world execution above includes the inputs of corrupt parties, the outputs of all parties, as well
as the entire view of all corrupt parties in the system. A can output any arbitrary function of its view and
we denote the random variable consisting of this output, along with the outputs of all honest parties, by
IDEALF,A(x1, x2).

REAL WORLD. In the real world, there is no trusted party and the parties interact directly with each other accord-
ing to a protocol Π2pc. Honest parties follow all instructions of Π2pc, while adversarial parties are coordinated by
a single adversary A and may behave arbitrarily. At the conclusion of the protocol, honest clients compute their
output as prescribed by the protocol.

For any set of adversarial parties (that is, corrupt D1 or D2) controlled byA and protocol Π2pc for computing
function F , we let REALπ,A(x1, x2) be the random variable denoting the output of A in the real world execution
above, along with the output of the honest parties. REALπ,A(x1, x2) can be an arbitrary function of the view of
A that consists of the inputs (and random tape) of corrupt parties, the outputs of all parties in the protocol, as
well as the entire view of all corrupt parties in the system.

SECURITY DEFINITION. Intuitively, we require that for every adversary in the real world, there exists an
adversary in the ideal world, such that the views of these two adversaries are computationally indistinguishable.
Formally,

Definition 3 Let F and Π2pc be as above. Protocol Π2pc is a secure protocol for computing F if for every PPT
adversary A that corrupts either D1 or D2, in the real model, there exists a PPT adversary S2pc (that corrupts
the same party as A) in the ideal execution, such that:

IDEALF,A(x1, x2)
c≡ REALπ,A(x1, x2)

D Proof details
D.1 Indistinguishability of the Views
In prover to prove Theorem 1, we consider a series of hybrid experiments H0, . . . ,H4, where H0 represents the
real world execution, whileH4 corresponds to the simulated execution in the ideal world. We will show that each
consecutive pair of hybrid experiments are computationally indistinguishable. We can therefore conclude that
H0 andH4 are computationally indistinguishable, as required.

19

11. How to Delegate Secure Multiparty Computation to the Cloud

Experiment H0. This experiments corresponds to the real world execution. The simulator simply uses the
honest party input and runs the honest party algorithm in the protocol execution.

Experiment H1. This experiment is the same as H0, except that in the pre-processing phase, S runs the sim-
ulators Sfhe, Sprf and Stest instead of running the honest party algorithm. Note that the functionalities Ffhe, Fprf

and Ftest are still computed honestly, in the same manner as inH0.

Indistinguishability of H0 and H1: From the security of the two-party computation protocols Πfhe, Πprf and
Πtest, it immediately follows that the output distributions ofH0 andH1 are computationally indistinguishable.

ExperimentH2. This experiment is the same asH1, except that in the offline-phase, S runs the simulator Sver
instead of running the honest party algorithm. S answers the output query of Sver by computing Fver in the same
manner as description of S .

Indistinguishability ofH1 andH2: From the security of the two-party computation protocol Πver, it immediately
follows that the output distributions ofH1 andH2 are computationally indistinguishable.

ExperimentH3. This experiment is the same manner asH2 except that S computes the bits bi,j for the honest
party Pi as random bits (instead of computing them pseudorandomly).

Indistinguishability ofH2 andH3:Follows immediately from the security of PRF.

Experiment H3. This experiment is the same as H2, except that now, in order to compute the final output of
Fver, S queries the ideal functionality F instead of performing decryption in the final step.

Indistinguishability of H2 and H3:We now claim that hybrids H2 and H3 are statistically indistinguishable. To-
wards contradiction, suppose that there exists a distinguisher that can distinguish between the output distributions
of H2 and H3 with inverse polynomial probability p(κ). Now, note that the only difference between H2 and H3

is the manner in which the final outputs are computed. In other words, the existence of such a distinguisher
implies that the outputs computed in H3 and H4 are different. However, note that conditioned on the event that
worker W performs the computation correctly, then the checks performed by Fver corresponding to the inputs of
the parties (i.e., step no 2(c) in the description of Fver) guarantee that the outputs in both experiments must be the
same. Thus, from the check 2(b) of Fver, we now have that the existence of such a distinguisher D implies that
with inverse polynomial probability p′(κ), the worker W is able to provide incorrect answers at positions pj , and
correct answers at positions 4− pj , for all j ∈ [n]. We now obtain a contradiction using the soundness lemma of
Chung et al. [CKV10].

In more detail, we now consider an experiment G where the simulator interacts with the server as in H4,
and then stops the experiment at the end of the online phase. That is, in H3, for every j ∈ [n], S prepares each
X̂i,j ← EncPK(Encpk(xi)) and R̂i,j ← EncPK(Ri). Now, consider an alternate experiment G′ that is the same
as G, except that S now prepares X̂i,j ← EncPK(Ri). Then, the following equation follows from the semantic
security of the (outer layer) FHE scheme:

Pr[W correct on (R̂i,1, . . . , R̂i,n) and incorrect on (X̂i,1, . . . , X̂i,j) in G]

≤ Pr[W correct on (R̂i,1, . . . , R̂i,n) and incorrect on (X̂i,1, . . . , X̂i,j) in G′] + negl(κ)

Note that to obtain the above equation, we rely on the fact that the function outsourced is a PPT function, and
thus we can check whether W is correct or incorrect by executing the Eval algorithm. Note that the simulator
knows the positions where the Eval checks must be performed since it knows the PRF key of the adversary and
can therefore compute its random bits bi∗,j .

Now, it is easy to see that:

Pr[W correct on (R̂i,1, . . . , R̂i,n) and incorrect on (X̂i,1, . . . , X̂i,j) in G′] ≤ 1

2n

Thus, combing the above two equations, we arrive at a contradiction. We refer the reader to [CKV10] for more
details.

20

11. How to Delegate Secure Multiparty Computation to the Cloud

ExperimentH4. This experiment is the same asH3, except that instead of encrypting the input of P1 honestly,
S computes X̂1,1, . . . , X̂1,n as encryptions of the all zeros string. Note that this experiment corresponds to the
ideal world.

Indistinguishability of H3 and H4: From the semantic security of the (inner layer) FHE scheme
(Gen,Enc,Dec,Eval), it immediately follows that the output distributions of H4 and H5 are computationally
indistinguishable. In more detail, assume for contradiction that there exists a PPT distinguisher D that can dis-
tinguish with non-negligible probability between the output distributions of H3 and H4. Then, we construct an
adversary B that breaks the semantic security for the FHE scheme. Adversary B takes a public key pk from
the challenger C of the FHE scheme and then runs the simulator S to generate an output distribution for D.
Specifically, B follows the same strategy as S, except that in the pre-processing phase, S forces pk as the inner
layer public key. B then sends vectors ~m0, ~m1 as its challenge messages to C, where each element in ~m0 is set
to x1, and each element in ~m1 is set to the all zeros string. On receiving the challenge ciphertext vector from
C, adversary B simply uses them to continue the rest of the simulation as S does. Finally, B outputs whatever
D outputs. Now, note that if the challenge ciphertexts correspond to ~m0, then the resultant output distribution
is same as in experiment H3, otherwise, it is the same as in H4. Thus, by definition D (and therefore B) must
succeed in distinguishing with non-negligible probability. Thus, we arrive at a contradiction.

D.2 Security of the Many-time Verifiable Computation Scheme
So far, we have shown that our protocol is one-time secure (namely, that soundness holds when one execution
of the online and offline phases are executed). We now proceed to show that the protocol is many-time secure
(i.e., we can run (unbounded) polynomially many online and offline phases after one run of the pre-processing
phase). As in the works of [GGP10, CKV10], we work in a model in which if the result of some computation
returned by the server is rejected by any of the clients, the clients execute a new pre-processing phase and
pick new parameters. To prove our security, let us first recall how [CKV10] go from one-time to many-time
security. [CKV10] show that if we have a one-time delegation scheme, then this can be converted into a many-
time delegation scheme simply by executing the entire protocol under another layer of fully encryption. A fresh
public key for the FHE scheme is chosen for every execution by the client in the online phase. Note that the
way we achieve multi-time security is also similar - the clients independently pick a fresh public key for the
multi-key homomorphic encryption scheme of [LTV12] and execute the one-time protocol under this layer of
fully homomorphic encryption. The proof that our protocol is also multi-time secure is quite similar to that of
[CKV10]; however, there are a few subtle changes that we need to make.

To see these changes, let us first understand the idea behind the proof of [CKV10]. [CKV10] reduce the
security of the multi-time scheme to that of the one-time scheme. That is, given an adversary that breaks the
security of the multi-time scheme, they construct an adversary that breaks the security of the one-time scheme.
Both adversaries execute the pre-processing phase in exactly the same manner. Let L be an upper bound on
the total number of times the one-time stage is executed by the adversary. The one-time scheme adversary that
they construct picks one of these executions, say ith, at random and chooses to break the one-time security of
that execution. In all other executions, the adversary will “simulate” the protocol by sending encryptions of all-
zeroes, instead of sending the encryption of the actual message that is a function of X̂ (which is an encryption of
the client’s input), R̂ (which is an encryption of the client’s secret state used to verify the protocol), and the secret
bit b (which is chosen fresh in every execution). In these executions (all executions other than the ith), one can
show (via the semantic security of the FHE scheme) that the messages sent in the real and simulated executions
are indistinguishable. An important point here is that the client never rejects any of these executions here and
always proceeds with the computation as if it accepted it. In the ith execution, the adversary will pick the public
key and secret key for the FHE scheme on its own. Now, the adversary encrypts the query under this public key
and once it obtains the response of the worker from the many-time adversary, it decrypts it using the secret key
to the obtain the response that the adversarial worker in the one-time game must produce.

We shall also follow the same overall strategy. The one-time adversary that we build will execute the pre-

21

11. How to Delegate Secure Multiparty Computation to the Cloud

processing phase in exactly the same manner as the many-time adversary. We will also pick one of the L exe-
cutions at random and choose to break the one-time security of that execution. However, unline [CKV10], we
cannot simulate the other executions by sending encryptions of all-zeroes. This is because, if we did so, then
the verification performed by the clients in the offline phase will necessarily fail and in the event that one of the
clients colludes with the server (which is unique to our setting), this information will be learned by the server and
we will not be able to continue with simulation. The way around it is to simulate other executions by sending
the encryption of the message exactly as we would do in a real run of the protocol, that is as a function of X̂ ,
R̂, and the secret bit b, except that we shall replace the r encrypted in R̂, and encrypt all-zeroes instead (note
that b is not part of the secret state as this varies from execution to execution). Note that by doing this we do not
use the secret state that is carried between executions anywhere in our simulation. Now, in the offline phase, our
adversary will run the simulator for the two-party computation protocol and force the clients to output “accept”
and the result of the computation to be F (x1, x2). Now, note that client never rejects any of these executions and
always proceeds with the computation as if it accepted it. The rest of the simulation works exactly the same as
in the case of [CKV10] and with these slight changes, our proof of security goes through. We now present more
details.

Let B be an adversary (controling a cheating D∗2 and W∗) that succeeds with non-negligible probability in
breaking the security when executing the online phase multiple times. We shall construct an adversary A that
also succeeds in breaking the security with non-negligible probability, but when executing the online phase only
once.

- A executes the pre-processing phase in exactly the same manner as B. In other words, A executes the
pre-processing phase exactly as the simulator described in Section 4.1 does.

- Next, let L be an upper bound on the total number of online executions run by adversary B. A picks an
index 1 ≤ i ≤ L at random, and this is the execution that it will use to distinguish between the real and
ideal worlds.

- In every execution k 6= i, A does as follows: A uses the honest client D1’s input in that execution,
say x1, in computing the messages sent by D1 in the online phase. However, instead of using the
random value R̂1,j in the online phase (for 1 ≤ j ≤ n), A will use encryptions of the all-zero string
instead. A will execute the rest of the online phase exactly as an honest D1 would (that is, A picks
random bits b1,j , for 1 ≤ j ≤ n and sends the ordered encryption tuples (of x1 and 0) to W).

- In the ith execution, A does as follows: A picks the keys for the outermost layer of the FHE scheme
on its own (both the public and secret keys (pk∗, sk∗)). A upon receiving a query from the client
D1 in the one-time execution, will prepare the query using this value and use the public key pk∗ to
encrypt the query. A will send this value to B. Upon receiving the response from B, A will decrypt
it using sk∗ and send this value as the value sent by the malicious worker controled by A in the
one-time execution.

Note that if B terminates the game before the ith execution, then A aborts and gives up.

- In the offline phase, for all executions k 6= i, A will execute the simulator, Sver, for the two-party compu-
tation protocol, Πver along with the corrupted client B to generate a simulated execution of Πver. At some
point during the simulation, Sver will make a query to the ideal functionality Fver with some input (say)
Z̃. At this point A will simply return F (x1, x2) as the result of the computation to Sver. On receiving this
output value y from A, Sver continues the simulation of Πver where it forces the output y on B. In the
offline phase for the ith execution, A will execute the protocol honestly in this phase.

The proof that A also succeeds with non-negligible probability, when B succeeds with non-negligible proba-
bility follows via a standard hybrid argument. At a high level, note that we can argue about the success probability

22

11. How to Delegate Secure Multiparty Computation to the Cloud

of A only in the case when A guesses correctly the first execution when B will execute the protocol maliciously.
This is because, if B executes the protocol maliciously for some execution q < i, then since A will simulate the
output of the computation to be F (x1, x2) (in the offline phase), when in the real world the output of the compu-
tation maybe different causing B to distinguish between the real and ideal worlds. Hence, let us consider the case
when A guesses correctly the first execution when B is malicious. Note that this happens with probability 1

L .
Now, given that the first instance that B is malicious is only in the ith execution, we have that B is honest in the
first i − 1 executions. In these executions, we can show indistinguishability of the different hybrids (where we
replace a real execution with a simulated execution in a step-by-step manner) via a simple hybrid argument as the
only difference between the real and ideal executions is that we are replacing encryptions of R̂1,j in the online
phase (for 1 ≤ j ≤ n) with encryptions of all zeroes and we are simulating the offline phase so that it outputs the
value F (x1, x2) to the adversary. The first change is indistinguishable due to the semantic security of the FHE
scheme, while the second change is indistinguishable since the adversary is indeed honest in this execution and
an honest execution indeed does evaluate to F (x1, x@) (from the indistinguishability of the simulated two-party
computation protocol from the real protocol with same output value, this indistinguishability follows). Hence, if
B succeeds with probability pB, then A succeeds with probability at least pBL + negl. We leave further details to
the full version of the paper.

E Multi-party verifiable computation
Let us have the clients pick the bits bi at random from a distribution that outputs 1 with probability 1

n and 0
otherwise (such a distribution can easily be sampled; simply pick log n bits uniformly at random and outputting
1 iff all log n bits are 1). Let us look at the completeness of the protocol in this case. When all parties are honest,
the probability that exactly one bi = 1 and all other bi’s are 0 is n× 1

n×(1− 1
n)n−1 which is≥ 1

e . The probability
that there is a completeness error is bounded by 1 − 1

e . So, if the clients repeat the above protocol (in parallel)
κ number of times, then the probability that none of the repetitions succeed will be negligibly small in κ. The
clients can check only the run of the protocol that succeeded during the offline verification phase, and obtain the
result of the computation.

The problem with this approach is that a set of corrupted clients can claim that their random bits are such that
bi = 1 for a corrupted client. Now, with constant probability, bj will be 0 for all honest clients. This means that
the colluding adversarial clients along with the server will have complete knowledge of the bits b1, · · · , bn in this
case and hence soundness will be completely defeated.

We get around this problem as follows. We repeat the protocol (in parallel), a total of 2en2κ number of times.
But now, a client Di will accept the output of the computation, iff there are at least κ number of repetitions in
which bi = 1 and bj = 0 for all j 6= i (this will be checked in the secure computation protocol run during the
offline phase). Let us first analyze the completeness of this protocol. Note that, for a particular bi, the probability
that bi = 1 and all other bj’s are 0 is at least 1

en . Hence, if run 2enκ executions in parallel, except with negligible
probability (in κ, via the Chernoff bound), we get that there will be κ number of repetitions in which bi = 1 and
bj = 0 for all j 6= i. Since we are running 2en2κ parallel repetitions, except with negligible probability, for all
clients Di, this condition will be met.

Now, let us analyze the security of this protocol. Note that the adversarial set of clients (totally αn clients for
constant 0 < α < 1) cannot simply set their bits such that one of their b bits is always 1 in all parallel repetitions
of the protocol. Hence, the adversarial clients must set their bits to 0 in at least (1−α)κn executions. Now, note
that in these repetitions of the protocol, the adversary has no idea as to which honest clients bit bi = 1 (this can be
shown using the same techniques as in the proof of the two-party protocol). Since the adversarial client can force
a wrong output (by colluding with the corrupted worker) only by guessing this, the probability with which this
happens is (1

(1−α)n)(1−α)nκ, which is negligible in the security parameter κ. Hence, a set of adversarial clients
succeed in forcing a wrong output only with negligible probability.

23

11. How to Delegate Secure Multiparty Computation to the Cloud

An Equational Approach to Secure Multi-party Computation∗

Daniele Micciancio† Stefano Tessaro‡

December 4, 2012

Abstract

We present a novel framework for the description and analysis of secure computation proto-
cols that is at the same time mathematically rigorous and notationally lightweight and concise.
The distinguishing feature of the framework is that it allows to specify (and analyze) protocols
in a manner that is largely independent of time, greatly simplifying the study of cryptographic
protocols. At the notational level, protocols are described by systems of mathematical equations
(over domains), and can be studied through simple algebraic manipulations like substitutions
and variable elimination. We exemplify our framework by analyzing in detail two classic pro-
tocols: a protocol for secure broadcast, and a verifiable secret sharing protocol, the second of
which illustrates the ability of our framework to deal with probabilistic systems, still in a purely
equational way.

1 Introduction

Secure multiparty computation (MPC) is a cornerstone of theoretical cryptography, and a problem
that is attracting increasingly more attention in practice too due to the pervasive use of distributed
applications over the Internet and the growing popularity of computation outsourcing. The area
has a long history, dating back to the seminal work of Yao [29] in the early 1980s, and a steady
flow of papers contributing extensions and improvements that lasts to the present day (starting
with the seminal works [12, 6, 3] introducing general protocols, and followed by literally hundreds of
papers). But it is fair to say that MPC has yet to deliver its full load of potential benefits both to the
applied and theoretical cryptography research communities. In fact, large portions of the research
community still see MPC as a highly specialized research area, where only the top experts can
read and fully understand the highly technical research papers routinely published in mainstream
crypto conferences. Two main obstacles have kept, so far, MPC from becoming a more widespread
tool to be used both in theoretical and applied cryptography: the prohibitive computational cost
of executing many MPC protocols, and the inherent complexity of the models used to describe
the protocols themselves. Much progress has been made in improving the efficiency of the first
protocols [29, 12, 6] in a variety of models and with respect to several complexity measures, even

∗This material is based on research sponsored by DARPA under agreement number FA8750-11-C-0096. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DARPA
or the U.S. Government.
†University of California, San Diego. daniele@cs.ucsd.edu.
‡Massachusetts Institute of Technology. tessaro@csail.mit.edu

1

12. An Equational Approach to Secure Multi-party Computation

leading to concrete implementations (cf. e.g. [19, 4, 17, 7, 24, 11]). However, the underlying models
to describe and analyze security properties are still rather complex.

What makes MPC harder to model than traditional cryptographic primitives like encryption,
is the inherently distributed nature of the security task being addressed: there are several distinct
and mutually distrustful parties trying to perform a joint computation, in such a way that even if
some parties deviate from the protocol, the protocol still executes in a robust and secure way.

The difficulty of properly modeling secure distributed computation is well recognized within the
cryptographic community, and documented by several definitional papers attempting to improve
the current state of the art [22, 9, 10, 23, 2, 18, 15, 20]. Unfortunately, the current state of
the art is still pretty sore, with definitional/modeling papers easily reaching encyclopedic page
counts, setting a very high barrier of entry for most cryptographers to contribute or actively follow
the developments in MPC research. Moreover, most MPC papers are written in a semi-formal
style reflecting an uncomfortable trade-off between the desire of giving to the subject the rigorous
treatment it deserves and the implicit acknowledgment that this is just not feasible using the
currently available formalisms (and even more so, within the page constraints of a typical conference
or even journal publication.) At the other end, recent attempts to introduce abstractions [20] are
too high level to deliver a precise formal language for protocol specification. The goal of this paper
is to drastically change this state of affairs, by putting forward a model for the study of MPC
protocols that is both concise, rigorous, and still firmly rooted in the intuitive ideas that pervade
most past work on secure computation and most cryptographers know and love.

1.1 The simulation paradigm

Let us recall the well known and established simulation paradigm that underlies essentially all
MPC security definitions. Cryptographic protocols are typically described by several component
programs P1, . . . , Pn executed by n participating parties, interconnected by a communication net-
work N , and usually rendered by a diagram similar to the one in Figure 1 (left): each party receives
some input xi from an external environment, and sends/receives messages si, ri from the network.
Based on the external inputs xi, and the messages si, ri transmitted over the network N , each party
produces some output value yi which is returned to the outside world as the visible output of run-
ning the protocol. The computational task that the protocol is trying to implement is described by
a single monolithic program F , called the “ideal functionality”, which has the same input/output
interface as the system consisting of P1, . . . , Pn and N , as shown in Figure 1 (right). Conceptually,
F is executed by a centralized entity that interacts with the individual parties through their local
input/output interfaces xi/yi, and processes the data in a prescribed and trustworthy manner. A
protocol P1, . . . , Pn correctly implements functionality F in the communication model provided by
N if the two systems depicted in Figure 1 (left and right) exhibit the same input/output behavior.

Of course, this is not enough for the protocol to be secure. In a cryptographic context, some
parties can get corrupted, in which case an adversary (modeled as part of the external execution
environment) gains direct access to the parties’ communication channels si, ri and is not bound to
follow the instructions of the protocol programs Pi. Figure 2 (left) shows an execution where P3

and P4 are corrupted. The simulation paradigm postulates that whatever can be achieved by a
concrete adversary attacking the protocol, can also be achieved by an idealized adversary S (called
the simulator) attacking the ideal functionality F . In Figure 2 (right), the simulator takes over the
role of P3 and P4, communicating for them with the ideal functionality, and recreating the attack of
a real adversary by emulating an interface that exposes the network communication channels of P3

2

12. An Equational Approach to Secure Multi-party Computation

N

P1

r1s1

yixi

P2

r2s2

yixi

P3

r3s3

yixi

P4

r4s4

yixi

F

y1x1 y2x2 y3x3 y4x4

Figure 1: A multiparty protocol P1, . . . , P4 with communication network N (left) implementing a
functionality F (right).

N

P1

r1s1

yixi

P2

r2s2

yixi

r3s3 r4s4

F

S

y3x3

risi

y4x4

risi

y1x1 y2x2

Figure 2: Simulation based security. The protocol P1, . . . , P4 is a secure implementation of func-
tionality F if the system (left) exposed to an adversary that corrupts a subset of parties (say P3

and P4) is indistinguishable from the one system (right) recreated by a simulator S interacting with
F .

and P4. The protocol P1, . . . , Pn securely implements functionality F if the systems described on
the left and right of Figure 2 are functionally equivalent: no adversary (environment) connecting
to the external channels x1, y1, x2, y2, s3, r3, s4, r4 can (efficiently) determine if it is interacting with
the system described in Figure 2 (left) or the one in Figure 2 (right). In other words, anything
that can be achieved corrupting a set of parties in a real protocol execution, can also be emulated
by corrupting the same set of parties in an idealized execution where the protocol functionality F
is executed by a trusted party in a perfectly secure manner.

This is a very powerful idea, inspired by the seminal work on zero knowledge proof systems [13],
and embodied in many subsequent papers about MPC. But, of course, as much as evocative the
diagrams in Figure 2 may be, they fall short of providing a formal definition of security. In fact,
a similar picture can be drawn to describe essentially any of the secure multiparty computation
models proposed so far at a very abstract level, but the real work is in the definition of what
the blocks and communication links connecting them actually represent. Traditionally, building
on classical work from computational complexity on interactive proof systems, MPC is formalized

3

12. An Equational Approach to Secure Multi-party Computation

by modeling each block by an interactive Turing machine (ITM), a venerable model of sequential
computation extended with some “communication tapes” used to model the channels connecting
the various blocks. Unfortunately, this only provides an adequate model for the local computation
performed by each component block, leaving out the most interesting features that distinguish MPC
from simpler cryptographic tasks: computation is distributed and the concurrent execution of all
ITMs needs to be carefully orchestrated. In a synchronous communication environment, where
local computations proceed in lockstep through a sequence of rounds, and messages are exchanged
only between rounds, this is relatively easy. But in asynchronous communication environments like
the Internet, dealing with concurrency is a much trickier business. The standard approach to deal
with concurrency in asynchronous distributed systems is to use nondeterminism: a system does not
describe a single behavior, but a set of possible behaviors corresponding to all possible interleavings
and message delivery orders. But nondeterminism is largely incompatible with cryptography, as it
allows to break any cryptographic function by nondeterministically guessing the value of a secret
key. As a result, cryptographic models of concurrent execution resort to an adversarially and
adaptively chosen, but deterministic, message delivery order: whenever a message is scheduled for
transmission between two component, it is simply queued and an external scheduling unit (which is
also modeled as part of the environment) is notified about the event. While providing a technically
sound escape route from the dangers of mixing nondeterministic concurrency with cryptography,
this approach has several shortcomings:

- Adding a scheduler further increases the complexity of the system, making simulation based
proofs of security even more technical.

- It results in a system that in many respects seems overspecified: as the goal is to design a
robust system that exhibits the prescribed behavior in any execution environment, it would
seem more desirable to abstract the scheduling away, rather than specifying it in every single
detail of a fully sequential ordering of events.

- Finally, the intuitive and appealing idea conveyed by the diagrams in Figure 2 is in a sense
lost, as the system is now more accurately described by a collection of isolated components
all connected exclusively to the external environment that orchestrates their executions by
scheduling the messages.

1.2 Our work

In this paper we describe a model of distributed computation that retains the simplicity and
intuitiveness conveyed by the diagrams in Figures 1 and 2, and still it is both mathematically
rigorous and concise. In other words, we seek a model where the components Pi, N, F, S occurring
in the description and analysis of a protocol, and the systems obtained interconnecting them, can
be given a simple and precise mathematical meaning. The operation of composing systems together
should also be well defined, and satisfy a number of useful and intuitive properties, e.g., the result
of connecting several blocks together does not depend on the order in which the connections are
made. (Just as we expect the meaning of a diagram to be independent of the order in which the
diagram was drawn.) Finally, it should provide a solid foundation for equational reasoning, in the
sense that equivalent systems can be replaced by equivalent systems in any context.

Within such a framework, the proof that protocols can be composed together should be as simple
as the following informal argument. (In fact, given the model formally defined in the rest of the

4

12. An Equational Approach to Secure Multi-party Computation

F

Q1

y1x1

wizi

Q2

y2x2

wizi

y3x3 y4x4

G

S′

w3z3

yixi

w4z4

yixi

w1z1 w2z2

Figure 3: A protocol Qi implementing G in the F -hybrid model.

paper, the following is actually a rigorous proof that our definition satisfies a universal composability
property.) Say we have a protocol P1, . . . , Pn securely implementing ideal functionality F using a
communication network N , and also a protocol Q1, . . . , Qn in the F -hybrid model (i.e., an idealized
model where parties can interact through functionality F) that securely implements functionality
G. The security of the second protocol is illustrated in Figure 3.

Then, the protocol obtained simply by connecting Pi and Qi together is a secure implementation
of G, in the standard communication model N . Moreover, the simulator showing that the composed
protocol is secure is easily obtained simply by composing the simulators for the two component
protocols. In other words, we want to show that an adversary attacking the real system described
in Figure 4 (left) is equivalent to the composition of the simulators attacking the ideal functionality
G as described in Figure 4 (right).

This is easily shown by transforming Figure 4 (left) to Figure 4 (right) in two steps, going
through the hybrid system described in Figure 5. Specifically, first we use the security of Pi to
replace the system described in Figure 2 (left) with the one in Figure 2 (right). This turns the
system in Figure 4 (left) into the equivalent one in Figure 5. Next we use the security of Qi to
substitute the system in Figure 3 (left) with the one in Figure 3 (right). This turns Figure 5 into
Figure 4 (right).

While the framework proposed in this paper allows to work with complex distributed systems
with the same simplicity as the informal reasoning described in this section, it is quite powerful and
flexible. For example, it allows to model not only protocols that are universally composable, but
also protocols that retain their security only when used in restricted contexts. For simplicity, in this
paper we focus on perfectly secure protocols against unbounded adversaries, as this already allows
us to describe interesting protocols that illustrate the most important feature of our framework:
the ability to design and analyze protocols without explicitly resorting to the notion of time and
sequential scheduling of messages. Moreover, within the framework of universally composability,
it is quite common to design perfectly secure protocols in a hybrid model that offers idealized
versions of the cryptographic primitives, and then resorting to computationally secure cryptographic
primitives only to realize the hybrid model. So, a good model for the analysis of perfect or statistical
security can already be a useful and usable aid for the design of more general computationally secure
protocols. Natively extending our framework to statistically or computationally secure protocols is
also an attractive possibility. We consider the perfect/statistical/computational security dimension

5

12. An Equational Approach to Secure Multi-party Computation

N

P1

Q1

r1s1

yixi

wizi

P2

Q2

r2s2

yixi

wizi

r3s3 r4s4

G

S′

S

w3z3

xi yi

si ri

w4z4

xi yi

si ri

w1z1 w2z2

Figure 4: Protocol composition. Security is proved using a hybrid argument.

F

SQ1

y1x1

wizi

Q2

y2x2

wizi

y3x3

risi

y4x4

risi

Figure 5: Hybrid system to prove the security of the composed protocol

6

12. An Equational Approach to Secure Multi-party Computation

as being mostly orthogonal to the issues dealt with in this paper, and we believe the model described
here offers a solid basis for extensions in that direction.

1.3 Techniques

In order to realize our vision, we introduce a computational model in which security proofs can
be carried out without explicitly dealing with the notion of time. Formally, we associate to each
communication channel connecting two components the set of all possible “channel histories”,
partially ordered according to their information content or temporal ordering. The simplest example
is the set of all finite sequences M∗ of messages from some underlying message space, ordered
according to the prefix ordering relation. The components of the system are then modeled as
functions mapping input histories to output histories. The functions are subject to some natural
conditions, e.g., monotonicity: receiving more input values can only results in more output values
being produced. Under appropriate technical conditions on the ordered sets associated to the
communication channels, and the functions modeling the computations performed by the system
components, this results in a well behaved framework, where components can be connected together,
even forming loops, and always resulting in a unique and well defined function describing the
input/output behavior of the whole system. Previous approaches to model interactive systems,
such as Kahn networks [16] and Maurer’s random systems [21], can indeed be seen as special cases
of our general process model.1 The resulting model is quite powerful, allowing even to model
probabilistic computation as a special case. However, the simplicity of the model has a price: all
components of the system must be monotone with respect to the information ordering relation. For
example, if a program P on input messages x1, x2 outputs P (x1, x2) = (y1, y2, y3), then on input
x1, x2, x3 it can only output a sequence of messages that extends (y1, y2, y3) with more output.
In other words, P cannot “go back in time” and change y1, y2, y3. While this is a very natural
and seemingly innocuous restriction, it also means that the program run by P cannot perform
operations of the form “if no input message has been received yet, then send y”. This is because if
an input message is received at a later point, P cannot go back in time and not send y.

It is our thesis that these time dependent operations make cryptographic protocols harder to
understand and analyze, and therefore should be avoided whenever possible.

Organization. The rest of the paper is organized as follows. In Section 2 we present our frame-
work for the description and analysis of concurrent processes, and illustrate the definitions using a
toy example. Next, we demonstrate the applicability of the framework by carefully describing and
analyzing two classic cryptographic protocols: secure broadcast (in Section 3) and verifiable secret
sharing (in Section 4). The secure broadcast protocol in Section 3 is essentially the one of Bracha,
and only uses deterministic functions. Our modular analysis of the protocol illustrates the use of
subprotocols that are not universally composable. The verifiable secret sharing protocol analyzed
in Section 4 provides an example of randomized protocol.

1For the readers well versed in the subject, we remark that our model can be regarded as a generalization of
Kahn networks where the channel behaviors are elements of arbitrary partially ordered sets (or, more precisely,
domains) rather than simple sequences of messages. This is a significant generalization that allows to deal with
probabilistic computations and intrinsically nondeterministic systems seamlessly, without incurring into the Brock-
Ackerman anomaly and similar problems.

7

12. An Equational Approach to Secure Multi-party Computation

2 Distributed Systems, Composition, and Secure Computation

In this section we introduce our mathematical framework for the description and analysis of dis-
tributed systems. We start with a high level description of our approach, which will be sufficient
to apply our framework and to follow the proofs. We then give more foundational details justifying
soundness of our approach. Finally, we provide security definitions for protocols in our framework.

2.1 Processes and systems

Introducing processes: An example and notational conventions. Our framework models
(asynchronous and reactive) processes and systems with one or more input and output channels
as mathematical functions mapping input histories to output histories. Before introducing more
formal definitions, let us illustrate this concept with a simple example. Consider a deterministic
process with one input and one output channels, which receives as input a sequence of messages,
x[1], . . . , x[k], where each x[k] is (or can be parsed as) an integer. The process receives the messages
sequentially, one at a time, and in order to make the process finite one may assume that the process
will accept only the first n messages. Upon receiving each input message x[i], the process increments
the value and immediately outputs x[i]+1. It is not hard to model the process in terms of a function
mapping input to output sequences: The input and output of the function modeling the process are
the set Z≤n of integer sequences of length at most n, and the process is described by the function
F: Z≤n → Z≤n mapping each input sequence x ∈ Zk (for some k ≤ n) to the output sequence
y ∈ Zk of the same length defined by the equations y[i] = x[i] + 1 (for i = 1, . . . , k). There are
multiple ways one can possibly describe such a function. We describe the process in equational
form as in Figure 6 (left). In the example, the first line assigns names to the function, input
and output variables, while the remaining lines are equations that define the value of the output
variables in terms of the input variables. Each variable ranges over a specific set (x, y ∈ Z≤n), but
for simplicity we often leave the specification of this set implicit, as it is usually clear from the
context. By convention, all variables that appear in the equations, but not as part of the input
or output variables, are considered local/internal variables, whose only purpose is to help defining
the value of the output variables in terms of the input variables. Free index variables (e.g., i, j)
are universally quantified (over appropriate ranges) and used to compactly describe sets of similar
equations.

Processes as monotone functions. In general, the reason we define a process F as a function
mapping sequences to sequences2 (rather than, say, as a function f(x) = x + 1 applied to each
incoming message x) is that it allows to describe the most general type of (e.g., stateful, reactive)
process, whose output is a function of all messages received as input during the execution of the
protocol. (Note that we do not need to model state explicitly.) Also, such functions can describe
processes with multiple input and output channels by letting inputs and outputs be tuples of
message sequences. However, clearly, not any such function mapping input to output sequences
can be a valid process. To capture valid functions representing a process, input and output sets are
endowed with a partial ordering relation ≤, where x ≤ y means that y is a possible future of x. (In
the case of sequences of messages, ≤ is the standard prefix partial ordering relation, where x ≤ y if
y = x|z for some other sequence z, and x|z is the concatenation of the two sequences.) Functions

2Here we use sequences just as a concrete example. Our framework uses more general structures, namely domains.

8

12. An Equational Approach to Secure Multi-party Computation

F(x) = y:
y[i] = x[i]+1 (i = 1, . . . , |x|)

G(y) = (z, w):
z = y
w = y

H(z) = x:
x[1] = 1
x[j + 1] = z[j] (j ≤ min{|z|, n− 1})

Figure 6: Some simple processes

describing processes should be naturally restricted to monotone functions, i.e., functions such that
x ≤ y implies F(x) ≤ F(y). In our example, this simply means that if on input a sequence of
messages x, F(x) is produced as output, upon receiving additional messages z, the output sequence
can only get longer, i.e., F(y) = F(x|z) = F(x)|z′ for some z′. In other words, once the messages
F(x) are sent out, the process cannot change its mind and set the output to a sequence that does
not start with F(x).

Note that so far we only discussed an example of a deterministic process. Below, after intro-
ducing some further foundational tools, we will see that probabilistic processes are captured in
the same way by letting the function output be a distribution over sequences, rather than a single
sequence of symbols.

Further examples and notational conventions. In the examples, |x| denotes the length of a
sequence x, and we use array notation x[i] to index the elements of a sequence. Figure 6 gives two
more examples of processes that further illustrate notational conventions. Process G, in Figure 6
(middle), simply duplicates the input y (as usual in Z≤n) and copies the input messages to two
different output channels z and w. When input or output values are tuples, we usually give separate
names to each component of the tuple. As before, all variables take values in Z≤n and the output
values are defined by a set of equations that express the output in terms of the input. Finally,
process H(z) takes as input a sequence z ∈ Z≤n, and outputs the message 1 followed by the
messages z received as input, possibly truncated to a prefix z[< n] of length at most n− 1, so that
the output sequence x has length at most n.

Process composition. Processes are composed in the expected way, connecting some output
variables to other input variables. Here we use the convention that variable names are used to
implicitly specify how different processes are meant to be connected together.3 Composing two
processes together yields, in turn, another process, which is obtained simply combining all the
equations. We often refer to the resulting process as a system to stress its structure as a composition
of basic processes. However, it should be noted that both a process and a system are objects of
the same mathematical type, namely monotone functions described by systems of equations. For
example, the result of composing G and H from Figure 6 yields the process (G | H) shown in Figure 7
(left), with input y and output (w, x), where w = y replicates the input to make it externally
visible. We use the convention that by default processes are connected by private channels, not
visible outside of the system. This is modeled by turning their common input/output variables
into local ones, not part of the input or output of the composed system. Of course, one can always
either override this convention by explicitly listing such common input/output variables as part of
the output, or bypass it by duplicating the value of a variable as done for example by process G.

3We stress that this is just a notational convention, and there are many other syntactical mechanisms that can be
used to specify the “wiring” in more or less explicit ways.

9

12. An Equational Approach to Secure Multi-party Computation

[G | H](y) = (w, x):
z = y
w = y
x[1] = 1
x[j + 1] = z[j] (j < n)

[G | H](y) = (w, x):
w = y
x[1] = 1
x[j + 1] = y[j] (j < n)

Figure 7: Process composition

This is just a syntactical convention, and several other choices are possible, including never hiding
variables during process composition and introducing a special projection operator to hide internal
variables.

Since processes formally define functions (from input to output variables), and equations are just
a syntactic method to specify functions, equations can be simplified without affecting the process.
Simplifications are easily performed by substitution and variable elimination. For example, using
the first equation z = y, one can substitute y for z, turning the last equation in the system into
x[i + 1] = y[i]. At this point, the local variable z is no longer used anywhere, and its defining
equation can be removed from the system. The result is shown in Figure 7 (right). We remark
that the two systems of equations shown in Figure 7 define the same process: they have the same
input and output variables, and the equations define precisely the same function.

Feedback loops and recursive equations. Now consider the composition of all three processes
F,G,H from Figure 6. Composition can be performed one pair at a time, and in any order, e.g.,
as [[F | G] | H] or [F | [G | H]]. Given the appropriate mathematical definitions, it can be easily
shown that the result is the same, independent from the order of composition. (This is clear at
the syntactic level, where process composition is simply defined by combining all the equations
together. But associativity of composition can also be proved at the semantic level, where the
objects being combined are functions.) So, we write [F | G | H] to denote the result of composing
multiple processes together, shown in Figure 8 (left). When studying multi-party computation
protocols, one is naturally led to consider collections of processes, e.g., P1, . . . ,Pn, corresponding
to the individual programs run by each participant. Given a collection {Pi}i and a subset of indices
I ⊆ {1, . . . , n}, we write PI to denote the composition of all Pi with i ∈ I. Similarly, we use xA or
x[A] to denote a vector indexed by i ∈ A. As a matter of notation, we also use xA to denote the
|A|-dimensional vector indexed by i ∈ A with all components set equal to x.

The system [F | G | H] has no inputs, and only one output w. More interestingly, the result of
composing all three processes yields a recursive system of equations, where y is a function of x, x is
a function of z and z is a function of y. Before worrying about solving the recursion, we can simplify
the system. A few substitutions and variable eliminations yield the system in Figure 8 (right). The
system consists of a single, recursively defined output variable w. The recursive definition of w is
easy to solve, yielding w[i] = i+ 1 for i ≤ n.

2.2 Foundations: Domain theory and probabilistic processes

So far, equations have been treated in an intuitive and semi-formal way, and in fact obtaining an
intuitive and lightweight framework is one of our main objectives. But for the approach to be
sound, it is important that the equations and the variable symbols manipulated during the design

10

12. An Equational Approach to Secure Multi-party Computation

[F | G | H]() = w:
y[i] = x[i] + 1 (i ≤ n)
z = y
w = y
x[1] = 1
x[j + 1] = z[j] (j < n)

[F | G | H]() = w:
w[1] = 2
w[j + 1] = w[j] + 1 (j < n)

Figure 8: Example of recursive process

and analysis of a system be given a precise mathematical meaning. Also, we want to consider a
more general model of processes where inputs and outputs are not restricted to simple sequences
of messages, but can be more complex objects, including probability distributions. This requires
us to introduce some further formal tools.

The standard framework to give a precise meaning to our equations is that of domain theory,
a well established area of computer science developed decades ago to give a solid foundation to
functional programming languages [27, 26, 14, 28, 1]. Offering a full introduction to domain theory
is beyond the scope of this paper, but in order to reassure the reader that our framework is sound,
we recall the most basic notions and illustrate how they apply to our setting.

Domains and partial orders. Domains are a special kind of partially ordered set satisfying
certain technical properties. We recall that a partially ordered set (or poset) (X;≤) is a set X
together with a reflexive, transitive and antisymmetric relation ≤. We use posets to model the
set of possible histories (or behaviors) of communication channels, with the partial order relation
corresponding to temporal evolution. For example, a channel that allows the transmission of an
arbitrary number of messages from a basic set M (and that preserves the order of transmitted
messages) can be modeled by the poset (M∗;≤) of finite sequences of elements of M together
with the prefix partial ordering relation ≤. A chain x1 ≤ x2 ≤ . . . ≤ xn represents a sequence
of observations at different points in time.4 In this paper we will extensively use an even simpler
poset M⊥, consisting of the base set M extended with a special “bottom” element ⊥, and the
flat partial order where x ≤ y if and only if x = ⊥ or x = y. The poset M⊥ is used to model a
communication channel that allows the transmission of a single message from M , with the special
value ⊥ representing a state in which no message has been sent yet.

The Scott topology and continuity. Posets can be endowed with a natural topology, called
the Scott topology, that plays an important role in many definitions. In the case of posets (X;≤)
with no infinite chains, closed sets can be simply defined as sets C ⊆ X that are downward closed,
i.e., if x ∈ O and y ≤ x, then y ∈ C. Intuitively, a set is closed if it contains all possible “pasts”
that lead to a current set of events. Open sets are defined as usual as the complements of closed
sets. It is easy to see that the standard (topological5) definition of continuous function f : X → Y
(according to the Scott topology on posets with no infinite chains) boils down to requiring that f
is monotone, i.e., for all x, y ∈ X, if x ≤ y in X, then f(x) ≤ f(y) in Y . In the case of posets with

4Domain theory usually resorts to the (related, but more general) notion of directed set. But not much is lost by
restricting the treatment to chains, which are perhaps more intuitive to use in our setting.

5We recall that a function f : X → Y between two topological spaces is continuous if the preimage f−1(O) of any
open set O ⊂ Y is also open.

11

12. An Equational Approach to Secure Multi-party Computation

infinite chains, such as (M∗;≤), definitions are slightly more complex, and require the definition
of limits of infinite chains. For any poset (X;≤) and subset A ⊆ X, x ∈ X is an upper bound on
A if x ≥ a for all a ∈ A. The value x is called the least upper bound of A if it is an upper bound
on A, and any other upper bound y satisfies x ≤ y. Informally, if A = {ai | i = 1, 2, . . .} is a chain
a1 ≤ a2 ≤ a3 ≤ . . ., and A admits a least upper bound (denoted

∨
A), then we think of

∨
A as the

limit of the monotonically increasing sequence A. (In our setting, where the partial order models
temporal evolution, the limit corresponds to the value of the variable describing the entire channel
history once the protocol has finished executing.) All Scott domains (and all posets used in this
paper) are complete partial orders (or CPO), i.e., posets such that all chains A ⊆ X admit a least
upper bound. CPOs have a minimal element ⊥ =

∨
∅, which satisfies ⊥ ≤ x for all x ∈ X. Closed

sets C ⊆ X of arbitrary CPOs X are defined by requiring C to be also closed under limits, i.e., for
any chain Z ⊆ C it must be

∨
Z ∈ C. (Open sets are always defined as the complement of closed

sets.) Similarly, continuous functions between CPOs f : X → Y should preserve limits, i.e., any
chain Z ⊆ X must satisfy f(

∨
Z) =

∨
f(Z).

As an example, we see that (M∗;≤) is not a CPO. We can define infinite chains A of successively
longer strings (e.g., take xi = 0i for M = {0, 1}) such that no limit in M∗ exists for this chain.
However, note that such a chain always defines an infinite string x∗ ∈ M∞ which is such that
x∗ ≤ y holds for all A ≤ x. Therefore, the poset (M∗ ∪M∞;≤) is a CPO.6 This CPO can be used
to model processes taking input and output sequences of arbitrary length.

Later on, we often use generalizations of the above limit notion, called the join and the meet,
respectively. For a set Z ⊆ X, let Z↑ = {z′ ∈ X : ∀z ∈ Z : z ≤ z′} the set of upper bounds on Z.
An element z∗ ∈ Z↑ such that z∗ ≤ z for all z ∈ Z↑, if it exists, is called the join of Z and denoted∨
Z. The set Z↓ and the meet

∧
Z are defined symmetrically.

Equational descriptions and fixed points. We can now provide formal justification for our
equational approach given above. Note that CPOs can be combined in a variety of ways, using
common set operations, while preserving the CPO structure. For example, the cartesian product
A× B of two CPOs is a CPO with the component-wise partial ordering relation. Using cartesian
products, one can always describe every valid system of equations (as informally used in the previous
paragraphs to define a process or a system) as the definition of a function f of the form

f(z) = g(z, x) where x = h(z, x) (1)

for some internal variable x and bivariate continuous7 functions h(z, x) and g(z, x). An important
property of CPOs is that every continuous function f : X → X admits a least fixed point, i.e.,
a minimal x ∈ X such that f(x) = x, which can be obtained by taking the limit of the chain
⊥ ≤ f(⊥) ≤ . . . ≤ fn(⊥) ≤ . . ., and admits an intuitive operational interpretation: starting from
the initial value x = ⊥, one keeps updating the value x← f(x) until the computation stabilizes.

Least fixed points are used to define the solution to recursive equations as (1) above as follows,
and to show that it is always defined, proving soundness of our approach. For any fixed z, the
function hz(x) = h(z, x) is also continuous, and maps X to itself. So, it admits a least fixed point
xz =

∨
i h

i
z(⊥). The function defined by (1) is precisely f(z) = g(z, xz) where xz is the least fixed

point of hz(x) = h(x, z). It is a standard exercise to show that the function f(z) so defined is a
continuous function of z.

6In fact, usually, one can define M∞ to be exactly the set of limits of infinite chains from M∗.
7Continuity for bivariate functions is defined regarding f as an univariate function with domain Z ×X.

12

12. An Equational Approach to Secure Multi-party Computation

Scott domains are a special class of CPOs satisfying a number of additional properties (techni-
cally, they are algebraic bounded complete CPOs), that are useful for the full development of the
theory. As most of the concepts used in this paper can be fully described in terms of CPOs, we do
not introduce additional definitions, and refer the reader to any introductory textbook on domain
theory for a formal treatment of the subject.

Probabilistic processes. So far, our theory does not support yet the definition of processes with
probabilistic behavior. Intuitively, we want to define a process as a continuous map from elements
of a CPO X to probability distributions over some CPO Y . We will now discuss how to define the
set D(Y) of such probability distributions, which turns out to be a CPO. Our approach follows [25].

Let O(X) be the open sets of X, and B(X) the Borel algebra of X, i.e., the smallest σ-
algebra that contains O(X). We recall that a probability distribution over a set X is a function
p : B(X) → [0, 1] that is countably additive and has total mass p(X) = 1. The set of probability
distributions over a CPO X, denoted D(X), is a CPO according to the partial order relation such
that p ≤ q if and only if p(A) ≤ q(A) for all open sets A ∈ O(X). This partial order on probability
distributions D(X) captures precisely the natural notion of evolution of a probabilistic process: the
probability of a closed set can only decrease as the system evolves and probability mass “escapes”
from it into the future. A probabilistic process P with input in X and output in Y is described
by a continuous functions from X to D(Y) that on input an element x ∈ X produces an output
probability distribution P(x) ∈ D(Y) over the set Y .

While these mathematical definitions may seem somehow arbitrary and complicated, we reassure
the reader that they correspond precisely to the common notion of probabilistic computation.
For example, any function P: X → D(Y) can be uniquely extended to take as input probability
distributions. The resulting function P̂ : D(X) → D(Y), on input a distribution DX , produces
precisely what one could expect: the output probability distribution DY = P̂(DX) is obtained
by first sampling x ← DX according to the input distribution, and then sampling the output
according to y ← P(x). Moreover, the result P̂ : D(X) → D(Y) is continuous according to the
standard topology of D(X) and D(Y).

The fact that a distribution DX ∈ D(X) and a function f : X → D(Y) can be combined
to obtain an output distribution DY allows to extend our equational treatment of systems to
probabilistic computations. A probabilistic system is described by a set of equations similar to (1),
except that h is a continuous function from Z×X to D(X), and we write the equation in the form
x ← h(z, x) to emphasize that h(z, x) is a probability distribution to sample from, rather than a
single value. For any fixed z, the function hz(x) = h(z, x) is continuous, and it can be extended to
a continuous function ĥz : D(X) → D(X). The least fixed point of this function is a probability
distribution Dz ∈ D(X), and function f maps the value z to the distribution g(z,Dz).

Formally, the standard mathematical tool to give the equations a precise meaning is the use of
monads, where ← corresponds to the monad “bind” operation. We reassure the reader that this
is all standard, well studied in the context of category theory and programming language design,
both in theory and practice, e.g., as implemented in mainstream functional programming languages
like Haskell. Rigorous mathematical definitions to support the definition of systems of probabilistic
equations can be easily given within the framework of domain theory, but no deep knowledge of
the theory is necessary to work with the equations, just like knowledge of denotational semantics
is not needed to write working computer programs.

13

12. An Equational Approach to Secure Multi-party Computation

2.3 Multi-party computation, security and composability

So far, we have developed a domain-theoretic framework to define processes, their composition,
and their asynchronous interaction. We still need to define what it means for such a system to
implement a multi-party protocol, and what it means for such a protocol to securely implement some
functionality. Throughout this section, we give definitions in the deterministic case for simplicity.
The definitions extend naturally to probabilistic processes by letting the output being a probability
distribution over (the product of) the output sets.

We model secure multi-party computation along the lines described in the introduction. A
secure computation task is modeled by an n-party functionality F that maps n inputs (x1, . . . , xn)
to n outputs (y1, . . . , yn) in the deterministic case, or to a distribution on a set of n outputs in
the probabilistic case. Each input or output variable is associated to a specific domain Xi/Yi,
and F is a continuous function F : (X1 × · · · × Xn) → (Y1 × · · · × Yn), typically described by a
system of domain equations. Each pair Xi/Yi corresponds to the input and output channels used
by user i to access the functionality. We remark that, within our framework, even if F is a (pure)
mathematical function, it still models a reactive functionality that can receive inputs and produce
outputs asynchronously in multiple rounds.

Sometimes, one knows in advance that F will be used within a certain context. (For example,
in the next section we will consider a multicast channel that is always used for broadcast, i.e., in
a context where the set of recepient is always set to the entire group of users.) In these settings,
for efficiency reasons, it is useful to consider protocols that do not implement the functionality F
directly, but only the use of F within the prescribed context. We formalize this usage by introducing
the notion of a protocol implementing an interface to a functionality. An interface is a collection
of continuous functions Ii : X

′
i × Yi → Xi × Y ′i , where X ′i, Y

′
i are the input and output domain

of the interface. Combining the interface I = I1 | . . . | In with the functionality F , yields a
system (F | I) with inputs X ′1, . . . , X

′
n and outputs Y ′1 , . . . , Y

′
n that offers a limited access to F .

The standard definition of (universally composable) security corresponds to setting I to the trivial
interface where X ′i = Xi, Y

′
i = Yi and each Ii to the identity function offering direct access to F .

Ideal functionalities can be used both to describe protocol problems, and underlying communi-
cation models. Let N : S1× . . .×Sn → R1× . . .×Rn be an arbitrary ideal functionality. One may
think of N as modeling a communication network where user i sends si ∈ Si and receives ri ∈ Ri,
but all definitions apply to arbitrary N .

A protocol implementing an interface I to functionality F in the communication model N is
a collection of functions P1, . . . , Pn where Pi : X

′
i × Ri → Y ′i × Si. We consider the execution of

protocol P in a setting where an adversary can corrupt a subset of the participants. The set of
corrupted players A ⊆ {1, . . . , n} must belong to a given family A of allowable sets, e.g., all sets
of size less than n/2 in case security is to be guaranteed only for honest majorities. We can now
define security.

Definition 1 Protocol P securely implements interface I to functionality F in the communication
model N if for any allowable set A ∈ A and complementary set H = {1, . . . , n} \ A, there is a
simulator S : SA × YA → XA ×RA such that the systems (PH | N) and (S | IH | F) are equivalent,
i.e., they define the same function.

(PH | N) is called the real system, and corresponds to an execution of the protocol in which
the users in A are corrupted, while those in H are honest and follow the protocol. It is useful to

14

12. An Equational Approach to Secure Multi-party Computation

N

P1

r1s1

y′ix′i

P2

r2s2

y′ix′i

r3s3 r4s4

F

SI1

y1x1

y′ix′i

I2

y2x2

y′ix′i

y3x3

risi

y4x4

risi

Figure 9: The protocol (P1, . . . , P4) securely implements interface (I1, . . . , I4) to functionality F in
the communication model N .

illustrate this system with a diagram. See Figure 9 (left). We see from the diagram that the real
system as inputs X ′H , SA and outputs Y ′H , RA. In the ideal setting, when the adversary corrupts
the users in A, we are left with the system IH | F because corrupted users are not bound to use
the intended interface I. This system IH | F has inputs X ′H , XA and outputs Y ′H , YA. In order to
turn this system into one with the same inputs and outputs as the real one, we need a simulator
of type S : SA × YA → XA × RA. When we compose S with IH | F we get a system (S | IH | F)
with the same input and output variables as the real system (PH | N). See Figure 9 (right). For
the protocol to be secure, the two systems must be equivalent, showing that any attack that can
be carried out on the real system by corrupting the set A can be simulated on the ideal system
through the simulator.

When composing protocols together, N is not a communication network, but an ideal func-
tionality representing a hybrid model. In this setting, we say that protocol P accesses N through
interface J = (J1, . . . , Jn) if each party runs a program of the form Pi = Ji | P ′i . If this is the
case, we say that P securely implements interface I to functionality F through interface J to
communication model N .

Composition theorems in our framework come essentially for free, and their proof easily follow
from the general properties of systems of equations. For example, we have the following rather
general composition theorem.

Theorem 1 Assume P securely implements interface I to F in the communication model N , and
Q = Q′ | I securely implements G through interface I to F , then the composed protocol Q′ | P
securely implements G in the communication model N .

The simple proof is similar to the informal argument presented in the introduction, and it is
left to the reader as an exercise. The composition theorem is easily extended in several ways, e.g.,
by considering protocols Q that only implement a given interface J to G, and protocols P that use
N through some given interface J ′.

15

12. An Equational Approach to Secure Multi-party Computation

BCast(x) = (y1, . . . , yn):
yi = x (i = 1, . . . , n)

WCast(x′, w) = (y′1, . . . , y
′
n):

y′i = x′ ∧ w[i] (i = 1, . . . , n)

Net(s1, . . . , sn) = (r1, . . . , rn):
ri[j] = sj [i] (i, j = 1, . . . , n)

Dealer(x) = (x′, w):
w[i] = > (i = 1, . . . , n)
x′ = x

Player[i](y′i, ri) = (yi, si): (i = 1, . . . , n)
si[j] = y′i ∨ t1(ri[1], . . . , ri[n]) (j = 1, . . . , n)
yi = t2(ri[1], . . . , ri[n])

Figure 10: The Broadcast protocol

3 Secure Broadcast

In this section we provide, as a simple case study, the analysis of a secure broadcast protocol
(similar to Bracha’s reliable broadcast protocol [8]), implemented on an asynchronous point-to-
point network. We proceed in two steps. In the first step, we build a weak broadcast protocol,
that provides consistency, but does not guarantee that all parties terminate with an output. In
the second step, we use the weak broadcast protocol to build a protocol achieving full security. We
present the two steps in reverse order, first showing how to strenghten a weak broadcast protocol,
and then implementing the weak broadcast on a point-to-point network.

3.1 Building broadcast from weak broadcast

In this section we build a secure broadcast protocol on top of a weak broadcast channel and a point
to point communication network. The broadcast, weak broadcast, and communication network
are described in Figure 10 (left). The broadcast functionality (BCast) receives a message x from
a dealer, and sends a copy yi = x to each player. The weak broadcast channel (WCast) allows
a dishonest dealer to specify (using a boolean vector w ∈ {⊥,>}n) which subset of the players
will receive the message. Notice that the functionality WCast described in Figure 10 is in fact
a multicast channel, that allows the sender to transmit a message to any subset of players of its
choice. We call it a weak broadcast, rather than multicast, because we will not use (or implement)
this functionality at its full power: the honest dealer in our protocol will always set all wi = >, and
use WCast as a broadcast channel BCast(x) = WCast(x,>n). The auxiliary inputs wi are used
only to capture the extra power given to a dishonest dealer that, by not following the protocol,
may restrict the delivery of the message x to a subset of the players. This will be used in the next
section to provide a secure implementation of WCast on top of a point to point communication
network.

The broadcast protocol is very simple and it is shown in Figure 10 (right). The dealer simply
uses WCast to transmit its input message x to all n players by setting w[i] = > for all i ∈ [n]. The
players have then access to a network functionality Net to exchange messages among themselves.
The program run by the players makes use to two threshold functions t1 and t2 each taking n
inputs, which are assumed to satisfy, for every admissible set of corrupted players A ⊆ {1, . . . , n}
and complementary set H = {1, . . . , n} \ A, input vector u, and value x, the following properties:
t1(u[A], (x)H) = t2(u[A], (x)H) = x (i.e., if all honest players agree on x, then t1, t2 output x
irrespective of the other values), and t1((⊥)A, u[H]) ≥ t2((>)A, u[H]) (i.e., for any set of values

16

12. An Equational Approach to Secure Multi-party Computation

WCast

Dealer Player[H]

Net

x

x′, w

y′A

y′H

yH

sH
rH

rAsA

BCast

Simx

yA

yH

y′A
rAsA

Figure 11: Security of broadcast protocol when the dealer is honest

provided by the honset players, t1 is always bigger than t2 regardless of the other values). It is
easy to see that the threshold functions ti(u) =

∨
|S|=ki

∧
j∈S uj satisfy these properties provided

|A| < k1 ≤ k2 − |A| ≤ n− 2|A|, which in paricular requires n ≥ |A|+ 1.
In the security analysis, we distinguish two cases, depending on whether the dealer is corrupt

or not.

Honest dealer. First we consider the simple case where the adversary corrupts a set of players
A ⊂ {1, . . . , n}, and the dealer behaves honestly. Let H = {1, . . . , n}\A be the set of honest players.
An execution of the protocol when players in A are corrupted is described by the system (Dealer |
Player[H] |WCast | Net) with input (x, sA) and output (yH , y

′
A, rA) depicted in Figure 11 (left).

Note that in this (and the following) figures, double arrows and boxes denote parallel processes and
channels. Combining the defining equations of Dealer, Player[h] for h ∈ H, WCast and Net,
and introducing the auxiliary variables uh = x ∨ t1(sA[h], sH [h]) for all h ∈ H, we get that for any
i, j ∈ [n], and h ∈ H the following holds:

rj [i] = si[j]

y′i = x′ ∧ w[i] = x ∧ > = x

sh[i] = y′h ∨ t1(rh[1], . . . , rh[n]) = x ∨ t1(sA[h], sH [h]) = uh

yh = t2(rh[1], . . . , rh[n]) = t2(sA[h], sH [h]) = t2(sA[h], uH)

uh = x ∨ t1(sA[h], sH [h]) = x ∨ t1(sA(h), uH) .

The last equation uh = x ∨ t1(sA(h), uH) provides a recursive definition of uH , which can be

easily solved by an iterative least fix point computation: starting from u
(0)
H = ⊥H , we get u

(1)
H =

(x∨ t1(sA(h), u
(0)
H))H = xH , and then again u

(2)
H = (x∨ t1(sA(h), u

(1)
H))H = xH . Therefore the least

fix point is uH = xH . Substituting uH = xH in the previous equations, and using the properties
of t2, we see that the system of equations defined by (Dealer | Player[H] | WCast | Net) is
equivalent to

ra = (sA[a], xH) (a ∈ A)
y′a = x (a ∈ A)
yh = t2(sA[h], xH) = x (h ∈ H)

(2)

We now show that an equivalent system can be obtained by combining the ideal functionality
BCast with a simulator Sim as in Figure 11 (right). The simulator takes (yA, sA) as input, and

17

12. An Equational Approach to Secure Multi-party Computation

Sim(yA, sA) = (y′A, rA):
rA[a] = sa[A] (a ∈ A)
rA[h] = yA (h ∈ H)
y′A = yA

Sim’(x′, w, yA, sA) = (x, rA, y
′
A):

uh = (x′ ∧ w[h]) ∨ t1(sA[h], uH) (h ∈ H)
x = t2(sA[h], uH) (h = minH)
y′a = x′ ∧ w[a] (a ∈ A)
ra[A] = sA[a] (a ∈ A)
ra[H] = uH (a ∈ A)

Figure 12: Simulators for the broadcast protocol when the dealer is honest (left) or dishonest (right)

WCast

Player[H]

Net

x′, w y′A

y′H

yH

sH
rH

sArA

BCastSim

x′, w

x

y′A
rA

sA

yA

yH

Figure 13: Security of broadcast protocol when the dealer is corrupted.

must output (y′A, rA) such that (Sim| BCast) is equivalent to the system (Dealer| Player[H] |
WCast| Net) specified by the last set of equations. The simulator is given in Figure 12 (left). It
is immediate to verify that combining the equations of the simulator Sim with the equations yi = x
of the ideal broadcast functionality, and eliminating local variables, yields a system of equations
identical to (2).

Dishonest dealer. We now consider the case where both the dealer and a subset of players
A are corrupted. As before, let H = {1, . . . , n} \ A be the set of honest players. The system
corresponding to a real execution of the protocol when Dealer and Player[A] are corrupted is
(Player[H] | WCast| Net), mapping (x′, w, sA) to (yH , rA, y

′
A). (See Figure 13 (left).) Using

the defining equations of Player[H], WCast and Net, and introducing auxiliary variables uh =
y′h ∨ t1(rh[1], . . . , rh[n]) for h ∈ H, we get the following set of equations:

yh = t2(rh[A], rh[H]) = t2(sA[h], uH) (h ∈ H)
y′a = x′ ∧ w[a] (a ∈ A)

ra[A] = sA[a] (a ∈ A)
ra[H] = uH

uh = (x′ ∧ w[h]) ∨ t1(sA[h], uH) (h ∈ H)

(3)

This time the simulator Sim’ takes input (x′, w, yA, sA) and outputs (x, rA, y
′
A). (See Figure 13

(right).) With these inputs and outputs, the simulator can directly set all variables except yh just
as in the real system (3). The simulator can also compute the value yh, but it cannot set yh directly
because this variable is defined by the ideal functionality as yh = x. We will prove that all variables
yh defined by (3) take the same value. It follows that the simulator can set x = yh for any h ∈ H,

18

12. An Equational Approach to Secure Multi-party Computation

and the system (BCast,Sim’) will be equivalent to (3) (and therefore to (Player[H] | WCast|
Net)). The code of the simulator is given in Figure 12 (right), where x = yh is arbitrarily selected
using the smallest index h = minH. (Any other choice of h would have been fine.)

It remains to prove that all yh take the same value. By antisymmetry, it is enough to show
that yi ≤ yj for all i, j ∈ H. These easily follows from the assumptions on t1, t2. In fact, by
monotonicity, we have

yi = t2(sA[i], uH) ≤ t2(>A, uH) ≤ t1(⊥A, uH) ≤ t1(sA[j], uH) ≤ uj .

It immeddiately follows that yj = t2(sA[j], uH) ≥ t2(sA[j], (yi)
H) = yi.

3.2 Weak broadcast

In this section we show how to implement the weak broadcast functionality WCast given in
Figure 10 to be used within the BCast protocol discussed in the previous section, and analyze
is security. We recall that WCast is a multicast functionality connecting a dealer to n other
parties, which allows the dealer to send a message x′ to a subset of the parties specified by a
vector w ∈ {⊥,>}n. We stress that we do not need a secure implementation of WCast in its
full generality, as our higher level broadcast protocol (BCast) uses WCast is a rather restricted
way: it always set w = (>)n and transmits x′ to all parties. Accordingly, we give a protocol that
securely implements this interface to WCast. Formally, the dealer’s interface Int takes only x′ as
external input, and passes it along with w = >n to the ideal functionality. The other parties have
unrestricted access to the ideal functionality, and their interface is the identity function (or empty
system of equations).

We implement interface Int to WCast on top of a point-to-point communication network
similar to the Net functionality described in Figure 10, with the only difference that here also
the dealer can send messages. The protocol is very simple: the dealer transmit the input x′ to all
parties, and the parties retransmit the message to each other. Each party sets its output using a
threshold function of the messages received by the other parties. The equations corresponding to
the network Net’, interface Int, and protocol programs Dealer, Player[1],. . . ,Player[n] are
given in Figure 14. For reference, we have also repeated the definition of BCast from Figure 10.
The function t is assumed to satisfy the following properties: t(u[A], (x)H) = x (i.e., if all honest
parties agree on x, then the output is x), and, moreover, for all vectors u, u′ with u[H] = u′[H], we
have t(u) = t(u′) or t(u) = ⊥. It is easy to see that the threshold function t(u) =

∨
|S|=k

∧
j∈S uj

satisfies both properties for k ≥ n+|A|+1
2 . Namely, take any two vectors u, u′ with u[H] = u′[H],

assume that there exist sets S and S′ such that uj = x for all j ∈ S and u′j = y all j ∈ S′. Then,
since |S ∩ S′ ∩H| ≥ 2k − n− |A| > 0, and hence x = y.

As usual, we consider two cases in the proof of security, depending on whether the dealer is
corrupted or not.

Dishonest dealer. It is convenient to consider the case when the dealer is dishonest first, as some
of the derived equations will be useful in the honest dealer case too. Beside the dealer, the players
in A ⊆ {1, . . . , n} are corrupted, and we let H = {1, . . . , n} \ A be the set of honest players. We
consider the real-world system (Player[H] | Net’) consisting of the honest partecipants and the
network Net’. This is a system with input (s′0, s

′
A) and output (y′H , r

′
A) described by the defining

19

12. An Equational Approach to Secure Multi-party Computation

WCast(x′, w) = (y′1, . . . , y
′
n):

y′i = x′ ∧ w[i] (i = 1, . . . , n)

Int:
w = >n

Net’(s′0, . . . , s
′
n) = (r′1, . . . , r

′
n):

r′i[j] = s′j [i] (i = 1, . . . , n; j = 0, . . . , n)

Dealer(x′) = (s′0):
s′0[i] = x′ (i = 1, . . . , n)

Player[i](r′i) = (y′i, s
′
i): (i = 1, . . . , n)

s′i[j] = r′i[0] (j = 1, . . . , n)
y′i = t(r′i[1], . . . , r′i[n])

Figure 14: Weak broadcast protocol.

equations of Player[h] for h ∈ H and Net’ given in Figure 14. We use these equations to express
each output variable of the system in terms of the input variables. For y′h (h ∈ H) we have

y′h = t(r′h[1], . . . , r′h[n])

= t(s′1[h], . . . , s′n[h])

= t(s′A[h], s′H [h])

= t(s′A[h], r′H [0]) = t(s′A[h], s′0[H]).

For the other output variables r′A[i] we distinguish two cases, depending on whether i ∈ A. For
a ∈ A, we immediately get r′A[a] = s′a[A]. For h ∈ H, we have r′A[h] = s′h[A] = (r′h[0])A = (s′0[h])A.
The resulting system is given by the following equations

r′A[a] = s′a[A] (a ∈ A) (4)

r′A[h] = (s′0[h])A (h ∈ H) (5)

y′h = t(s′A[h], s′0[H]) (h ∈ H) (6)

We now turn to the simulator. Recall that the simulator should turn the system defined by
WCast into one equivalent to the real world system. To this end, the simulator should take s′0, s

′
A

and y′A as input (from the external environment and ideal functionality respectively), and output
x′, w (to the ideal functionality) and r′A (to the external environment). Notice that the simulator
has all the inputs necessary to compute the values defined by the real system, and in fact can set r′A
using just those equations. The only difficulty is that the simulator cannot set y′h directly, but has
only indirect control over its value through the ideal functionality and the variables x′, w. From the
properties of function t, we know that all y′h = t(s′A[h], s′0[H]) take either the same value or ⊥. So,
the simulator can set x′ to this common value, and use w to force some y′h to ⊥ as appropriate. The
simulator Sim’ is given in Figure 15 (right). It is easy to verify that (Sim’ |WCast) is equivalent
to the real system.

Honest dealer. In this case, we first consider the real-world system (Dealer| Player[H] |
Net’) consisting of the dealer, the honest partecipants H ⊆ {1, . . . , n}, and the network Net’.
The corrupted parties are given by the set A = {1, . . . , n} \ H. This is a system with input
(x′, s′A) and output (y′H , r

′
A) described by the defining equations of Dealer, Player[h] for h ∈ H,

and Net’ given in Figure 14. Notice that this is a superset of the equations for the real-world
system (Player[H] | Net’) considered in the dishonest dealer case. So, equations (4), (5) and

20

12. An Equational Approach to Secure Multi-party Computation

(6) are still valid. Adding the equations from Dealer and using the properties of t we get that
y′h = t(s′A[h], s′0[H]) = t(s′A[h], (x)H) = x. Similarly, for h ∈ H, we have r′A[h] = (s′0[h])A = (x)A.
Finally, we know from (4) that r′A[a] = s′a[A]. Combining the equations together, we get the
following real system:

y′h = x′ (h ∈ H)
r′A[a] = s′a[A] (a ∈ A)
r′A[h] = (x′)A (h ∈ H)

We now move to the simulator. Recall that the simulator should turn the systen defined by
WCast and Int into one equivalent to the real world system. To this end, the simulator should
take y′A and s′A as input (from the ideal functionality and external environment respectively), and
output r′A. Notice that y′h = x′ in the real system is defined just as in the equations for the ideal
functionality WCast when combined with the (honest) dealer interface Int. (In fact, y′a = x′ also
for a ∈ A.) The other variables r′A can be easily set by the simulator as shown in Figure 15 (left).
It is immediate to check that (Sim | Int | WCast) is equivalent to the real world system.

4 Verifiable Secret Sharing

Let Ft[X] be the set of all polynomials of degree at most t over a finite field F such that8

{0, 1, . . . , n} ⊆ F. We consider the n-party verifiable secret sharing (VSS) functionality that takes
as input from a dealer a degree-t polynomial p ∈ Ft[X] and, for all i ∈ [n], outputs the evaluation
p(i) to the i-th party. The formal definition of VSS: Ft[X]⊥ 7→ Fn

⊥ is given in Figure 18 (left),
where by convention ⊥(x) = ⊥ for all x.

We devise a protocol implementing the VSS functionality on top of a point-to-point network
functionality Net defined as in the previous section that allows the n parties to exchange elements
from F, and two other auxiliary functionalities. The protocol is based on the one by [5]. Even though
its complexity is exponential in n, we have chosen to present this protocol due to its simplicity.
The first auxiliary functionality (Graph) grants all parties access to the adjacency matrix of an
n-vertex directed graph (with loops), where each party i ∈ [n] can add outgoing edges to vertex
i, but not to any other vertex j 6= i. Formally, Graph: {⊥,>}n × · · · × {⊥,>}n → {⊥,>}n×n is
given in Figure 18 (center). Setting G[i, j] = > is interpreted as including an edge from i to j in the
graph. Graph can be immediately implemented using n copies of a broadcast functionality, where
a different party acts as the sender in each copy. We also assume the availability of an additional

8This assumption is not really necessary; we could replace {0, 1, . . . , n} with {0, x1, . . . , xn} for any n distinct field
elements x1, . . . , xn.

Sim(y′A, s
′
A) = (r′A):

r′A[a] = s′a[A] (a ∈ A)
r′A[h] = y′A (h ∈ H)

Sim’(y′A, s
′
0, s
′
A) = (x′, w, r′A):

r′A[a] = s′a[A] (a ∈ A)
r′A[h] = (s′0[h])A (h ∈ H)
x′ =

∨
h∈H t(s′A[h].s′0[H])

w[h] = (t(s′A[h], s′0[H]) > ⊥) (h ∈ H)

Figure 15: Real world systems and simulators for the weak broadcast protocol. Honest dealer case
(left) and dishonest dealer case (right)

21

12. An Equational Approach to Secure Multi-party Computation

Player[H]Net’

y′H

s′H

r′H

s′0 r′A
s′A

Sim’ WCast
y′A

x′, w

y′Hs′0
s′A r′A

Figure 16: Security of the weak multicast protocol, when the dealer is dishonest. Real world
execution on the left. Simulated attack in the ideal world on the right.

unidirectional network functionality Net’ : (Ft[X]2⊥)n → (Ft[X]2⊥)n that allows the VSS dealer to
send to each party a pair of polynomials of degree at most t. See Figure 18 (right).

The VSS protocol. We turn to the actual protocol securely implementing the VSS functionality.
We first define some auxiliary functions. For any subset C ⊆ [n], let cliqueC : {⊥,>}n×n → {⊥,>}
be the function cliqueC(G) =

∧
i,j∈C G[i, j]. This function is clearly monotone, and tests if C

is a clique in G. For any set A, we equip the set A⊥ with a monotone equality-test function
eq : A⊥ ×A⊥ → {⊥,>} where eq(x, y) ≡ (x = y 6= ⊥). Monotonicity follows from the fact that all
the pairs (x, x) such that eq(x, y) = > are maximal elements in A⊥ ×A⊥.

For any S ⊆ [n] of size |S| ≥ t + 1, and r ∈ Fn
b , let interpolateS(r) ∈ Ft[X]⊥ be the (unique)

polynomial h ∈ Ft[X] such that h(S) = r[S] if such polynomial exists, and interpolateS(r) = ⊥
otherwise. For C ⊆ [n], define also a monotone function interpolateC,t : F⊥n → Ft[Y]>⊥ where
interpolateC,t(r) =

∨
{interpolateS(r) : S ⊆ C, |S| = |C| − t}. Notice that interpolateC,t(r) = ⊥ if

no interpolating polynomial exists, while interpolateC,t(r) = > if there are multiple solutions. Note
that if n ≥ 4t + 1 and |C| ≥ n − t, then > never occurs: Indeed, let S, S′ ⊆ C be such that
|S| = |S|′ = |C| − t, and such that both interpolateS(r) and interpolateS′(r) differ from ⊥. Since
|S ∩ S′| ≥ |C| − 2t ≥ n − 3t ≥ t + 1, we must have interpolateS(r) = interpolateS′(r) by the fact
that two degree t polynomials agreeing at t + 1 points are necessarily equal. For future reference,
this is summarized by the following lemma.

Player[H]Net’

Dealer

y′H

s′H

r′H

s′0

x′

r′As′A

Sim

Int

WCast
y′A

w
x′ y′Hs′A r′A

Figure 17: Security of the weak multicast protocol, when the dealer is honest. Real world execution
on the left. Simulated attack in the ideal world on the right.

22

12. An Equational Approach to Secure Multi-party Computation

VSS(p) = (p1, . . . , pn)
pi = p(i) (i = 1, . . . , n)

Graph(G1, ..., Gn) = G:
G[i, j] = Gi[j] (i, j =

1, . . . , n) .

Net’(s′) = (r′1, . . . , r
′
n):

r′i = s′[i] (i = 1, . . . , n) .

Figure 18: The VSS functionality, and two auxiliary functions used to realize it.

Dealer(p) = s′:
f ← Pt(p)
s′[i] = (f(·, i), f(i, ·)) (i = 1, . . . , n)

Player[i](r′i, G, ri) = (pi, si, Gi): (i = 1, . . . , n)
(gi, hi) = r′i
si[j] = gi(j) (j = 1, . . . , n)
Gi[j] = eq(ri[j], hi(j)) (j = 1, . . . , n)
oi =

∨
C⊆[n]

|C|≥n−t

[
cliqueC(G) ∧ interpolateC,t(ri)

]
pi = oi(0) .

Figure 19: The VSS protocol.

Lemma 1 Let n, t be such that n ≥ 4t + 1, and let C ⊆ [n] be such that |C| ≥ n − t. Then
interpolateC,t(r) 6= > for all r ∈ Fn

⊥.

In the following, denote as Ft[X,Y] the set of polynomials f = f(X,Y) in F[X,Y] with degree
at most t in each variable X and Y . For any p ∈ Ft[X]⊥, let Pt(p) the (uniform distribution over
the) set of bivariate polynomials f = f(X,Y) ∈ Ft[X,Y]⊥ of degree at most t in X and Y such that
f(·, 0) = p. (By convention, if p = ⊥, then Pt(p) = {⊥}.)

The protocol consists of a dealer Dealer which, on input a polynomial p, first chooses a
random bivariate polynomial f in Pt(p). (This is the only random choice of the entire protocol.)
For all i ∈ [n], it sends the two polynomials gi = f(·, i) and hi = f(i, ·) to player i, with the usual
convention that if f = ⊥, then f(·, i) = f(i, ·) = ⊥. The players then determine whether the
polynomials they received are consistent. This is achieved by having each honest party i send gi(j)
to player j, who, in turn, checks consistency with hj(i). (Note that if the polynomials are correct,
then gi(j) = hj(i) = f(j, i).) If the consistency check is successful, player j raises the entry G[j, i]
to >. Each honest party i then waits for a clique C ⊆ [n] of size (at least) n − t to appear in
the directed graph defined by G, and computes the polynomial oi ∈ Ft[X]>⊥ obtained interpolating
the values gj(i) received from other parties. (Here > represents an error condition meaning that
multiple interpolating polynomials were found, and should not really occur in actual executions,
as we will show.) As soon as such a polynomial is found, the honest party terminates with output
pi = oi(0). A formal specification is given in Figure 19.

In the following, we turn to proving security of the protocol. The analysis consists of two cases.

Honest dealer security. We start by analyzing the security of the above protocol in the case
where the dealer is honest. For all A ⊆ [n] where |A| = t and n ≥ 4t + 1, define H = [n] \ A.
When the players in the set A are corrupted (and thus the players in H are honest), an execution
of the VSS protocol with honest dealer is given by the system (Dealer | Player[H] | Net’ | Net
| Graph) with inputs p, sA, GA and outputs rD[A], rA, G, pH given in Figure 20.

We proceed by combining all the equations together, and simplifying the result, until we obtain
a system of equations that can be easily simulated. We use the above definition of the system to

23

12. An Equational Approach to Secure Multi-party Computation

Dealer

Net’

Player[H]

GraphNetp

s′

r′A

r′H GH

pH

sHrH GH

GAGArAsA

VSS

Sim

pA

p pH

r′A GA
GA

rA
sA

Figure 20: Security of the VSS protocol when the dealer is honest.

obtain the following equations describing (Dealer | Player[H] | Net’ | Net | Graph): For any
i, j ∈ [n], and any h ∈ H, a ∈ A, we have

f
$← Pt(p)

r′i = (f(·, i), f(i, ·))
ri[h] = f(i, h)

ri[a] = sa[i]

G[h, j] = eq(rh[j], f(h, j))

G[a, j] = Ga[j]

oh =
∨

C⊆[n],|C|≥n−t

[
cliqueC(G) ∧ interpolateC,t(rh)

]
ph = oh(0) .

For convenience, some simplifications have already been made: First gi and hi have been replaced
by f(·, i) and f(i, ·), respectively. Second, we used the facts that r′i = s′[i] and ri[h] = sh[i] = f(i, h)
for all h ∈ H and all i ∈ [n] by the definitions of the network functionalities Net’ and Net. Finally,
we have set values for G[·, ·] according to the protocol specification (for honest players) and the
inputs Ga of players a ∈ A.

In order to further simplify the system, we claim that ph = p(h) for h ∈ H. If p = ⊥, then
this is easy to see because f = ⊥ and G[h, j] = eq(rh[j],⊥) = ⊥. Therefore, we necessarily have
cliqueC(G) = ⊥ for all C ⊆ [n] with |C| ≥ n − t, since |C ∩H| ≥ n − 2t > 0. So, we only need
to prove the claim for p 6= ⊥. Notice that the equations G[h, j] = eq(rh[j], f(h, j)), depending on
whether j = h′ ∈ H or j = a ∈ A, can be replaced by the set of equations

G[h, h′] = eq(rh[h′], f(h, h′)) = eq(f(h, h′), f(h, h′)) = >
G[h, a] = eq(rh[a], f(h, a)) = eq(sa[h], f(h, a)) .

This in particular implies that C = H is a clique of size at least n − t in the graph defined by G,
i.e., we have cliqueH(G) = > by the above. Also, since rh[h′] = f(h, h′), we necessarily have

oh ≥ cliqueH(G) ∧ interpolateH,t(rh) = > ∧ f(h, ·) = f(h, ·)

by Lemma 1. Now, let S ⊆ C be any sets such that |C| ≥ n− t and |S| = |C| − t ≥ n− 2t. Since
oh(h′) = f(h, h′) for all h′ ∈ H and |S ∩H| ≥ n − 3t ≥ t + 1, we have interpolateS(rh) ≥ f(h, ·),
and, by Lemma 1, interpolateS(rh) = f(h, ·). This proves that oh = interpolateC,t(rh) = f(h, ·), and
ph = oh(0) = f(h, 0) = p(h).

Summarizing, the real system is described by the following set of equations:

24

12. An Equational Approach to Secure Multi-party Computation

f
$← Pt(p)

r′a = (f(·, a), f(a, ·))
ra[a′] = sa′ [a]

ra[h] = f(a, h)

G[h, h′] = (p > ⊥)

G[h, a] = eq(sa[h], f(h, a))

G[a, j] = Ga[j]

ph = p(h) .

Notice that this is exactly how ph is defined by the VSS functionality. So, in order to prove security,
it is enough to give a simulator Sim that on input pA, sA, GA, outputs G, rA and r′A as defined in
the above system of equations. See Figure 20 (right).

The problem faced by the simulator is that it cannot test p > ⊥ and generate f as in the equations
because it does not know the value of p, rather it only has partial information pA = p(A). The
first condition p > ⊥ is easy to check because it is equivalent to pa = p(a) > ⊥ for any a ∈ A. In
order to complete the simulation, we observe that the equations only depend on the 2t polynomials
f(·, A) and f(A, ·). The next lemma shows that, given p(A), the polynomials f(·, A) and f(A, ·) are
statistically independent from p, and their distribution can be easily sampled.

Lemma 2 Let p ∈ Ft[X], let f
$← Pt(p), and for all a ∈ A, let ga = f(·, a) and ha = f(a, ·). The

conditional distribution of (ga, ha)a∈A given p(A) is statistically independent of p, and it can be
generated by the following algorithm Samp(pA): first pick random polynomials ha ∈ Ft[Y] indepen-
dently and uniformly at random subject to the constraint ha(0) = pa. Then, pick ga ∈ Ft[X], also
independently and uniformly at random, subject to the constraint ga(A) = hA(a).

Using the algorithm from the lemma, we obtain the following simulator Sim:

Sim(pA, sA, GA) = (GA, rA, r′A):
(gA, hA)← Samp(pA)
r′A = (gA, hA)
ra[h] = ha(h) (h ∈ H, a ∈ A)
ra[a′] = sa′ [a] (a, a′ ∈ A)

G[h, h′] =
∨

a∈A(pa > ⊥) (h, h′ ∈ H)
G[h, a] = eq(sa[h], ga(h)) (h ∈ H, a ∈ A)
G[a, j] = Ga[j] (a ∈ A, j ∈ [n])

As usual, if p = ⊥, then pA = ⊥A and by convention Samp(pA) = {⊥,⊥}.

Dishonest dealer security. We now look at the case where the dealer is not honest. As above,
for all A ⊆ [n] where |A| = t and n ≥ 4t + 1, define H = [n] \ A. When the players in the set
A are corrupted (and thus the players in H are honest), an execution of the VSS protocol with
dishonest dealer is given by the system (Player[H] | Net’ | Net | Graph) with inputs s′, rA, GA,
and outputs r′A, sA, pH and GA. As above, we start with an equational description of the system,
and will simplify it below into a form where the construction of a corresponding simulator becomes
obvious. For all i, j ∈ [n], h, h′ ∈ H, and a ∈ A, we have

(gh, hh) = s′[h]

r′a = s′[a]

ri[h] = gh(i)

ri[a] = sa[i]

G[h, h′] = eq(gh′(h), hh(h′))

G[h, a] = eq(sa[h], hh(a))

G[a, j] = Ga[j]

oh =
∨

C⊆[n],|C|≥n−t

[
cliqueC(G) ∧ interpolateC,t(rh)

]
ph = oh(0) .

25

12. An Equational Approach to Secure Multi-party Computation

Notice that we have already undertaken several easy simplification steps, defining variables which
are part of the output as a function of the system inputs and of auxiliary variables gH , hH , oH ,
and rH . Specifically, to obtain the above equations starting from the original system specification,
we have used ri[j] = sj [i], where sh[i] = gh(i), together with r′i = s′[i] and the definition of G[h, i],
distinguishing between the cases i = a ∈ A and i = h′ ∈ H.

Recall that in order to prove security, we need to give a simulator Sim with input s′, GA, sA, pA
and output r′A, rA, G

A and p such that (VSS | Sim) is equivalent to the above system. (See
Figure 21.) Notice that in the system describing a real execution, all variables except ph (and
intermediate value oh) are defined as functions of the inputs given to the simulator. So, Sim can set
all these variables just as in the system describing the real execution. The only difference between
a real execution and a simulation is that the simulator is not allowed to set ph directly. Rather, it
should specify a polynomial p ∈ Ft[X]⊥, which implicitly defines ph = p(h) through the equations
of the ideal VSS functionality. In other words, in order to complete the description of the simulator
we need to show that Sim can determine such a polynomial p based on its inputs s′, GA, sA, pA
such that p(h) equals ph as defined by the above system of equations.

Before defining p, we recall the following lemma whose simple proof is standard and omitted:

Lemma 3 Let S be such that |S| ≥ t+1 and let {gh, hh}h∈S be a set of 2 · |S| polynomials of degree
t. Then, gh(h′) = hh′(h) for all h, h′ ∈ S holds if and only if there exists a unique polynomial
f ∈ Ft[X,Y] such that f(·, h) = gh and f(h, ·) = hh for all h ∈ S.

For T ⊆ H, |T | ≥ t+ 1, define interpolate2T (s′) to be the (unique) polynomial f ∈ Ft[X,Y] such
that f(·, h) = gh and f(h, ·) = hh for all h ∈ T (if it exists), and ⊥ otherwise or if s′[h] = ⊥ for some
h ∈ T . Also, given C ⊆ [n], define

interpolate2C(s′) =
∨
{interpolate2S(s′) : S ⊆ C, |S| ≥ |C| − t} .

Note that since |C| ≥ n − t and n ≥ 4t + 1, interpolate2C(s′) 6= >. Indeed, for any two S, S′ ⊆ C
such that both interpolate2S(s′) and interpolate2S′(s

′) differ from ⊥, we have |S ∩ S′| ≥ t + 1 and
hence interpolate2S(s′) = interpolate2S∩S′(s

′) = interpolate2S′(s
′) by Lemma 3. We finally define

the polynomial p = f̃(·, 0), where

f̃ =
∨

C⊆[n],|C|≥n−t

cliqueC(G) ∧ interpolate2C(s′) . (7)

We first prove that p < >: To this end, assume that p 6= ⊥. Then, f̃ 6= ⊥, and there must exist
C ⊆ [n] such that cliqueC(G) = >. Let S = C ∩H. Note that for all h, h′ ∈ S, since G[h, h′] = >,
it must be that hh(h′) = gh′(h). Therefore, since |S| ≥ n− 2t > 2t+ 1, by Lemma 3, there exists a
unique polynomial fC such that f(·, h) = gh and f(h, ·) = hh for all h ∈ S, and by the above

fC = interpolate2C(s′) = interpolate2C∩H(s′) .

Now assume that there exist two such cliques C and C ′, with S = C ∩H and S′ = C ′ ∩H. Then,
since ∣∣S ∩ S′∣∣ = |S|+

∣∣S′∣∣− ∣∣S ∪ S′∣∣ ≥ 2(|C| − |A|)− |H| ≥ n− 3 |A| ≥ t+ 1 , (8)

by Lemma 3, we necessarily have fC = fC′ = f̃.

26

12. An Equational Approach to Secure Multi-party Computation

Net’

Player[H]

GraphNet

s′ r′A

r′H
GH

pH

sHrH GH

GAGArA
sA

VSS

Sim

pAp

pH

r′A
s′

GA

GA

rA
sA

Figure 21: Security of the VSS protocol when the dealer is dishonest.

Finally, it is easy to see that p(h) = ph for all h ∈ H. Namely, if there exists C ⊆ [n]
with cliqueC(G) = >, then rh[h′] = gh′(h) = f̃(h, h′) for all h′ ∈ C ∩ H, and therefore oh =
interpolateC(rh) = interpolateC∩H(rh) = f(h, ·), and thus ph = oh(0) = f̃(h, 0) = p(h).

We therefore conclude that the real system is equivalent to (Sim| VSS) where Sim is the
simulator defined by the following equations:

Sim(s′, GA, sA, pA) = (r′A, rA, G
A, p):

r′a = s′[a] (a ∈ A)
ra[h] = gh(a) (h ∈ H, a ∈ A)
ra[a′] = sa′ [a] (a, a′ ∈ A)
G[h, h′] = eq(gh′(h), hh(h′)) (h, h′ ∈ H)

G[h, a] = eq(sa[h], hh(a)) (a ∈ A, h ∈ H)
G[a, j] = Ga[j] (a ∈ A, j ∈ [n])
f̃ =

∨
C⊆[n]

|C|≥n−t
cliqueC(G) ∧ interpolate2C(s′)

p = f̃(·, 0)

5 Conclusions

Recognizing the inherent hardness of delivering security proofs for complex cryptographic protocols
that are both precise and intuitive within existing security frameworks, we have presented a new
framework to study the security of multi-party computations based on equational descriptions
of interactive processes. Our framework allows a simple and intuitive, yet completely formal,
description of interactive processes via sets of equations, and its foundations rely on tools from
programming-language theory and domain theory. Beyond its simplicity, our framework completely
avoids explicit addressing of non-determinism within cryptographic security proofs, making security
proofs a matter of simple equational manipulations over precise mathematical structures. As a
case study, we have presented simple security analyses of (variants of) two classical asynchronous
protocols within our framework, Bracha’s broadcast protocol [8] and the Ben-Or, Canetti, Goldreich
VSS protocol [5].

We are convinced that our work will open up the avenue to several directions for future work.
First off, while the results in this paper are presented for the special case of perfect security, a natural
next step is to extend the framework to statistical and even computational security. Moreover, while
the expressiveness of our framework (i.e., the monotonicity restrictions on protocols) remains to
be thoroughly investigated, most distributed protocols we examined so far, seemed to admit a
representation within our framework, possibly after minor modifications which often resulted in a

27

12. An Equational Approach to Secure Multi-party Computation

simpler protocol description. For this reason, our thesis is that this holds true for all protocols
of interest, and that non-monotonicity, as a source of unnecessary complexity and proof mistakes,
should be avoided whenever possible.

References

[1] S. Abramsky and A. Jung. Handbook of Logic in Computer Science, volume III, chapter
Domain theory, pages 1–168. Oxford University Press, 1994.

[2] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A general composition theorem for
secure reactive systems. In TCC 2004, volume 2951 of Lecture Notes in Computer Science,
pages 336–354, 2004.

[3] Donald Beaver and Shafi Goldwasser. Multiparty computation with faulty majority. In
CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 589–590, 1989.

[4] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure multi-
party computation. In ACM Conference on Computer and Communications Security, pages
257–266, 2008.

[5] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In
STOC, pages 52–61, 1993.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC ’88, pages
1–10, 1988.

[7] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas P. Jakob-
sen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
Michael I. Schwartzbach, and Tomas Toft. Secure multiparty computation goes live. In Fi-
nancial Cryptography (FC 2009), volume 5628 of Lecture Notes in Computer Science, pages
325–343, 2009.

[8] Gabriel Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol. In PODC ’84, pages
154–162, 1984.

[9] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology,
13(1):143–202, 2000.

[10] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS ’01, pages 136–145, 2001.

[11] Ivan Damg̊ard, Marcel Keller, E. Larraia, C. Miles, and Nigel P. Smart. Implementing aes via
an actively/covertly secure dishonest-majority mpc protocol. IACR Cryptology ePrint Archive,
2012.

[12] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In STOC ’87, pages 218–229, 1987.

28

12. An Equational Approach to Secure Multi-party Computation

[13] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[14] Carl A. Gunter. Semantics of programming languages - structures and techniques. Foundations
of computing. MIT Press, 1993.

[15] Dennis Hofheinz and Victor Shoup. Gnuc: A new universal composability framework. IACR
Cryptology ePrint Archive, 2011.

[16] G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld,
editor, Information processing, pages 471–475, Stockholm, Sweden, Aug 1974. North Holland,
Amsterdam.

[17] Vladimir Kolesnikov and Thomas Schneider. A practical universal circuit construction and
secure evaluation of private functions. In Financial Cryptography (FS 2008), volume 5143 of
Lecture Notes in Computer Science, pages 83–97, 2008.

[18] Ralf Küsters. Simulation-based security with inexhaustible interactive turing machines. In 19th
IEEE Computer Security Foundations Workshop, (CSFW-19 2006), pages 309–320, 2006.

[19] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure two-party
computation system. In USENIX Security Symposium, pages 287–302, 2004.

[20] Ueli Maurer and Renato Renner. Abstract cryptography. In Innovations in Computer Science
- ICS 2010, pages 1–21, 2011.

[21] Ueli M. Maurer. Indistinguishability of random systems. In EUROCRYPT 2002, volume 2332
of Lecture Notes in Computer Science, pages 110–132, 2002.

[22] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In CRYPTO ’91, volume
576 of Lecture Notes in Computer Science, pages 392–404, 1991.

[23] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. In IEEE Symposium on Security and Privacy,
pages 184–, 2001.

[24] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party
computation is practical. In ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer
Science, pages 250–267, 2009.

[25] N. Saheb-Djahromi. Cpo’s of measures for nondeterminism. Theor. Comput. Sci., 12:19–37,
1980.

[26] D. A. Schmidt. Denotational Semantics. Allyn and Bacon, 1986.

[27] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. MIT Press, 1977.

[28] Glynn Winskel. The formal semantics of programming languages - an introduction. Foundation
of computing series. MIT Press, 1993.

29

12. An Equational Approach to Secure Multi-party Computation

[29] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS ’82,
pages 160–164, 1982.

30

12. An Equational Approach to Secure Multi-party Computation

Semantic Security for the Wiretap Channel

Mihir Bellare1, Stefano Tessaro2, and Alexander Vardy3

1 Department of Computer Science & Engineering, University of California San
Diego, cseweb.ucsd.edu/~mihir/

2 CSAIL, Massachusetts Institute of Technology, people.csail.mit.edu/tessaro/
3 Department of Electrical & Computer Engineering, University of California San

Diego, http://www.ece.ucsd.edu/~avardy/

Abstract. The wiretap channel is a setting where one aims to provide
information-theoretic privacy of communicated data based solely on the
assumption that the channel from sender to adversary is “noisier” than
the channel from sender to receiver. It has developed in the Information
and Coding (I&C) community over the last 30 years largely divorced from
the parallel development of modern cryptography. This paper aims to
bridge the gap with a cryptographic treatment involving advances on two
fronts, namely definitions and schemes. On the first front (definitions),
we explain that the mis-r definition in current use is weak and propose
two alternatives: mis (based on mutual information) and ss (based on
the classical notion of semantic security). We prove them equivalent,
thereby connecting two fundamentally different ways of defining privacy
and providing a new, strong and well-founded target for constructions.
On the second front (schemes), we provide the first explicit scheme with
all the following characteristics: it is proven to achieve both security (ss
and mis, not just mis-r) and decodability; it has optimal rate; and both
the encryption and decryption algorithms are proven to be polynomial-
time.

1 Introduction

The wiretap channel is a setting where one aims to obtain information-theoretic
privacy under the sole assumption that the channel from sender to adversary is
“noisier” than the channel from sender to receiver. Introduced by Wyner, Csiszár
and Körner in the late seventies [41, 14], it has developed in the Information
and Coding (I&C) community largely divorced from the parallel development of
modern cryptography. This paper aims to bridge the gap with a cryptographic
treatment involving advances on two fronts.

The first is definitions. We explain that the security definition in current use,
that we call mis-r (mutual-information security for random messages) is weak
and insufficient to provide security of applications. We suggest strong, new def-
initions. One, that we call mis (mutual-information security), is an extension
of mis-r and thus rooted in the I&C tradition and intuition. Another, semantic
security (ss), adapts the cryptographic “gold standard” emanating from [19] and

13. Semantic Security for the Wiretap Channel

2 Mihir Bellare, Stefano Tessaro, and Alexander Vardy

universally accepted in the cryptographic community. We prove the two equiv-
alent, thereby connecting two fundamentally different ways of defining privacy
and providing a new, strong and well-founded target for constructions.

The second is schemes. Classically, the focus of the I&C community has
been proofs of existence of mis-r schemes of optimal rate. The proofs are non-
constructive so that the schemes may not even be explicit let alone polynomial
time. Recently, there has been progress towards explicit mis-r schemes [30, 29,
21]. We take this effort to its full culmination by providing the first explicit
construction of a scheme with all the following characteristics: it is proven to
achieve security (not just mis-r but ss and mis) over the adversary channel; it is
proven to achieve decodabilty over the receiver channel; it has optimal rate; and
both the encryption and decryption algorithms are proven to be polynomial-
time.

Today the possibility of realizing the wiretap setting in wireless networks is
receiving practical attention and fueling a fresh look at this area. Our work helps
guide the choice of security goals and schemes. Let us now look at all this in
more detail.

The wiretap model. The setting is depicted in Fig. 1. The sender applies
to her message M a randomized encryption algorithm E : {0, 1}m → {0, 1}c to
get what we call the sender ciphertext X←$ E(M). This is transmitted to the
receiver over the receiver channel ChR so that the latter gets a receiver ciphertext
Y←$ ChR(X) which he decrypts via algorithm D to recover the message. The
adversary’s wiretap is modeled as another channel ChA and she accordingly gets
an adversary ciphertext Z←$ ChA(X) from which she tries to glean whatever she
can about the message.

A channel is a randomized function specified by a transition probability
matrix W where W [x, y] is the probability that input x results in output y.
Here x, y are strings. The canonical example is the Binary Symmetric Channel
BSCp with crossover probability p ≤ 1/2 taking a binary string x of any length
and returning the string y of the same length formed by flipping each bit of x
independently with probability p. For concreteness and simplicity of exposition
we will often phrase discussions in the setting where ChR,ChA are BSCs with
crossover probabilities pR, pA ≤ 1/2 respectively, but our results apply in much
greater generality. In this case the assumption that ChA is “noisier” than ChR

corresponds to the assumption that pR < pA. This is the only assumption made:
the adversary is computationally unbounded, and the scheme is keyless, meaning
sender and receiver are not assumed to a priori share any information not known
to the adversary.

The setting now has a literature encompassing hundreds of papers. (See the
survey [28] or the book [6].) Schemes must satisfy two conditions, namely de-
coding and security. The decoding condition asks that the scheme provide error-
correction over the receiver channel, namely the limit as k →∞ of the maximum,
over allM of lengthm, of Pr[D(ChR(E(M))) 6= M], is 0, where k is an underlying
security parameter of which m, c are functions. The original security condition
of [41] was that limk→∞ I(M;ChA(E(M))/m = 0 where the message random vari-

13. Semantic Security for the Wiretap Channel

Semantic Security for the Wiretap Channel 3

ChR

ChA

M

MDY

Z A

E X

Fig. 1. Wiretap channel model. See text for explanations.

able M is uniformly distributed over {0, 1}m and I(M;Z) = H(M)−H(M |Z) is
the mutual information. This was critiqued by [31, 32] who put forth the stronger
security condition now in use, namely that limk→∞ I(M;ChA(E(M)) = 0, the ran-
dom variable M continuing to be uniformly distributed over {0, 1}m. The rate
Rate(E) of a scheme is m/c.

The literature has focused on determining the maximum possible rate. (We
stress that the maximum is over all possible schemes, not just ones that are
explicitly given or polynomial time.) Shannon’s seminal result [37] says that if
we ignore security and merely consider achieving the decoding condition then this
optimal rate is the receiver channel capacity, which in the BSC case is 1−h2(pR)
where h2 is the binary entropy function h2(p) = −p lg(p)− (1− p) lg(1− p). He
gave non-constructive proofs of existence of schemes meeting capacity. Coming
in with this background and the added security condition, it was natural for the
wiretap community to follow Shannon’s lead and begin by asking what is the
maximum achievable rate subject to both the security and decoding conditions.
This optimal rate is called the secrecy capacity and, in the case of BSCs, equals
the difference (1 − h2(pR)) − (1 − h2(pA)) = h2(pA) − h2(pR) in capacities of
the receiver and adversary channels. Non-constructive proofs of the existence of
schemes with this optimal rate were given in [41, 14, 7]. Efforts to obtain explicit,
secure schemes of optimal rate followed [40, 33, 30, 29, 21].

Context. Practical interest in the wiretap setting is escalating. Its proponents
note two striking benefits over conventional cryptography: (1) no computational
assumptions, and (2) no keys and hence no key distribution. Item (1) is at-
tractive to governments who are concerned with long-term security and worried
about quantum computing. Item (2) is attractive in a world where vulnerable,
low-power devices are proliferating and key-distribution and key-management
are unsurmountable obstacles to security. The practical challenge is to realize a
secrecy capacity, meaning ensure by physical means that the adversary channel
is noisier than the receiver one. The degradation with distance of radio commu-
nication signal quality is the basis of several approaches being investigated for
wireless settings. Government-sponsored Ziva Corporation [42] is using optical
techniques to build a receiver channel in such a way that wiretapping results in a
degraded channel. A program called Physical Layer Security aimed at practical
realization of the wiretap channel is the subject of books [6] and conferences [24].
All this activity means that schemes are being sought for implementation. If so,
we need privacy definitions that yield security in applications, and we need con-

13. Semantic Security for the Wiretap Channel

4 Mihir Bellare, Stefano Tessaro, and Alexander Vardy

structive results yielding practical schemes achieving privacy under these defini-
tions. This is what we aim to supply.

Definitions. A security metric xs associates to encryption function E : {0, 1}m

→ {0, 1}c and adversary channel ChA a number Advxs(E ;ChA) that measures
the maximum “advantage” of an adversary in breaking the scheme under metric
xs. For example, the metric underlying the current, above-mentioned security
condition is Advmis-r(E ;ChA) = I(M;ChA(E(M))) where M is uniformly dis-
tributed over {0, 1}m. We call this the mis-r (mutual-information security for
random messages) metric because messages are assumed to be random. From
the cryptographic perspective, this is extraordinarily weak, for we know that
real messages are not random. (They may be files, votes or any type of struc-
tured data, often with low entropy. Contrary to a view in the I&C community,
compression does not render data random, as can be seen from the case of
votes, where the message space has very low entropy.) This leads us to sug-
gest a stronger metric that we call mutual-information security, defined via
Advmis(E ;ChA) = maxM I(M;ChA(E(M))) where the maximum is over all ran-
dom variables M over {0, 1}m, regardless of their distribution.

At this point, we have a legitimate metric, but how does it capture privacy?
The intuition is that it is measuring the difference in the number of bits required
to encode the message before and after seeing the ciphertext. This intuition
is alien to cryptographers, whose metrics are based on much more direct and
usage-driven privacy requirements. Cryptographers understand since [19] that
encryption must hide all partial information about the message, meaning the
adversary should have little advantage in computing a function of the message
given the ciphertext. (Examples of partial information about a message include
its first bit or even the XOR of the first and second bits.) The mis-r and mis
metrics ask for nothing like this and are based on entirely different intuition. We
extend Goldwasser and Micali’s semantic security [19] definition to the wiretap
setting, defining Advss(E ;ChA) as

max
f,M

(

max
A

Pr[A(ChA(E(M))) = f(M)]−max
S

Pr[S(m) = f(M)]

)

.

Within the parentheses is the maximum probability that an adversary A, given
the adversary ciphertext, can compute the result of function f on the message,
minus the maximum probability that a simulator S can do the same given only
the length of the message. We also define a distinguishing security (ds) metric
as an analog of indistinguishability [19] via

Advds(E ;ChA) = max
A,M0,M1

2Pr[A(M0,M1,ChA(E(Mb))) = b]− 1

where challenge bit b is uniformly distributed over {0, 1} and the maximum is
over all m-bit messages M0,M1 and all adversaries A. For any metric xs, we say
E provides XS-security over ChA if limk→∞ Advxs(E ;ChA) = 0.

Relations. The mutual information between message and ciphertext, as mea-
sured by mis, is, as noted above, the change in the number of bits needed to en-
code the message created by seeing the ciphertext. It is not clear why this should

13. Semantic Security for the Wiretap Channel

Semantic Security for the Wiretap Channel 5

MIS DS

MIS-R SS

1

2

34

1 ǫds ≤
√
2ǫmis Theorem 5

2 ǫmis ≤ 2ǫds lg
2c

ǫds
Theorem 8

3 ǫss ≤ ǫds Theorem 1

4 ǫds ≤ 2ǫss Theorem 1

Fig. 2. Relations between notions. An arrow A → B is an implication, mean-
ing every scheme that is A-secure is also B-secure, while a barred arrow A 6→ B

is a separation, meaning that there is a A-secure scheme that is not B-secure. If
E : {0, 1}m → {0, 1}c is the encryption algorithm and ChA the adversary channel, we
let ǫxs = Advxs(E ;ChA). The table then shows the quantitative bounds underlying the
annotated implications.

measure privacy in the sense of semantic security. Yet we are able to show that
mutual-information security and semantic security are equivalent, meaning an
encryption scheme is MIS-secure if and only if it is SS-secure. Fig. 2 summarizes
this and other relations we establish that between them settle all possible rela-
tions. The equivalence between SS and DS is the information-theoretic analogue
of the corresponding well-known equivalence in the computational setting [19,
3]. As there, however, it brings the important benefit that we can now work with
the technically simpler DS. We then show that MIS implies DS by reducing to
Pinsker’s inequality. We show conversely that DS implies MIS via a general re-
lation between mutual information and statistical distance. As Fig. 2 indicates,
the asymptotic relations are all underlain by concrete quantitative and poly-
nomial relations between the advantages. On the other hand, we show that in
general MIS-R does not imply MIS, meaning the former is strictly weaker than
the latter. We do this by exhibiting an encryption function E and channel ChA
such that E is MIS-R-secure relative to ChA but MIS-insecure relative to ChA.
Furthermore we do this for the case that ChA is a BSC.

Our scheme. We provide the first explicit scheme with all the following char-
acteristics over a large class of adversary and receiver channels including BSCs:
(1) It is DS (hence SS, MIS and MIS-R) secure (2) It is proven to satisfy the
decoding condition (3) It has optimal rate (4) It is fully polynomial time, mean-
ing both encryption and decryption algorithms run in polynomial time (5) the
errors in the security and decoding conditions do not just vanish in the limit but
at an exponential rate. Our scheme is based on three main ideas: (1) the use of
invertible extractors (2) analysis via smooth min-entropy, and (3) a (surprising)
result saying that for certain types of schemes, security on random messages
implies security on all messages.

Recall that the secrecy capacity is the optimal rate for MIS-R schemes meet-
ing the decoding condition and in the case of BSCs it equals h2(pA) − h2(pR).

13. Semantic Security for the Wiretap Channel

6 Mihir Bellare, Stefano Tessaro, and Alexander Vardy

Since DS-security is stronger than MIS-R security, the optimal rate could in
principle be smaller. Perhaps surprisingly, it isn’t: for a broad class of channels
including symmetric channels, the optimal rate is the same for DS and MIS-R
security. This follows by applying our above-mentioned result showing that MIS-
R implies MIS for certain types of schemes and channels, to known results on
achieving the secrecy capacity for MIS-R. Thus, when we say, above, that our
scheme achieves optimal rate, this rate is in fact the secrecy capacity.

A common misconception is to think that privacy and error-correction may
be completely de-coupled, meaning one would first build a scheme that is secure
when the receiver channel is noiseless and then add an ECC on top to meet the
decoding condition with a noisy receiver channel. This does not work because
the error-correction helps the adversary by reducing the noise over the adversary
channel. The two requirements do need to be considered together. Nonetheless,
our approach is modular, combining (invertible) extractors with existing ECCs
in a blackbox way. As a consequence, any ECC of sufficient rate may be used.
This is an attractive feature of our scheme from the practical perspective. In
addition our scheme is simple and efficient.

Our claims (proven DS-security and decoding with optimal rate) hold not
only for BSCs but for a wide range of receiver and adversary channels.

A concrete instantiation. As a consequence of our general paradigm, we
prove that the following scheme achieves secrecy capacity for the BSC setting
with pR < pA ≤ 1/2. For any ECC E: {0, 1}k → {0, 1}n such that k ≈ (1 −
h2(pR))·n (such ECCs can be built e.g. from polar codes [2] or from concatenated
codes [18]) and a parameter t ≥ 1, our encryption function E , on input an m-bit
message M , where m = b · t and b ≈ (h2(pA)−h2(pR)) ·n, first selects a random
k-bit string A 6= 0k and t random (k− b)-bit strings R[1], . . . , R[t]. It then splits
M into t b-bit blocks M [1], . . . ,M [t], and outputs

E(M) = E(A) ‖ E(A⊙ (M [1] ‖ R[1])) ‖ · · · ‖ E(A⊙ (M [t] ‖ R[t])) ,

where ⊙ is multiplication of k-bit strings interpreted as elements of the extension
field GF(2k).

Related work. This paper was formed by merging [5, 4] which together func-
tion as the full version of this paper. We refer there for all proofs omitted from
this paper and also for full and comprehensive surveys of the large body of work
related to wiretap security, and more broadly, to information-theoretically secure
communication in a noisy setup. Here we discuss the most related work.

Relations between entropy- and distance-based security metrics have been ex-
plored in settings other than the wiretap one, using techniques similar to ours [13,
7, 15], the last in the context of statistically-private committment. Iwamoto and
Ohta [25] relate different notions of indistinguishability for statistically secure
symmetric encryption. In the context of key-agreement in the wiretap setting
(a simpler problem than ours) Csiszár [13] relates MIS-R and RDS, the latter
being DS for random messages.

Wyner’s syndrome coding approach [41] and extensions by Cohen and Zémor
[9, 10] only provide weak security. Hayashi and Matsumoto [21] replace the

13. Semantic Security for the Wiretap Channel

Semantic Security for the Wiretap Channel 7

matrix-multiplication in these schemes by a universal hash function and show
MIS-R security of their scheme. Their result could be used to obtain an alterna-
tive to the proof of RDS security used in our scheme for the common case where
the extractor is obtained from a universal hash function. However, the obtained
security bound is not explicit, making their result unsuitable to applications.
Moreover, our proof also yields as a special case a cleaner proof for the result
of [21].

Syndrome coding could be viewed as a special case of coset coding which
is based on an inner code and outer code. Instantiations of this approach have
been considered in [40, 33, 38] using LDPC codes, but polynomial-time decoding
is possible only if the adversary channel is a binary erasure channel or the receiver
channel is noiseless.

Mahdavifar and Vardy [29] and Hof and Shamai [23] (similar ideas also ap-
peared in [26, 1]) use polar codes [2] to build encryption schemes for the wire-
tap setting with binary-input symmetric channels. However, these schemes only
provide weak security. The full version [30] of [29] provides a variant of the
scheme achieving MIS-R security. They use results of the present paper (namely
our above-mentioned result that MIS-R implies MIS for certain schemes, whose
proof they re-produce for completeness), to conclude that their scheme is also
MIS-secure. However there is no proof that decryption (decoding) is possible in
their scheme, even in principle let alone in polynomial time. Also efficient gen-
eration of polar codes is an open research direction with first results only now
appearing [39], and hence relying on this specific code family may be somewhat
problematic. Our solution, in contrast, works for arbitrary codes.

As explained in [5], fuzzy extractors [17] can be used to build a DS-secure
scheme with polynomial-time encoding and decoding, but the rate of this scheme
is far from optimal and the approach is inherently limited to low-rate schemes.
We note that (seedless) invertible extractors were previously used in [8] within
schemes for the “wiretap channel II” model [34], where the adversary (adap-
tively) erases ciphertext bits. In contrast to our work, only random-message
security was considered in [8].

2 Preliminaries

Basic notation and definitions. “PT” stands for “polynomial-time.” If s is
a binary string then s[i] denotes its i-th bit and |s| denotes its length. If S is a
set then |S| denotes its size. If x is a real number then |x| denotes its absolute
value. A function f : {0, 1}m → {0, 1}n is linear if f(x ⊕ y) = f(x) ⊕ f(y)
for all x, y ∈ {0, 1}m. A probability distribution is a function P that asso-
ciates to each x a probability P (x) ∈ [0, 1]. The support supp(P) is the set
of all x such that P (x) > 0. All probability distributions in this paper are
discrete. Associate to random variable X and event E the probability distri-
butions PX ,PX|E defined for all x by PX(x) = Pr [X = x] and PX|E(x) =
Pr [X = x | E]. We denote by lg(·) the logarithm in base two, and by ln(·) the
natural logarithm. We adopt standard conventions such as 0 lg 0 = 0 lg∞ = 0

13. Semantic Security for the Wiretap Channel

8 Mihir Bellare, Stefano Tessaro, and Alexander Vardy

and Pr[E1|E2] = 0 when Pr[E2] = 0. The function h: [0, 1] → [0, 1] is de-
fined by h(x) = −x lg x. The (Shannon) entropy of probability distribution P
is defined by H(P) =

∑

x h(P (x)) and the statistical difference between prob-
ability distributions P,Q is defined by SD(P ;Q) = 0.5 ·

∑

x |P (x) − Q(x)|.
If X,Y are random variables the (Shannon) entropy is defined by H(X) =
H(PX) =

∑

x h(PX(x)). The conditional entropy is defined via H(X |Y = y) =
∑

x h(PX|Y=y(x)) and H(X |Y) =
∑

y PY(y) ·H(X |Y = y). The mutual infor-
mation is defined by I(X;Y) = H(X) − H(X |Y). The statistical or variational
distance between random variables X1,X2 is SD(X1;X2) = SD(PX1

;PX2
) =

0.5 ·
∑

x |Pr[X1 = x] − Pr[X2 = x]|. The min-entropy of random variable X is
H∞(X) = − lg(maxx Pr[X = x]) and if Z is also a random variable the conditional
min-entropy is H∞(X|Z) = − lg(

∑

z Pr[Z = z] maxx Pr[X = x|Z = z]).

Transforms, channels and algorithms. We say that T is a transform with
domain D and range R, written T : D → R, if T (x) is a random variable over R
for every x ∈ D. Thus, T is fully specified by a sequence P = {Px}x∈D of proba-
bility distributions over R, where Px(y) = Pr[T (x) = y] for all x ∈ D and y ∈ R.
We call P the distribution associated to T . This distribution can be specified
by a |D| by |R| transition probability matrix W defined by W [x, y] = Px(y). A
channel is simply a transform. This is a very general notion of a channel but it
does mean channels are memoryless in the sense that two successive transmis-
sions over the same channel are independent random variables. The transition
probability matrix representation is the most common one in this case. A (ran-
domized) algorithm is also a transform. Finally, an adversary too is a transform,
and so is a simulator.

If T : {0, 1} → R is a transform we may apply it to inputs of any length. The
understanding is that T is applied independently to each bit of the input. For
example BSCp, classically defined as a 1-bit channel, is here viewed as taking
inputs of arbitrary length and flipping each bit independently with probability
p. Similarly, we apply a transform T : {0, 1}l → R to any input whose length
is divisible by l. We say that a transform T : D → R with transition matrix W
is symmetric if the there exists a partition of the range as R = R1 ∪ · · · ∪ Rn

such that for all i the sub-matix Wi = W [·, Ri] induced by the columns in Ri is
strongly symmetric, i.e., all rows of Wi are permutations of each other, and all
columns of Wi are permutations of each other.

3 Security metrics and relations

Encryption functions and schemes. An encryption function is a transform
E : {0, 1}m → {0, 1}c where m is the message length and c is the sender ci-
phertext length. The rate of E is Rate(E) = m/c. If ChR: {0, 1}c → {0, 1}d

is a receiver channel then a decryption function for E over ChR is a transform
D: {0, 1}d → {0, 1}m whose decryption error DE(E ;D;ChR) is defined as the
maximum, over all M ∈ {0, 1}m, of Pr[D(ChR(E(M))) 6= M].

An encryption scheme E = {Ek}k∈N is a family of encryption functions
where Ek: {0, 1}

m(k) → {0, 1}c(k) for functions m, c: N → N called the mes-

13. Semantic Security for the Wiretap Channel

Semantic Security for the Wiretap Channel 9

sage length and sender ciphertext length of the scheme. The rate of E is the
function RateE : N → R defined by RateE(k) = Rate(Ek) for all k ∈ N. Sup-
pose ChR = {ChRk}k∈N is a family of receiver channels where ChRk: {0, 1}

c(k) →
{0, 1}d(k). Then a decryption scheme for E over ChR is a family D = {Dk}k∈N

where Dk: {0, 1}
d(k) → {0, 1}m(k) is a decryption function for Ek over ChRk. We

say that D is a correct decryption scheme for E relative to ChR if the limit as
k →∞ of DE(Ek;Dk;ChRk) is 0. We say that encryption scheme E is decrypt-
able relative to ChR if there exists a correct decryption scheme for E relative to
ChR. A family {Sk}k∈N (eg. an encryption or decryption scheme) is PT if there
is a polynomial time computable function which on input 1k (the unary repre-
sentation of k) and x returns Sk(x). Our constructs will provide PT encryption
and decryption schemes.

Security metrics. Let E : {0, 1}m → {0, 1}c be an encryption function and let
ChA: {0, 1}c→ {0, 1}d be an adversary channel. Security depends only on these,
not on the receiver channel. We now define semantic security (ss), distinguishing
security (ds), random mutual-information security (mis-r) and mutual informa-
tion security (mis). For each type of security xs ∈ {ss, ds,mis-r,mis}, we associate
to E ;ChA a real number Advxs(E ;ChA). The smaller this number, the more se-
cure is E ;ChA according to the metric in question. The security of an encryption
function is quantitative, as captured by the advantage. We might measure it
in bits, saying that E ;ChA has s bits of xs-security if Advxs(E ;ChA) ≤ 2−s. A
qualitative definition of “secure,” meaning one under which something is secure
or not secure, may only be made asymptotically, meaning for schemes. We say
encryption scheme E = {Ek}k∈N is XS-secure relative to ChA = {ChAk}k∈N if
limk→∞ Advxs(Ek;ChAk) = 0. This does not mandate any particular rate at
which the advantage should vanish, but in our constructions this rate is expo-
nentially vanishing with k. We define the ss advantage Advss(E ;ChA) as

max
f,M

(

max
A

Pr[A(ChA(E(M))) = f(M)]−max
S

Pr[S(m) = f(M)]

)

. (1)

Here f is a transform with domain {0, 1}m that represents partial information
about the message. Examples include f(M) = M or f(M) = M [1] or f(M) =
M [1]⊕ · · ·⊕M [m], where M [i] is the i-th bit of M . But f could be a much more
complex function, and could even be randomized. The adversary’s goal is to
compute f(M) given an adversary ciphertext ChA(E(M)) formed by encrypting
message M. The probability that it does this is Pr[A(ChA(E(M))) = f(M)],
then maximized over all adversaries A to achieve strategy independence. We
then subtract the a priori probability of success, meaning the maximum possible
probability of computing f(M) if you are not given the adversary ciphertext.
Finally, the outer max over all f,M ensures that the metric measures the extent
to which any partial information leaks regardless of message distribution. We
define the distinguishing advantage via

Advds(E ;ChA) = max
A,M0,M1

2Pr[A(M0,M1,ChA(E(Mb))) = b]− 1 (2)

= max
M0,M1

SD(ChA(E(M0));ChA(E(M1))) . (3)

13. Semantic Security for the Wiretap Channel

10 Mihir Bellare, Stefano Tessaro, and Alexander Vardy

In Eq. (2), Pr[A(M0,M1,ChA(E(Mb))) = b] is the probability that adversary A,
given m-bit messages M0,M1 and an adversary ciphertext emanating from Mb,
correctly identifies the random challenge bit b. The a priori success probability
being 1/2, the advantage is appropriately scaled. This advantage is equal to the
statistical distance between the random variables ChA(E(M0)) and ChA(E(M1)).
The mutual-information security advantages are defined via

Advmir-r(E ;ChA) = I(U;ChA(E(U))) (4)
Advmis(E ;ChA) = max

M

I(M;ChA(E(M))) (5)

where the random variable U is uniformly distributed over {0, 1}m.

DS is equivalent to SS. Theorem 1 below says that SS and DS are equivalent
up to a small constant factor in the advantage. This is helpful because DS is more
analytically tractable than SS. The proof is an extension of the classical ones in
computational cryptography and is given in [5].

Theorem 1. [DS ↔ SS] Let E : {0, 1}m → {0, 1}c be an encryption function
and ChA an adversary channel. Then Advss(E ;ChA) ≤ Advds(E ;ChA) ≤ 2 ·
Advss(E ;ChA).

MIS implies DS. The KL divergence is a distance measure for probability dis-
tributions P,Q defined by D(P ;Q) =

∑

x P (x) lgP (x)/Q(x). Let M,C be ran-
dom variables. Probability distributions JM,C , IM,C are defined for all M,C by
JM,C(M,C) = Pr [M = M,C = C] and IM,C(M,C) = Pr [M = M] ·Pr [C = C].
Thus JM,C is the joint distribution of M and C, while IM,C is the “independent”
or product distribution. The following is standard:

Lemma 2. Let M,C be random variables. Then I(M;C) = D(JM,C; IM,C).

Pinsker’s inequality —from [35] with the tight constant from [12]— lower bounds
the KL divergence between two distributions in terms of their statistical distance:

Lemma 3. Let P,Q be probability distributions. Then D(P ;Q) ≥ 2·SD(P ;Q)2.

To use the above we need the following, whose proof is in [5]:

Lemma 4. Let M be uniformly distributed over {M0,M1} ⊆ {0, 1}
m. Let g:

{0, 1}m → {0, 1}c be a transform and let C = g(M). Then SD(JM,C; IM,C) equals
SD(g(M0); g(M1))/2.

Combining the lemmas, we show the following in [5]:

Theorem 5. [MIS→ DS] Let E : {0, 1}m → {0, 1}c be an encryption function

and ChA an adversary channel. Then Advds(E ;ChA) ≤
√

2 ·Advmis(E ;ChA).

DS implies MIS. The following general lemma from [5] bounds the difference
in entropy between two distributions in terms of their statistical distance. It is a
slight strengthening of [11, Theorem 16.3.2]. Similar bounds are provided in [22].

13. Semantic Security for the Wiretap Channel

Semantic Security for the Wiretap Channel 11

Lemma 6. Let P,Q be probability distributions. Let N = |supp(P) ∪ supp(Q)|
and ǫ = SD(P ;Q). Then H(P)−H(Q) ≤ 2ǫ · lg(N/ǫ).

To exploit this, we define the pairwise statistical distance PSD(M;C) between
random variables M,C as the maximum, over all messages M0,M1 ∈ supp(PM),
of SD(PC|M=M0

;PC|M=M1
). The proof of the following is in [5].

Lemma 7. Let M,C be random variables. Then SD(PC;PC|M=M) ≤ PSD(M;C)
for any M .

From this we conclude in [5] that DS implies MIS:

Theorem 8. [DS→MIS] Let E : {0, 1}m → {0, 1}c be an encryption function
and ChA an adversary channel. Let ǫ = Advds(E ;ChA). Then Advmis(E ;ChA) ≤
2ǫ · lg(2c/ǫ).

The somewhat strange-looking form of the bound of Theorem 8 naturally raises
the question of whether Lemma 6 is tight. The following says that it is up to a
constant factor of 4. The proof is in [5].

Proposition 9. Let n > k ≥ 1 be integers. Let ǫ = 2−k and N = 1+ ǫ2n. Then
there are distributions P,Q with |supp(P) ∪ supp(Q)| = N and SD(P ;Q) = ǫ
and H(P)−H(Q) ≥ 0.5 · ǫ · lg(N/ǫ).

Other relations. We have now justified all the numbered implication arrows
in Fig. 2. The un-numbered implication MIS→MIS-R is trivial. The intuition
for the separation MIS-R 6→MIS is simple. Let E be the identity function. Let
ChA faithfully transmit inputs 0m and 1m and be very noisy on other inputs.
Then MIS fails because the adversary has high advantage when the message
takes on only values 0m, 1m but MIS-R-security holds since these messages are
unlikely. This example may seem artificial. In [5] we give a more complex example
where ChA is a BSC and the encryption function is no longer trivial.

4 DS-Secure Encryption Achieving Secrecy Capacity

This section presents our main technical result, an encryption scheme achieving
DS-security. Its rate, for a large set of adversary channels, is optimal.

High-level approach. We start by considering an extension of the usual set-
ting where sender and receiver share a public random value S, i.e., known to the
adversary, and which we call the seed. We will call an encryption function in this
setting a seeded encryption function. For simplicity, this discussion will focus on
the case where ChR and ChA are BSCs with respective crossover probabilities
pR < pA ≤ 1/2, and we assume that sender and receiver only want to agree on
a joint secret key. If we let S be the seed of an extractor Ext: Sds× {0, 1}k →
{0, 1}m and given an error-correcting code E: {0, 1}k → {0, 1}n for reliable com-
munication over BSCpR , a natural approach consists of the sender sending E(R),
for a random k-bit R, to the receiver, and both parties now derive the key as
K = Ext(S,R), since the receiver can recover R with very high probability.

13. Semantic Security for the Wiretap Channel

12 Mihir Bellare, Stefano Tessaro, and Alexander Vardy

The achievable key length is at most H∞(R|Z), where Z = BSCpA(E(R)).
Yet, it is not hard to see that the most likely outcome, when Z = z, is that
R equals the unique r such that E(r) = z, and that hence H∞(R|Z) = n ·
lg (1/(1− pA)), falling short of achieving capacity h(pA) − h(pR). To overcome
this, we will observe the following: We can think of BSCpA as adding an n-bit
vector E to its input E(R), where each bit E[i] of the noise vector takes value one
with probability pA. With overwhelming probability, E is (roughly) uniformly
distributed on the set of n-bit vectors with hamming weight (approximately)
pA · n and there are (approximately) 2n·h2(pA) such vectors. Therefore, choosing
the noise uniformly from such vectors does not change the experiment much,
and moreover, in this new experiment, one can show that roughly H∞(R|Z) ≥
k − n · (1 − h2(pA)), which yields optimal rate using an optimal code with k ≈
(1−h(pR))·n. We will make this precise for a general class of symmetric channels
via the notion of smooth min-entropy [36].

But recall that our goal is way more ambitious: Alice wants to send an
arbitrary message of her choice. The obvious approach is obtain a keyK as above
and then send an error-corrected version of K⊕M . But this at least halves the
rate, which becomes far from optimal. Our approach instead is to use an extractor
Ext that is invertible, in the sense that given M and S, we can sample a random
R such that Ext(S,R) = M . We then encrypt a messageM as E(R), where R is a
random preimage ofM under Ext(S, ·). However, the above argument only yields,
at best, security for randomly chosen messages. In contrast, showing DS-security
accounts to proving, for any two messages M0 and M1, that BSCpA(E(R0)) and
BSCpA(E(R1)) are statistically close, where Ri is uniform such that Ext(S,Ri) =
Mi. To make things even worse, we allow the messages M0 and M1 are allowed
to depend on the seed. The main challenge is that such proof appears to require
detailed knowledge of the combinatorial structure of E and Ext, as the actual
ciphertext distribution depends on them.

Instead, we will take a completely different approach: We show that any
seeded encryption function with appropriate linearity properties is DS-secure
whenever it is secure for random messages. This result is surprising, as random-
message security does not, in general, imply chosen-message security. A careful
choice of the extractor to satisfy these requirements, combined with the above
idea, yields a DS-secure seeded encryption function. The final step is to remove
the seed, which is done by transmitting it (error-corrected) and amortizing out
its impact on the rate to essentially zero by re-using it with the above seeded
encryption function across blocks of the message. A hybrid argument is used to
bound the decoding error and loss in security.

Seeded encryption. A seeded encryption function SE : Sds×{0, 1}b → {0, 1}n

takes a seed S ∈ Sds and message M ∈ {0, 1}b to return a sender cipher-
text denoted SE(S,M) or SES(M); each seed S defines an encryption function
SES : {0, 1}

b→ {0, 1}n. There must be a corresponding seeded decryption func-
tion SD: Sds×{0, 1}n → {0, 1}b such that SD(S,SE(S,M)) = M for all S,M .
We consider an extension of the standard wiretap setting where a seed S←$ Sds

is a public parameter, available to sender, receiver and adversary. We extend DS-

13. Semantic Security for the Wiretap Channel

Semantic Security for the Wiretap Channel 13

transform SE(S,M):

// S ∈ Sds, M ∈ {0, 1}b
R←$ {0, 1}r ; Ret E(Inv(S,R,M)) .

transform E(M): // M ∈ {0, 1}m

S←$ Sds ; S[1], . . . , S[c]
k← S

M [1], . . . ,M [t]
b←M

For i = 1 to t do C[i]←$ SE(S,M [i])

Ret E(S[1]) ‖ · · · ‖E(S[c]) ‖C[1] ‖ · · · ‖C[t] .

transform D(C): // C ∈ OutR(c+t)n

C[1], . . . , C[c+ t]
n← C

S ← D(C[1]) ‖ . . . ‖D(C[c])

For i = 1 to t do

X[i]← D(C[c+ i])

M [i]← Ext(S,X[i])

Ret M [1] ‖ · · · ‖M [t] .

Fig. 3. Encryption function E = RItEt[Inv,E] using SE = ItE[Inv,E] and de-

cryption function D. By X[1], . . . , X[c]
b← X we mean that bc-bit string X is split

into b-bit blocks.

security to this setting by letting Advds(SE ;ChA) be the expectation, over S
drawn at random from Sds, of Advds(SES ;ChA). The rate of SE is defined as
b/n, meaning the seed is ignored.

Extractors. A function Ext: Sds× {0, 1}k → {0, 1}b is an (h, α)-extractor if
SD((Ext(S,X),Z, S); (U,Z, S)) ≤ α for all pairs of (correlated) random variables
(X,Z) over {0, 1}k × {0, 1}∗ with H∞(X|Z) ≥ h, where additionally S and U are
uniform on Sds and {0, 1}b, respectively. (This is a strong, average case extractor
in the terminology of [16].) We will say that Ext is regular if for all S ∈ Sds,
the function Ext(S, ·) is regular, meaning every point in the range has the same
number of preimages.

Inverting extractors. We say that a function Inv : Sds×{0, 1}r×{0, 1}b→
{0, 1}k is an inverter for an extractor Ext : Sds × {0, 1}k → {0, 1}b if for all
S ∈ Sds and Y ∈ {0, 1}b, and for R uniform over {0, 1}k, the random variable
Inv(S,R, Y) is uniformly distributed on { X ∈ {0, 1}k : Ext(S,X) = Y }, the
set of preimages of Y under Ext(S, ·). To make this concrete we give an example
of an extractor with an efficiently computable inverter. Recall that k-bit strings
can be interpreted as elements of the finite field GF(2k), allowing us to define
a multiplication operator ⊙ on k-bit strings. Then, for Sds = {0, 1}k \ 0k, we
consider the function Ext : Sds × {0, 1}k → {0, 1}b which, on inputs S ∈ Sds

and X ∈ {0, 1}k, outputs the first b bits of X ⊙ S. It is easy to see that Ext is
regular, as 0k is not in the set of seeds. In [4] we prove the following using the
average-case version of the Leftover Hash Lemma of [20], due to [16].

Lemma 10. For all α ∈ (0, 1] and all b ≤ k − 2 lg(1/α) + 2 the function Ext is
a (b + 2 lg(1/α)− 2, α)-extractor.

An efficient inverter Inv : Sds × {0, 1}k−b × {0, 1}b → {0, 1}k is obtained via
Inv(S,R,M) = S−1 ⊙ (M ‖R) where S−1 is the inverse of S with respect to
multiplication in GF(2k).

13. Semantic Security for the Wiretap Channel

14 Mihir Bellare, Stefano Tessaro, and Alexander Vardy

The RItE construction. Let Ext : Sds × {0, 1}k → {0, 1}b be a regular
extractor with inverter Inv : Sds × {0, 1}r × {0, 1}b → {0, 1}k. Also let E :
{0, 1}k → {0, 1}n be an injective function with k ≤ n, later to be instantiated
via an ECC. Assume without loss of generality that for some c ≥ 1, we have
|S| = c · k for all S ∈ Sds. The encryption function E is described in Fig. 3
and is obtained via the construction RItEt (Repeat Invert-then-Encode), where
t ≥ 1 is a parameter: As its main component, it relies on the construction
ItE (Invert-then-Encode) of a seeded encryption function ItE[Inv,E] : Sds ×
{0, 1}b→ {0, 1}n which applies the inverter Inv to the message, and then applies
E to the result. The final, seed-free, encryption function RItEt[Inv,E] then takes
an input M ∈ {0, 1}m, where m = t · b, splits it into t b-bit blocks M [1], . . .M [t],
chooses a random seed S, and combines an encoding of S with the encryptions
of the blocks using SES for SE = ItE[Inv,E].

Decryptability. Given a channel ChR : {0, 1} → OutR, a decoder for E

over ChR is a function D : OutRn → {0, 1}k. Its decoding error is defined
as DE(E;D;ChR) = maxM∈{0,1}k Pr [D(ChR(E(M))) 6= M]. Therefore, for any

output alphabet OutR and function D : OutRn → {0, 1}b, we define the corre-
sponding decryption function for E over ChR as in Fig. 3. The following lemma
summarizes the relation between its decryption error and the one of D.

Lemma 11. [Correct decryption] Let ChR : {0, 1} → OutR be a chan-
nel, and let E, D, E, and D be as above. Then, DE(E ;D;ChR) ≤ (c + t) ·
DE(E;D;ChR).

Step I: From RItE to ItE. We reduce security of RItE to that of ItE. The
proof of the following [4] uses a hybrid argument.

Lemma 12. Let t ≥ 1, E = RItEt[Inv,E] and SE = ItE[Inv,E]. For all ChA :
{0, 1}n → OutA we have Advds(E ;ChA) ≤ t ·Advds(SE ;ChA).

Step II: RDS-security of ItE. Towards determining the DS-security of ItE
we first address the seemingly simpler question of proving security under random
messages. Specifically, for a seeded encryption function SE : Sds × {0, 1}b →
{0, 1}n, we define the rds advantage Advrds(SE ;ChA) as the expectation of
SD((ChA(SE(S,U)),U); (ChA(SE(S,U′)),U)) where U and U′ are uniformly cho-
sen and independent b-bit messages, and the expectation is taken over the choice
of the seed S. Exploiting the notion of ǫ-smooth min-entropy [36], the following,
proven in [4], establishes RDS-security of ItE:

Lemma 13. [RDS-security of ItE] Let δ > 0, let ChA : {0, 1} → OutA be a
symmetric channel, let Inv : Sds× {0, 1}r × {0, 1}b → {0, 1}k be the inverter of
a regular (k−n · (lg(|OutA|)−H(ChA) + δ), α)-extractor, and let E : {0, 1}k →
{0, 1}n be injective. Then, for SE = ItE[Inv,E], we have

Advrds(SE ;ChA) ≤ 2 · 2
− nδ2

2 lg2(|OutA|+3) + α .

Step III: From RDS- to DS-security. In contrast to RDS-security, proving
DS-security of ItE seems to require a better grasp of the combinatorial structure

13. Semantic Security for the Wiretap Channel

Semantic Security for the Wiretap Channel 15

of E and Inv. More concretely, think of any randomized (seeded) encryption
function SE : Sds×{0, 1}b→ {0, 1}n as a deterministic map SE : Sds×{0, 1}r×
{0, 1}b→ {0, 1}n (for some r), where the second argument takes the role of the
random coins. We call SE separable if SE(S,R,M) = SE(S,R, 0b)⊕SE(S, 0r,M)
for all S ∈ Sds, R ∈ {0, 1}r, and M ∈ {0, 1}b. Also, it is message linear if
SE(S, 0r, ·) is linear for all S ∈ Sds. The following is true for encryption functions
with both these properties, and is proven in [4].

Lemma 14. [RDS ⇒ DS] Let ChA : {0, 1} → OutA be symmetric. If SE is
separable and message linear, then Advds(SE ;ChA) ≤ 2 ·Advrds(SE ;ChA).

Coming back to ItE, we say that Inv : Sds × {0, 1}r × {0, 1}b → {0, 1}k is
output linear if Inv(S, 0r, ·) is linear for all S ∈ Sds. Moreover, it is separable
if Inv(S,R,M) = Inv(S,R, 0b) ⊕ Inv(S, 0r,M) for all S ∈ Sds, R ∈ {0, 1}r,
and M ∈ {0, 1}b. For example, the inverter for the above extractor based on
finite-field multiplication is easily seen to be output linear and separable, by the
linearity of the map M 7→ S−1 ⊙M .

Security. If we instantiate ItE[Inv,E] so that Inv is both output linear and
separable, and we let E be linear, the encryption function SE is easily seen to be
message linear and separable. The following theorem now follows immediately
by combining Lemma 12, Lemma 14, and Lemma 13.

Theorem 15. [DS-security of RItE] Let δ > 0 and t ≥ 1. Also, let ChA :
{0, 1} → OutA be a symmetric channel, let Inv : Sds×{0, 1}r×{0, 1}b→ {0, 1}k

be the output-linear and separable inverter of a regular (k − n · (lg(|OutA|) −
H(ChA) + δ), α)-extractor, and let E : {0, 1}k → {0, 1}n be linear and injective.
Then, for E = RItEt[Inv,E], we have

Advds(E ;ChA) ≤ 2t ·

(

2 · 2
− nδ2

2 lg2(|OutA|+3) + α

)

.

Instantiating the scheme. Recall that if ChA : {0, 1}l → OutA and ChR :
{0, 1}l → OutR are symmetric channels, their secrecy capacity equals [27]
(H(U|ChA(U)) − H(U|ChR(U)))/l, for a uniform l-bit U. Also, for a channel
ChR, we denote its (Shannon) capacity as C(ChR) = maxX I(X;ChR(X))/l. We
will need the following result (cf. e.g. [18] for a proof).

Lemma 16. [18] For any l ∈ N and any channel ChR : {0, 1}l → OutR,
there is a family E = {Es}s∈N of linear encoding functions Es : {0, 1}k(s) →
{0, 1}n(s) (where n(s) is a multiple of l), with corresponding decoding functions

Ds : OutRn(s)/l → {0, 1}k(s), such that (i) DE(Es;Ds;ChR) = 2−Θ(k(s)), (ii)
lims→∞ k(s)/n(s) = C(ChR), and (iii) E and D are PT computable.

We now derive a scheme E = {Es}s∈N achieving secrecy capacity for the most
common case ChR = BSCpR and ChA = BSCpA , where 0 ≤ pR < pA ≤

1
2 . We

start with a family of codes {Es}s∈N for BSCpR guaranteed to exist by Lemma 16,
where Es : {0, 1}k(s) → {0, 1}n(s) and lims→∞ k(s)/n(s) = 1 − h2(pR), or,

13. Semantic Security for the Wiretap Channel

16 Mihir Bellare, Stefano Tessaro, and Alexander Vardy

equivalently, there exists ν such that ν(s) = o(1) and k(s) = (1−h2(pR)−ν(s)) ·

n(s). Then, we let δ(s) = (2 lg2(5))1/2 · n(s)−1/4 and α(s) = 2−n(s)1/2 , and use
the finite-field based extractor Exts : {0, 1}k(s) × {0, 1}k(s) → {0, 1}b(s), where
b(s) = k(s) − n(s) · (1 − h2(pA) + δ(s)) + 2 lg(α) = (h2(pA) − h2(pR) − ν(s) −
δ(s)− 2 ·n(s)−1/2) · n(s). We note that the resulting scheme is equivalent to the
one described in the introduction (with A = S−1). With these parameters,

Advds(Es;BSCpA) ≤ 6 · t(s) · 2−
√
n , DE(Es;Ds;BSCpR) ≤ (t(s)+ 1) · 2−Θ(k(s))

by Theorem 15 and Lemma 11, respectively. The rate of Es is

Rate(Es) =
t(s)

t(s) + 1
·

(

h2(pA)− h2(pR)− ν(s)− δ(s)−
2

√

n(s)

)

.

Setting t(s) = lg(k(s)) yields lims→∞ Rate(Es) = h2(pA)− h2(pR).

Extensions. The proof applies also for any pair of symmetric channels ChR

and ChA, and the resulting rate is the secrecy capacity if the capacity of ChA :
{0, 1} → OutA is lg(|OutA|) − H(ChA), which is the case if and only if a
uniform input to ChA produces a uniform output. For other channels, such as
erasure channels (where each bit is left unchanged with probability δ and mapped
to an erasure symbol with probability 1 − δ) our technique still yields good
schemes which, however, may fall short of achieving capacity. We also remark
that the above presentation is constrained to single input-bit base channels for
simplicity only. Our results can be extended to discrete memoryless channels with
l-bit inputs for l > 1. For example, Lemma 13 extends to arbitrary symmetric
channels ChA : {0, 1}l → OutA, at the price of replacing n by n/l in the security
bound and in the extractor’s entropy requirement. In contrast, we do not know
whether Lemma 14 applies to arbitrary symmetric channels with l-bit inputs, but
it does, for instance, extend to any channel of the form ChA(X) = X ⊕E, where
E is an l-bit string sampled according to an input-independent noise distribution.

Acknowledgments

Bellare was supported in part by NSF grants CCF-0915675, CNS-0904380 and
CNS-1116800. Tessaro was supported in part by NSF grants CCF-0915675, CCF-
1018064.

This material is based on research sponsored by DARPA under agreement
numbers FA8750-11-C-0096 and FA8750-11-2-0225. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

13. Semantic Security for the Wiretap Channel

Semantic Security for the Wiretap Channel 17

References

1. M. Andersson, V. Rathi, R. Thobaben, J. Kliewer, and M. Skoglund. Nested polar
codes for wiretap and relay channels. Available at arxiv.org/abs/1006.3573, 2010.

2. E. Arıkan. Channel polarization: A method for constructing capacity achieving
codes for symmetric binary-input memoryless channels. IEEE Transactions on
Information Theory, 55(7):3051–3073, 2009.

3. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In 38th FOCS, pages 394–403. IEEE Computer Society
Press, Oct. 1997.

4. M. Bellare and S. Tessaro. Polynomial-time, semantically-secure encryption achiev-
ing the secrecy capacity, Jan. 2012. Available as arxiv.org/abs/1201.3160 and
Cryptology Eprint Archive Report 2012/022.

5. M. Bellare, S. Tessaro, and A. Vardy. A cryptographic treatment of the wiretap
channel, Jan. 2012. Available as arxiv.org/abs/1201.2205 and Cryptology Eprint
Archive Report 2012/15.

6. M. Bloch and J. Barros. Physical-Layer Security: From Information Theory to
Security Engineering. Cambridge Academic Press, 2011.

7. M. Bloch and J. N. Laneman. On the secrecy capacity of arbitrary wiretap chan-
nels. In Proceedings of the 46th Allerton Conference on Communications, Control,
and Computing, pages 818–825, Sep 2008.

8. M. Cheraghchi, F. Didier, and A. Shokrollahi. Invertible extractors and wiretap
protocols. IEEE Transactions on Information Theory, 58(2):1254–1274, 2012.

9. G. Cohen and G. Zémor. The wiretap channel applied to biometrics. In Proc. of
the International Symposium on Information Theory and Applications, 2004.

10. G. Cohen and G. Zémor. Syndrome coding for the wire-tap channel revisited. In
Proc. of the IEEE Information Theory Workshop (ITW ’06), pages 33–36. IEEE,
2006.

11. T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and
Sons, 1991.

12. I. Csiszár. Information-type measures of difference of probability distributions and
indirect observations. Studia Scientiarum Mathematicarum Hungarica, 2:299–318,
1967.

13. I. Csiszár. Almost independence and secrecy capacity. Problems of Information
Transmission, 32(1):40–47, 1996.

14. I. Csiszár and J. Körner. Broadcast channels with confidential messages. IEEE
Transactions on Information Theory, 24(3):339–348, 1978.

15. I. Damgard, T. Pedersen, and B. Pfitzmann. Statistical secrecy and multibit com-
mitments. IEEE Transactions on Information Theory, 44(3):1143–1151, 1998.

16. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to gener-
ate strong keys from biometrics and other noisy data. SIAM Journal on Computing,
38(1):97–139, 2008.

17. Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In C. Cachin and J. Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 523–540. Springer, May 2004.

18. I. Dumer. Concatenated codes and their multilevel generalizations. In The Hand-
book of Coding Theory, pages 1191–1988. Elsevier, 1998.

19. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, 1984.

13. Semantic Security for the Wiretap Channel

18 Mihir Bellare, Stefano Tessaro, and Alexander Vardy

20. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

21. M. Hayashi and R. Matsumoto. Construction of wiretap codes from ordinary
channel codes. In Proceedings of the 2010 IEEE International Symposium on In-
formation Theory (ISIT 2010), pages 2538–2542. IEEE, 2010.

22. S. Ho and R. Yeung. The interplay between entropy and variational distance. IEEE
Transactions on Information Theory, 56(12):5906–5929, 2010.

23. E. Hof and S. Shamai. Secrecy-achieving polar-coding. In Proceedings of the IEEE
Information Theory Workshop (ITW 2010). IEEE, 2010.

24. ICC 2011 workshop on physical-layer security, June 2011. Kyoto, Japan.
25. M. Iwamoto and K. Ohta. Security notions for information theoretically secure

encryptions. In Proceedings of the 2011 IEEE International Symposium on Infor-
mation Theory (ISIT 2011), pages 1777–1781. IEEE, 2011.

26. O. Koyluoglu and H. ElGamal. Polar coding for secure transmission. In Proceed-
ings of the IEEE International Symposium on Personal Indoor and Mobile Radio
Communication, pages 2698–2703, 2010.

27. S. Leung-Yan-Cheong. On a special class of wire-tap channels. IEEE Transactions
on Information Theory, 23(5):625–627, 1977.

28. Y. Liang, H. Poor, and S. Shamai. Information theoretic security. Foundations
and Trends in Communications and Information Theory, 5(4):355–580, 2008.

29. H. Mahdavifar and A. Vardy. Achieving the secrecy capacity of wiretap channels
using polar codes. In Proceedings of the 2010 IEEE International Symposium on
Information Theory (ISIT 2010), pages 913 – 917. IEEE, 2010.

30. H. Mahdavifar and A. Vardy. Achieving the secrecy capacity of wiretap channels
using polar codes. IEEE Transactions on Information Theory, 57(10):6428–6443,
2011.

31. U. Maurer. The strong secret key rate of discrete random triples. In R. E. Blahut,
editor, Communication and Cryptography – Two Sides of One Tapestry, pages
271–285. Kluwer, 1994.

32. U. M. Maurer and S. Wolf. Information-theoretic key agreement: From weak to
strong secrecy for free. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of
LNCS, pages 351–368. Springer, May 2000.

33. J. Muramatsu and S. Miyake. Construction of wiretap channel codes by using
sparse matrices. In Proc. of the IEEE Information Theory Workshop (ITW 2009),
pages 105–109. IEEE, 2009.

34. L. H. Ozarow and A. D. Wyner. Wire-tap channel II. In T. Beth, N. Cot, and I. In-
gemarsson, editors, EUROCRYPT’84, volume 209 of LNCS, pages 33–50. Springer,
Apr. 1985.

35. M. S. Pinsker. Information and information stability of random variables and
processes. Holden Day, San Francisco, 1964.

36. R. Renner and S. Wolf. Simple and tight bounds for information reconciliation
and privacy amplification. In B. K. Roy, editor, ASIACRYPT 2005, volume 3788
of LNCS, pages 199–216. Springer, Dec. 2005.

37. C. E. Shannon. A mathematical theory of communication. The Bell System Tech-
nical Journal, 27:379–423,623–656, July, October 1948.

38. A. Suresh, A. Subramanian, A. Thangaraj, M. Bloch, and S.W.McLaughlin. Strong
secrecy for erasure wiretap channels. In Proc. of the IEEE Information Theory
Workshop (ITW 2010). IEEE, 2010.

39. I. Tal and A. Vardy. How to construct polar codes. In Proc. of the IEEE Infor-
mation Theory Workshop (ITW 2010). IEEE, 2010.

13. Semantic Security for the Wiretap Channel

Semantic Security for the Wiretap Channel 19

40. A. Thangaraj, S. Dihidar, A. Calderbank, S. McLaughlin, and J. Merolla. Appli-
cations of LDPC codes to the wiretap channel. IEEE Transactions on Information
Theory, 53(8):2933–2945, 2007.

41. A. D. Wyner. The wire-tap channel. Bell Systems Tech. Journal, 54(8):1355–1387,
1975.

42. Ziva corporation. http://www.ziva-corp.com/.

13. Semantic Security for the Wiretap Channel

Multi-Instance Security and its Application to

Password-Based Cryptography

Mihir Bellare1, Thomas Ristenpart2, and Stefano Tessaro3

1 Department of Computer Science & Engineering, University of California San
Diego, cseweb.ucsd.edu/~mihir/

2 Department of Computer Sciences, University of Wisconsin - Madison,
pages.cs.wisc.edu/~rist/

3 CSAIL, Massachusetts Institute of Technology, people.csail.mit.edu/tessaro/

Abstract. This paper develops a theory of multi-instance (mi) security
and applies it to provide the first proof-based support for the classical
practice of salting in password-based cryptography. Mi-security comes
into play in settings (like password-based cryptography) where it is com-
putationally feasible to compromise a single instance, and provides a
second line of defense, aiming to ensure (in the case of passwords, via
salting) that the effort to compromise all of some large number m of
instances grows linearly with m. The first challenge is definitions, where
we suggest LORX-security as a good metric for mi security of encryp-
tion and support this claim by showing it implies other natural met-
rics, illustrating in the process that even lifting simple results from the
si setting to the mi one calls for new techniques. Next we provide a
composition-based framework to transfer standard single-instance (si)
security to mi-security with the aid of a key-derivation function. Ana-
lyzing password-based KDFs from the PKCS#5 standard to show that
they meet our indifferentiability-style mi-security definition for KDFs,
we are able to conclude with the first proof that per password salts am-
plify mi-security as hoped in practice. We believe that mi-security is of
interest in other domains and that this work provides the foundation for
its further theoretical development and practical application.

1 Introduction

This paper develops a theory of multi-instance security and applies it to support
practices in password-based cryptography.

Background. Password-based encryption (PBE) in practice is based on the
PKCS#5 (equivalently, RFC 2898) standard [32]. It encrypts a messageM under
a password pw by picking a random s-bit salt sa, deriving a key L← KD(pw‖sa)
and returning C′ ← C‖sa where C←$ E(L,M). Here E is a symmetric encryp-
tion scheme, typically an IND-CPA AES mode of operation, and key-derivation
function (KDF) KD: {0, 1}∗ → {0, 1}n is the c-fold iteration KD = Hc of a
cryptographic hash function H : {0, 1}∗ → {0, 1}n. However, passwords are of-
ten poorly chosen [29], falling within a set D called a “dictionary” that is small

14. Multi-Instance Security

2 Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro

enough to exhaust. A brute-force attack now recovers the target password pw
(thereby breaking the ind-cpa security of the encryption) using cN hashes where
N = |D| is the size of the dictionary.Increasing c increases this effort, explaining
the role of this iteration count, but c cannot be made too large without adversely
impacting the performance of PBE.

Consider now m users, the i-th with password pwi. If the salt is absent (s =
0), the number of hashes for the brute force attack to recover all m passwords
remains around cN , but if s is large enough that salts are usually distinct, it
rises to mcN , becoming prohibitive for large m. Salting, thus, aims to make the
effort to compromise m target passwords scale linearly in m. (It has no effect on
the security of encryption under any one, particular target password.)

New directions. This practice, in our view, opens a new vista in theoretical
cryptography, namely to look at the multi-instance (mi) security of a scheme. We
would seek metrics of security under which an adversary wins when it breaks all
of m instances but not if it breaks fewer. This means that the mi security could
potentially be much higher than the traditional single-instance (si) security. We
would have security amplification.

Why do this? As the above discussion of password-based cryptography shows,
there are settings where the computational effort t needed to compromise a single
instance is feasible. Rather than give up, we provide a second line of defense.
We limit the scale of the damage, ensuring (in the case of passwords, via the
mechanism of salting) that the computational effort to compromise all of m
instances is (around) tm and thus prohibitive for large m. We can’t prevent the
occasional illness, but we can prevent an epidemic.

We initiate the study of multi-instance security with a foundational treatment
in two parts. The first part is agnostic to whether the setting is password-based
or not, providing definitions for different kinds of mi-security of encryption and
establishing relations between them, concluding with the message that what we
call LORX-security is a good choice. The second part of our treatment focuses
on password-based cryptography, providing a modular framework that proves
mi-security of password-based primitives by viewing them as obtained by the
composition of a mi-secure KDF with a si-secure primitive, and yielding in par-
ticular the first proof that salting works as expected to increase multi-instance
security under a strong and formal metric for the latter.

Multi-instance security turns out to be challenging both definitionally (pro-
viding metrics where the adversary wins on breaking all instances but not fewer)
and technically (reductions need to preserve tiny advantages and standard hy-
brid arguments no longer work). It also connects in interesting ways to security
amplification via direct products and xor lemmas, eg. [37, 16, 19, 30, 13, 27, 34,
28, 35]. (We import some of their methods and export some novel viewpoints.)
We believe there are many fruitful directions for future work, both theoretical
(pursuing the connection with security amplification) and applied (mi security
could be valuable in public-key cryptography where steadily improving attacks
are making current security parameters look uncomfortably close to the edge for
single-instance security). Let us now look at all this in some more detail.

14. Multi-Instance Security

Multi-instance Security and Password-based Cryptography 3

LORX. We consider a setting with m independent target keys K1, . . . , Km.
(They may, but need not, be passwords.) In order to show that mi-security
grows with m we want a metric (definition) where the adversary wins if it breaks
all m instances of the encryption but does not win if it breaks strictly fewer. If
“breaking” is interpreted as recovery of the key then such a metric is easily given:
it is the probability that the adversary recovers all m target keys. We refer to
this as the UKU (Universal Key Unrecoverability) metric. But we know very
well that key-recovery is a weak metric of encryption security. We want instead
a mi analog of ind-cpa. The first thing that might come to mind is multi-user
security [3, 2]. But in the latter the adversary wins (gets an advantage of one)
even if it breaks just one instance so the mu-advantage of an adversary can never
be less than its si (ind-cpa) advantage. We, in contrast, cannot “give up” once
a single instance is broken. Something radically different is needed.

Our answer is LORX (left-or-right xor indistinguishability). Our game picks
m independent challenge bits b1, . . . , bm and gives the adversary an oracle Enc(·,
·, ·) which given i,M0,M1 returns an encryption of Mbi under Ki. The adversary
outputs a bit b′ and its advantage is 2 Pr[b′ = b1 ⊕ · · · ⊕ bm]− 1.4 Why xor? Its
well-known “sensitivity” means that even if the adversary figures out m − 1 of
the challenge bits, it will have low advantage unless it also figures out the last.
This intuitive and historical support is strengthened by the relations, discussed
below, that show that LORX implies security under other natural metrics.

Relations. The novelty of multi-instance security prompts us to step back
and consider a broad choice of definitions. Besides UKU and LORX, we define
RORX (real-or-random xor indistinguishability, a mi-adaptation of the si ROR
notion of [4]) and a natural AND metric where the challenge bits b1, . . . , bm and
oracle Enc(·, ·, ·) are as in the LORX game but the adversary output is a vector
(b′1, . . . , b

′
m) and its advantage is Pr[(b′1, . . . , b

′
m) = (b1, . . . , bm)] − 2−m. The

relations we provide, summarized in Figure 1, show that LORX emerges as the
best choice because it implies all the others with tight reductions. Beyond that,
they illustrate that the mi terrain differs from the si one in perhaps surprising
ways, both in terms of relations and the techniques needed to establish them.

Thus, in the si setting, LOR and ROR are easily shown equivalent up to a
factor 2 in the advantages [4]. It continues to be true that LORX easily implies
RORX but the hybrid argument used to prove that ROR implies LOR [4] does
not easily extend to the mi setting and the proof that RORX implies LORX
is not only more involved but incurs a factor 2m loss.5 In the si setting, both

4 This is a simplification of our actual definition, which allows the adversary to adap-
tively corrupt instances to reveal the underlying keys and challenge bits. This ca-
pability means that LORX-security implies threshold security where the adversary
wins if it predicts the xor of the challenge bits of some subset of the instances of its
choice. See Section 2 for further justification for this feature of the model.

5 This (exponential) 2m factor loss is a natural consequence of the factor of 2 loss in
the si case, our bound is tight, and the loss in applications is usually small because
advantages are already exponentially vanishing in m. Nonetheless it is not always
negligible and makes LORX preferable to RORX.

14. Multi-Instance Security

4 Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro

LORX RORX

AND UKU

Th. 3

2m

Th. 2

Th 4 2m

Th 1

Fig. 1. Notions of multi-instance security for encryption and their rela-

tions. LORX (left-or-right xor indistinguishability) emerges as the strongest, tightly

implying RORX (real-or-random xor indistinguishability) and UKU (universal key-

unrecoverability). The dashed line indicates that under some (mild, usually met) con-

ditions LORX also implies AND. RORX implies LORX and UKU but with a 2m loss

in advantage where m is the number of instances, making LORX a better choice.

LOR and ROR are easily shown to imply KU (key unrecoverability). Showing
LORX implies UKU is more involved, needing a boosting argument to ensure
preservation of exponentially-vanishing advantages. This reduction is tight but,
interestingly, the reduction showing RORX implies UKU is not, incurring a 2m-
factor loss, again indicating that LORX is a better choice. We show that LORX
usually implies AND by exploiting a direct product theorem by Unger [35], evi-
dencing the connections with this area. Another natural metric of mi-security is
a threshold one, but our incorporation of corruptions means that LORX implies
security under this metric.

Mi-security of PBE. Under the LORX metric, we prove that the advantage
ǫ′ obtained by a time t adversary against m instances of the above PBE scheme
E ′ is at most ǫ + (q/mcN)m (we are dropping negligible terms) where q is the
number of adversary queries to RO H and ǫ is the advantage of a time t ind-cpa
(si) adversary against E . This is the desired result saying that salting works to
provide a second line of defense under a strong mi security metric, amplifying
security linearly in the number of instances.

Framework. This result for PBE is established in a modular (rather than ad
hoc) way, via a framework that yields corresponding results for any password-
based primitive. This means not only ones like password-based message authen-
tication (also covered in PKCS#5) or password-based authenticated encryption
(WinZip) but public-key primitives like password-based digital signatures, where
the signing key is derived from a password. We view a password-based scheme for
a goal as derived by composing a key-derivation function (KDF) with a standard
(si) scheme for the same goal. The framework then has the following components.
(1) We provide a definition of mi-security for KDFs. (2) We provide composition
theorems, showing that composing a mi-secure KDF with a si-secure scheme for
a goal results in a mi-secure scheme for that goal. (We will illustrate this for

14. Multi-Instance Security

Multi-instance Security and Password-based Cryptography 5

the case of encryption but similar results may be shown for other primitives.)
(3) We analyze the iterated hash KDF of PKCS#5 and establish its mi security.

The statements above are qualitative. The quantitative security aspect is
crucial. The definition of mi-security of KDFs must permit showing mi-security
much higher than si-security. The reductions in the composition theorems must
preserve exponentially vanishing mi-advantages. And the analysis of the PKCS#5
KDF must prove that the adversary advantage in q queries to the RO H grows
as (q/cmN)m, not merely q/cN . These quantitative constraints represent im-
portant technical challenges.

Mi-security of KDFs. We expand on item (1) above. The definition of mi-
security we provide for KDFs is a simulation-based one inspired by the indiffer-
entiability framework [26, 11]. The attacker must distinguish between the real
world and an ideal counterpart. In both, target passwords pw1, . . . , pwm and
salts sa1, . . . , sam are randomly chosen. In the real world, the adversary gets
input (pw1, sa1,KD(pw1‖sa1)), . . . , (pwm, sam,KD(pwm‖sa1)) and also gets an
oracle for the RO hash function H used by KD. In the ideal world, the input
is (pw1, sa1, L1), . . . , (pwm, sam, Lm) where the keys L1, . . . , Lm are randomly
chosen, and the oracle is a simulator. The simulator itself has access to a Test
oracle that will take a guess for a password and tell the simulator whether or
not it matches one of the target passwords. Crucially, we require that when the
number of queries made by the adversary to the simulator is q, the number of
queries made by the simulator to its Test oracle is only q/c. This restriction is
critical to our proof of security amplification and a source of challenges therein.

Related work. Previous work which aimed at providing proof-based assur-
ances for password-based key-derivation has focused on the single-instance case
and the role of iteration as represented by the iteration count c. Our work focuses
on the multi-instance case and the roles of both salting and iteration.

The UNIX password hashing algorithm maps a password pw to Ec
pw(0) where

E is a blockcipher and 0 is a constant. Luby and Rackoff [24] show this is a one-
way function when c = 1 and pw is a random blockcipher key. (So their result
does not really cover passwords.) Wagner and Goldberg [36] treat the more
general case of arbitrary c and keys that are passwords, but the goal continues
to be to establish one-wayness and no security amplification (meaning increase in
security with c) is shown. Boyen [8, 9] suggests various ways to enhance security,
including letting users pick their own iteration counts.

Yao and Yin [38] give a natural pseudorandomness definition of a KDF in
which the attacker gets (K, sa) where K is either Hc(pw‖sa) or a random string
of the same length and must determine which. Modeling H as a random oracle
(RO) [7] to which the adversary makes q queries, they claim to prove that the
adversary’s advantage is at most q/cN plus a negligible term. This would es-
tablish single-instance security amplification by showing that iteration works as
expected to increase attacker effort.6 However, even though salts are considered,

6 Unfortunately, we point in [6] to a bug in the proof of [38, Lemma 2.2] and explain
why the bound claimed by [38, Theorem 1] is wrong. Beyond this, the proof makes

14. Multi-Instance Security

6 Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro

this does not consider multi-instance security let alone establish multi-instance
security amplification, and their definition of KDF security does not adapt to
allow this. (We use, as indicated above, an indifferentiability-style definition.) In
fact the KDF definition of [38] is not even sufficient to establish si security of
password-based encryption in the case the latter, as specified in PKCS#5, picks
a fresh salt for each message encrypted. Kelsey, Schneier, Hall and Wagner [21]
look into the time for password-recovery attacks for different choices of KDFs.

KDFs are for use in non-interactive settings like encryption with WinZip.
The issues and questions we consider do not arise with password authenticated
key exchange (PAKE) [5, 10, 14] where definitions already guarantee that the
session key may be safely used for encryption. There are no salts and no ampli-
fication issues. Abadi and Warinschi [1] provide a si, key-recovery definition for
PBE security and connect this with symbolic notions. They do not consider mi
security. Dodis, Gennaro, H̊astad, Krawczyk and Rabin [12] treat statistically-
secure key derivation using hash functions and block ciphers. As discussed in-
depth by Kracwzyk [23], these results and techniques aren’t useful for password-
based KDFs because passwords aren’t large enough, let alone have the sufficient
amount of min-entropy. Krawczyk [23] also notes that his two-stage KDF ap-
proach could be used to build password-based KDFs by replacing the extraction
stage with a key-stretching operation. Our general framework may be used to
analyze the mi-security of this construction.

Work on direct product theorems and XOR lemmas (eg. [37, 15, 18, 13, 27])
has considered the problem of breaking multiple instances of a cryptographic
primitive, in general as an intermediate step to amplifying security in the single-
instance setting. Mi-Xor-security is used in this way in [13, 27].

2 The Multi-Instance Terrain

This section defines metrics of mi-secure encryption and explores the relations
between them to establish the notions and results summarized in Figure 1. Our
treatment intends to show that the mi terrain is different from the si one in
fundamental ways, leading to new definitions, challenges and connections.

Syntax. Recall that a symmetric encryption scheme is a triple of algorithms
SE = (K, E ,D). The key generation algorithm K outputs a key. The encryp-
tion algorithm E takes a key K and a message M and outputs a ciphertext
C←$ E(K,M). The deterministic decryption algorithm D takes K and a cipher-
text C to return either a string or ⊥. Correctness requires that D(K, E(K,M)) =
M for all M with probability 1 over K←$K and the coins of E .

To illustrate the issues and choices in defining mi security, we start with key
unrecoverability which is simple because it is underlain by a computational game
and its mi counterpart is easily and uncontentiously defined. When we move to

some rather large and not fully justified jumps. The special case m = 1 of our
treatment will fill these gaps and recover the main claim of [38].

14. Multi-Instance Security

Multi-instance Security and Password-based Cryptography 7

main UKUA
SE,m

K[1], . . . ,K[m]←$K; K′←$AEnc

Ret K′ = K

proc. Enc(i,M)

Ret E(K[i],M)

proc. Cor(i)

Ret K[i]

main LORXA
SE,m

K[1], . . . ,K[m]←$K

b←$ {0, 1}m

b′←$AEnc

Ret (b′ = ⊕ib[i])

main ANDA
SE,m

K[1], . . . ,K[m]←$K

b←$ {0, 1}m

b′←$AEnc

Ret (b′ = b)

proc. Enc(i,M0,M1)

If |M0| 6= |M1|

then Ret ⊥

C←$ E(K[i],Mb[i])

Ret C

proc. Cor(i)

Ret (K[i],b[i])

main RORXA
SE,m

K[1], . . . ,K[m]←$ ({0, 1}k)m

b←$ {0, 1}m; b′←$AEnc

Ret (b′ = ⊕ib[i])

proc. Enc(i,M)

C1←$ E(K[i],M)

M0←$ {0, 1}|M|; C0←$ E(K[i],M0)

Ret Cb[i]

proc. Cor(i)

Ret (K[i],b[i])

Fig. 2. Multi instance security notions for encryption.

stronger notions underlain by decisional games, definitions will get more difficult
and more contentious as more choices will emerge.

UKU. Single-instance key unrecoverability is formalized via the game KUSE

where a target key K←$K is initially sampled, and the adversary A is given an
oracle Enc which, on input M , returns E(K,M). Finally, the adversary is asked
to output a guess K ′ for the key, and the game returns true if K = K ′, and
false otherwise. An mi version of the game, UKUSE,m, is depicted in Figure 2.
It picks an m-vector K of target keys and the oracle Enc now takes i,M to
return E(K[i],M). The Cor oracle gives the adversary the capability of cor-
rupting a user to obtain its target key. The adversary’s output guess is also a
m-vector K′ and the game returns the boolean (K = K′), meaning the adver-
sary wins only if it recovers all the target keys. (The “U” in “UKU” reflects
this, standing for “Universal.”) The advantage of adversary A is Advuku

SE,m(A) =

Pr[UKUA
SE,m ⇒ true]. Naturally, this advantage depends on the adversary’s re-

sources. (It could be 1 if the adversary corrupts all instances.) We say that A
is a (t,q, qc)-adversary if it runs in time t and makes at most q[i] encryption
queries of the form Enc(i, ·) and makes at most qc corruption queries. Then
we let Advuku

SE,m(t,q, qc) = maxA Advuku
SE,m(A) where the maximum is over all

(t,q, qc)-adversaries.

AND. Single-instance indistinguishabilty for symmetric encryption is usually
formalized via left-or-right security [4]. A random bit b and key K←$K are
chosen, and an adversary A is given access to an oracle Enc that given equal-
length messagesM0,M1 returns E(K,Mb). The adversary outputs a bit b

′ and its
advantage is 2 Pr[b = b′]− 1. There are several ways one might consider creating
an mi analog. Let us first consider a natural AND-based metric based on game
ANDSE,m of Figure 2. It picks at random a vector b←$ {0, 1}m of challenge bits
as well as a vector K[1], . . . ,K[m] of keys, and the adversary is given access to

14. Multi-Instance Security

8 Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro

oracle Enc that on input i,M0,M1, where |M0| = |M1|, returns E(K[i],Mb[i]).
Additionally, the corruption oracle Cor takes i and returns the pair (K[i],b[i]).
The adversary finally outputs a bit vector b′, and wins if and only if b = b′.
(It is equivalent to test that b[i] = b′[i] for all uncorrupted i.) The advantage
of adversary A is Advand

SE,m(A) = Pr[ANDA
SE,m ⇒ true] − 2−m. We say that A

is a (t,q, qc)-adversary if it runs in time t and makes at most q[i] encryption
queries of the form Enc(i, ·, ·) and makes at most qc corruption queries. Then
we let Advand

SE,m(t,q, qc) = maxA Advand
SE,m(A) where the maximum is over all

(t,q, qc)-adversaries.
This metric has many points in its favor. By (later) showing that security

under it is implied by security under our preferred LORX metric, we automat-
ically garner whatever value it offers. But the AND metric also has weaknesses
that in our view make it inadequate as the primary choice. Namely, it does not
capture the hardness of breaking all the uncorrupted instances. For example, an
adversary that corrupts instances 1, . . . ,m − 1 to get b[1], . . . ,b[m − 1], makes
a random guess g for b[m] and returns (b[1], . . . ,b[m − 1], g) has the high ad-
vantage 0.5− 2−m without breaking all instances. We prefer a metric where this
adversary’s advantage is close to 0.

LORX. To overcome the above issue with the AND advantage, we introduce
the XOR advantage measure and use it to define LORX. Game LORXSE,m of
Figure 2 makes its initial choices the same way as game ANDSE,m and provides
the adversary with the same oracles. However, rather than a vector, the adversary
must output a bit b′, and wins if this equals b[1]⊕ · · · ⊕b[m]. (It is equivalent
to test that b′ = ⊕i∈Sb[i] where S is the uncorrupted set.) The advantage of
adversary A is Advlorx

SE,m(A) = 2Pr[LORXA
SE,m ⇒ true] − 1. We say that A is a

(t,q, qc)-adversary if it runs in time t and makes at most q[i] encryption queries
of the form Enc(i, ·, ·) and makes at most qc corruption queries. Then we let
Advlorx

SE,m(t,q, qc) = maxA Advlorx
SE,m(A) where the maximum is over all (t,q, qc)-

adversaries. In the example we gave for AND, if an adversary corrupts the first
m− 1 instances to get back b[1], . . . ,b[m− 1], makes a random guess g for b[m]
and outputs b′ = b[1]⊕ · · · ⊕b[m− 1]⊕g, it will have advantage 0.

RORX. A variant of the si LOR notion, ROR, was given in [4]. Here the ad-
versary must distinguish between an encryption of a message M it provides and
the encryption of a random message of length |M |. This was shown equivalent
to LOR up to a factor 2 in the advantages [4]. This leads us to define the mi
analog RORX and ask how it relates to LORX. Game RORXSE,m of Figure 2
makes its initial choices the same way as game LORXSE,m. The adversary is
given access to oracle Enc that on input i,M , returns E(K[i],M) if b[i] = 1 and
otherwise returns E(K[i],M1) where M1←$ {0, 1}|M|. It also gets the usual Cor
oracle. It outputs a bit b′ and wins if this equals b[1]⊕ · · · ⊕b[m]. The advantage
of adversary A is Advrorx

SE,m(A) = 2Pr[RORXA
SE,m ⇒ true] − 1. We say that A

is a (t,q, qc)-adversary if it runs in time t and makes at most q[i] encryption
queries of the form Enc(i, ·) and makes at most qc corruption queries. Then
we let Advrorx

SE,m(t,q, qc) = maxA Advrorx
SE,m(A) where the maximum is over all

(t,q, qc)-adversaries.

14. Multi-Instance Security

Multi-instance Security and Password-based Cryptography 9

Discussion. The multi-user security goal from [3] gives rise to a version of
the above games without corruptions and where all instances share the same
challenge bit b, which the adversary tries to guess. But this does not measure
mi security, since recovering a single key suffices to learn b.

The above approach extends naturally to providing a mi counterpart to any
security definition based on a decisional game, where the adversary needs to
guess a bit b. For example we may similarly create mi metrics of CCA security.

Why does the model include corruptions? The following example may help
illustrate. Suppose SE is entirely insecure when the key has first bit 0 and highly
secure otherwise. (From the si perspective, it is insecure.) In the LORX game, an
adversary will be able to figure out around half the challenge bits. If we disallow
corruptions, it would still have very low advantage. From the application point
of view, this seems to send the wrong message. We want LORX-security to
mean that the probability of “large scale” damage is low. But breaking half the
instances is pretty large scale. Allowing corruptions removes this defect because
the adversary could corrupt the instances it could not break and then, having
corrupted only around half the instances, get a very high advantage, breaking
LORX-security. In this way, we may conceptually keep the focus on an adversary
goal of breaking all instances, yet cover the case of breaking some threshold
number via the corruption capability.

An alternative way to address the above issue without corruptions is to define
threshold metrics where the adversary wins by outputting a dynamically chosen
set S and predicting the xor of the challenge bits for the indexes in S. This,
again, has much going for it as a metric. But LORX with corruptions, as we
define it, will imply security under this metric.

LORX implies UKU. In the si setting, it is easy to see that LOR security
implies KU security. The LOR adversary simply runs the KU adversary. When
the latter makes oracle query M , the LOR adversary queries its own oracle with
M,M and returns the outcome to the KU adversary. When the latter returns
a key K ′, the LOR adversary submits a last oracle query consisting of a pair
M0,M1 of random messages to get back a challenge ciphertext C, returning 1
if D(K ′, C) = M1 and 0 otherwise. A similar but slightly more involved proof
shows that ROR implies KU.

It is important to establish analogs of these basic results in the mi setting, for
they function as “tests” for the validity of our mi notions. The following shows
that LORX security implies UKU. Interestingly, it is not as simple to establish
in the mi case as in the si case. Also, as we will see later, the proof that RORX
implies UKU is not only even more involved but incurs a factor 2m loss, making
LORX a better choice as the metric to target in designs.

Theorem 1. [LORX ⇒ UKU] Let SE = (K, E ,D) be a symmetric encryption

scheme with message space M, and let ℓ be such that {0, 1}ℓ ⊆ M. Then, for

all t, qc, and q, and for all k ≥ 1,

Advuku
SE,m(t,q, qc) ≤ Advlorx

SE,m(t′,q′, qc) +m ·

(

1

2ℓ − 1

)k

,

14. Multi-Instance Security

10 Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro

where t′ = t+O(m · k), and q′[i] = q[i] + k for all i = 1, . . . ,m.

The proof is given in [6]. Here, let us stress Theorem 1 surfaces yet another
subtlety of the mi setting. At first, it would seem that proving the case k = 1
of the theorem is sufficient (this is what usually done in the si case). However,
it is crucial to remark that Advlorx

SE,m(t′,q′, qc) may be very small. For example,
it is not unreasonable to expect 2−128·m if SE is secure in the single-instance
setting. Yet, assume that E encrypts 128-bit messages, then we are only able to
set ℓ = 128, in turn making m/(2ℓ − 1) ≈ m · 2−128 by far the leading term on
the right-hand side. The parameter k hence opens the door to fine tuning of the
additive extra term at the cost of an additive complexity loss in the reduction.
Also note that the reduction in the proof of Theorem 1 is not immediate, as
an adversary guessing all the keys in the UKU game with probability ǫ only
yields an adversary recovering all the bits b[1], . . . ,b[m] in the LORX game
with probability ǫ. Just outputting the xor of these bits is not sufficient, as
we have to boost the success probability to 1+ǫ

2 in order to obtain the desired
relation between the two advantage measures.

In analogy to the si setting, UKU does not imply LORX. Just take a scheme
SE = (K, E ,D) encrypting n-bit messages which is UKU-secure, and modify it
into a scheme SE′ = (K′, E ′,D′) where K = K′ and E ′(K,M) = E ′(K,M) ‖M [0],
with M [0] being the first bit of M . Clearly, SE′ is still UKU-secure but not
LORX-secure

As indicated above, a proof that RORX implies UKU is much more involved
and incurs a factor 2m loss. Roughly speaking, this is because in the si case, in
the reduction needed to prove that ROR implies KU, the ROR adversary can
only simulate the execution of the KU adversary correctly in the case where the
bit is 1, i.e., the encryption oracle returns the actual encryption of a message.
This results in a factor two loss in terms of advantage. Upon translating this
technique to the mi case, the factor 2 becomes 2m, as all bits need to be 1 for
the UKU adversary to output the right keys with some guaranteed probability.
However, we will not follow this route for the proof of this result. Instead, we
can obtain the same result by combining Theorem 2 and Theorem 1.

LORX versus RORX. In the si setting, LOR and ROR are the same up to a
factor 2 in the advantage [4]. The LOR implies ROR implication is trivial and
ROR implies LOR is a simple hybrid argument. We now discuss the relation
between the mi counterparts, namely RORX and LORX, which is both more
complex and more challenging to establish.

Theorem 2. [RORX ⇒ LORX] Let SE = (K, E ,D) be a symmetric encryption

scheme. For all m, t, qc > 0, and all vectors q we have Advlorx
SE,m(t,q, qc) ≤

2m ·Advrorx
SE,m(t′,q, qc), where t′ = t+O(1).

As discussed in Section 1, the multiplicative factor 2m is often of no harm because
advantages are already exponentially small in m. The factor is natural, being the
mi analogue of the factor 2 appearing in the traditional si proof, and examples
can be given showing that the bound is tight. The proof of the above is in [6].

14. Multi-Instance Security

Multi-instance Security and Password-based Cryptography 11

The difficulty is adapting the hybrid argument technique to the mi setting. We
omit the much simpler proof of the converse:

Theorem 3. [LORX ⇒ RORX] Let SE = (K, E ,D) be a symmetric encryption

scheme. For all m, t, qc > 0, and all vectors q we have Advrorx
SE,m(t,q, qc) ≤

Advlorx
SE,m(t′,q, qc), where t′ = t+O(1).

LORX implies AND. Intuitively, one might expect AND security to be a
stronger requirement than LORX security, as the former seems easier to break
than the latter. However we show that under a fairly minimal requirement,
LORX implies AND. This brings another argument in support of LORX: Even
if an application requires AND security, it turns out that proving LORX security
is generally sufficient. The following theorem is to be interpreted as follows: In
general, if we only know that Advlorx

SE,m(t,q, qc) is small, we do not know how

to prove Advand
SE,m(t′,q, qc) is also small (for t′ ≈ t), or whether this is true at

all. As we sketched above, the reason is that we do not know how to use an ad-
versary A for which the ANDSE,m advantage is large to construct an adversary
for which the LORXSE,m advantage is large. Still, one would expect that such
an adversary might more easily yield one for which the LORXSE,k advantage is
sufficiently large, for some k ≤ m. The following theorem uses a probabilistic
lemma due to Unger [35] to confirm this intuition.

Theorem 4. Let SE = (K, E ,D) be a symmetric encryption scheme. Further,

let m, t, q, and qc be given, and assume that there exist C, ǫ, and γ such that

for all 1 ≤ i ≤ m,

max
S⊆{1,...,m},|S|=i

Advlorx
SE,i(t

∗
S ,q[S], qc) ≤ C · ǫi + γ ,

where q[S] is the projection of q on the components in S, and t∗S = t + O(tE ·
∑

i/∈S q[i]), with tE denoting the running time needed for one encryption with E.

Then, Advand
SE,m(t,q, qc) ≤ γ + C ·

∏m
i=1(1 + ǫi)/2.

We are not able to prove that the converse (AND implies LORX) is true in
general, but in the absence of corruptions one can upper bound Advlorx

SE,m(t,q, 0)

in terms of Advand
SE,m′(t′,q′, 0) for m′ ≈ 2m and t′ and q′ being much larger than

t,q. The proof, which we omit, follows the lines of the proof of the XOR Lemma
from the Direct Product Theorem given by [18], and relies on the Goldreich-
Levin theorem [17]. As the loss in concrete security in this reduction is very
large, and it only holds in the corruption-free case, we find this an additional
argument to support the usage of the LORX metric.

3 Password-based Encryption via KDFs

We now turn to our main motivating application, that of password based encryp-
tion (PBE) as specified in PKCS#5 [32]. The schemes specified there combine
a conventional mode of operation (e.g., CBC mode) with a password-based key
derivation function (KDF). We start with formalizing the latter.

14. Multi-Instance Security

12 Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro

Password-based KDFs. Formally, a (k, s, c)-KDF is a deterministic map KD

: {0, 1}∗×{0, 1}s → {0, 1}k that may make use of an underlying ideal primitive.
Here c is the iteration count, which specifies the multiplicative increase in work
that should slow down brute force attacks.

PKCS#5 describes two KDFs [32]. We treat the first in detail and discuss
the second in [6]. Let KD1

H(pw, sa) = Hc(pw ‖ sa) where Hc is the function
that composes H with itself c times. To generalize beyond concatenation, we
can define a function Encode(pw, sa) that describes how to encode its inputs
onto {0, 1}∗ with efficiently computable inverse Decode(W).

PBE schemes. A PBE scheme is just a symmetric encryption scheme where we
view the keys as passwords and key generation as a password sampling algorithm.
To highlight when we are thinking of key generation as password sampling we will
use P to denote key generation (instead ofK). We will also write pw for a key that
we think of as a password. Let KD be a (k, s, c)-KDF and let SE = (K, E ,D) be
an encryption scheme with K outputting uniformly selected k-bit keys. Then we
define the PBE scheme SE [KD, SE] = (P , E ,D) as follows. Encryption E(pw,M)
is done via sa←$ {0, 1}s ; K ← KD(pw, sa) ; C←$ E(K,M), returning (sa, C) as
the ciphertext. Decryption recomputes the key K by reapplying the KDF and
then applies D. If the KDF is KD1 and the encryption scheme is CBC mode,
then one obtains the first PBE scheme from PKCS#5 [32].

Password guessing. We aim to show that security of the above constructions
holds up to the amount of work required to brute-force the passwords output
by P . This begs the question of how we measure the strength of a password
sampler. We will formalize the hardness of guessing passwords output by some
sampler P via an adaptive guessing game: It challenges an adversary with guess-
ing passwords adaptively in a setting where the attacker may, also, adaptively
learn some passwords via a corruption oracle. Concretely, let GUESSP,m be
the game defined in Figure 3. A (qt, qc)-guessing adversary is one that makes
at most qt queries to Test and qc queries to Cor. An adversary B’s guessing
advantage is Advguess

P,m (B) = Pr
[

GUESSBP,m ⇒ true
]

. We assume without loss
of generality that A does not make any pointless queries : (1) repeated queries
to Cor on the same value; (2) a query Test(i, ·) following a query of Cor(i);
and (3) a query Cor(i) after a query Test(i, pw) that returned true. We also
define a variant of the above guessing game that includes salts and allows an
attacker to test password-salt pairs against all m instances simultaneously. This
will be useful as an intermediate step when reducing to guessing advantage.
The game saGUESSP,m,ρ is shown in Figure 3 and we define advantage via

Advsa-guess
P,m (B) = Pr

[

saGUESSBP,m ⇒ true
]

. An easy argument proves the fol-
lowing lemma.

Lemma 5. Let m, ρ > 0, let P be a password sampler and let A be an (qt, qc)-
guessing GUESSP,m adversary. Then there is a (qt, qc)-guessing saGUESSP,m,ρ

adversary B such that Advsa-guess
P,m,ρ (A) ≤ Advguess

P,m (B) +m2ρ2/2s. �

Samplers with high min-entropy. Even though the guessing advantage pre-
cisely quantifies strength of password samplers, good upper bounds in terms of

14. Multi-Instance Security

Multi-instance Security and Password-based Cryptography 13

main GUESSP,m

pw[1], . . . ,pw[m]←$P

pw′←$ BTest,Cor

Ret
∧

m

i=1(pw
′[i] = pw[i])

proc. Test(i, pw)

If (pw = pw[i]) then Ret true

Ret ⊥

proc. Cor(i)

Ret pw[i]

main saGUESSP,m,ρ

pw[1], . . . ,pw[m]←$P

For i = 1 to m do

For j = 1 to ρ do

sa[i, j]←$ {0, 1}s

pw′←$ BTest,Cor(sa)

Ret
∧

m

i=1(pw
′[i] = pw[i])

proc. Test(pw, sa)

For i = 1 to m do

For j = 1 to ρ do

If (pw, sa) = (pw[i], sa[i, j]) then

Ret (i, j)

Ret (⊥,⊥)

proc. Cor(i)

Ret pw[i]

Fig. 3. An adaptive password-guessing game.

the adversary’s complexity and of some simpler relevant parameters of a pass-
word sampler are desirable. One interesting case is samplers with high min-
entropy. Formally, we say that P has min-entropy µ if for all pw′ it holds that
Pr[pw = pw′] ≤ 2−µ over the coins used in choosing pw←$ P .

Theorem 6. Fix m ≥ qc ≥ 0 and a password sampler P with min-entropy

µ. Let B be a (qt, qc)-adversary for GUESSP,m making qi queries of the form

Test(i, ·) with qt = q1 + · · · + qm. Let δ = qt/(m2µ) and let γ = (m − qc)/m.

Then Advguess
P,m (B) ≤ e−m∆(γ,δ) where ∆(γ, δ) = γ ln(γδ) + (1 − γ) ln(1−γ

1−δ). �

Using∆(γ, δ) ≥ 2(γ−δ)2, we see that to win the guessing game for qc corruptions,
qt ≈ (m−qc)·2

µ Test queries are necessary, and the brute-force attack is optimal.
Note that the above bound is the best we expect to prove: Indeed, assume for a
moment that we restrict ourselves to adversaries that want to recover a subset
of m− qc passwords, without corruptions, and make qt/m queries Test(i, ·), for
each i, which are independent from queries Test(j, ·) for other j 6= i. Then, each
individual password is found, independently, with probability at most qt/(m·2

µ),
and if one applies the Chernoff bound, the probability that a subset of size m−qc
of the passwords are retrieved is upper bounded by e−m∆(γ,δ). In our case, we
have additional challenges: Foremost, queries for each i are not independent.
Also, the number of queries may not be the same for each index i. And finally,
we allow for corruption queries.

The full proof of Theorem 6 is given in [6]. At a high level, it begins by
showing how to move to a simpler setting in which the adversary wins by re-
covering a subset of the passwords without the aid of a corrupt oracle. The
resulting setting is an example of a threshold direct product game. This allows
us to apply a generalized Chernoff bound due to Panconesi and Srinivasan [31]
(see also [20]) that reduces threshold direct product games to (non-threshold)
direct product games. Finally, we apply an amplification lemma due to Maurer,
Pietrzak, and Renner [25] that yields a direct product theorem for the pass-
word guessing game. Let us also note that using the same technique, the better

14. Multi-Instance Security

14 Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro

bound Advguess
P,m (B) ≤ (qt/m2µ)m can be proven for the special case of (qt, 0)-

adversaries.

Correlated passwords. By taking independent samples from P we have cap-
tured only the setting of independent passwords. In practice, of course, passwords
may be correlated across users or, at least, user accounts. Our results extend to
the setting of jointly selecting a vector of m passwords, except of course the
analysis of the guessing advantage (whose proof fundamentally relies upon in-
dependence). This last only limits our ability to measure, in terms of simpler
metrics like min-entropy, the difficulty of a guessing game against correlated
passwords. This does not decrease the security proven, as the simulation-based
paradigm we introduce below allows one to reduce to the full difficulty of the
guessing game.

Simulation-based Security for KDFs.We define an ideal-functionality style
notion of security for KDFs. Figure 4 depicts two games. A message samplerM is
an algorithm that takes input a number r and outputs a pair of vectors (pw, sa)
each having r elements and with |sa[i]| = s for 1 ≤ i ≤ r. A simulator S is
a randomized, stateful procedure. It expects oracle access to a procedure Test
to which it can query a message. Game RealKD,M,r gives a distinguisher D the
messages and associated derived keys. Also, D can adaptively query the ideal
primitive H underlying KD. Game IdealS,M,r gives D the messages and keys
chosen uniformly at random. Now D can adaptively query a primitive oracle
implemented by a simulator S that, itself, has access to a Test oracle. Then we
define KDF advantage by

Advkdf
KD,M,r(D, S) = Pr

[

RealD
KD,M,r ⇒ 1

]

− Pr
[

IdealDS,M,r ⇒ 1
]

.

To be useful, we will require proving that there exists a simulator S such that
for any D,M pair the KDF advantage is “small”.

This notion is equivalent to applying the indifferentiability framework [26]
to a particular ideal KDF functionality. That functionality chooses messages
according to an algorithmM and outputs on its honest interface the messages
and uniform keys associated to them. On the adversarial interface is the test
routine which allows the simulator to learn keys associated to messages. This
raises the question of why not just use indifferentiability from a RO as our
target security notion. The reasons are two-fold. First, it is not clear that Hc

is indifferentiable from a random oracle. Second, even if it were, a proof would
seem to require a simulator that makes at least the same number of queries
to the RO as it receives from the distinguisher. This rules out showing security
amplification due to the iteration count c. Our approach solves both issues, since
we will show KDF security for simulators that make one call to Test for every c
made to it. For example, our simulator for KD1 will only query Test if a chain of
c hashes leads to the being-queried point X and this chain is not a continuation
of some longer chain. We formally capture this property of simulators next.

c-amplifying simulators. Let τ = (X1, Y1), . . . , (Xq, Yq) be a (possibly par-
tial) transcript of Prim queries and responses. We restrict attention to (k, s, c)-

14. Multi-Instance Security

Multi-instance Security and Password-based Cryptography 15

main RealKD,M,r

(pw, sa)←$M(r)

For i = 1 to r do

K[i]←$ KD
H (pw[i], sa[i])

b′←$DPrim(pw, sa,K)

Ret b′

proc. Prim(X)

Ret H(X)

main IdealS,M,r

(pw, sa)←$M(r)

For i = 1 to r do

K[i]←$ {0, 1}k

b′←$DPrim(pw, sa,K)

Ret b′

proc. Prim(X)

Ret STest(X)

sub. Test(pw, sa)

For i = 1 to r do

If (pw[i], sa[i]) = (pw, sa)

then Ret K[i, j]

Ret ⊥

Fig. 4. Games for the simulation-based security notion for KDFs.

KDFs for which we can define a predicate finalKD(Xi, τ) which evaluates to true
if there exists exactly one sequence of c indices j1 < · · · < jc such that (1) jc = i,
(2) there exist unique (pw, sa) such that evaluating KD

H(pw, sa) when H is such
that Yj = H(Xj) for 1 ≤ j ≤ i results exactly in the queries Xj1 , . . . , Xjc in any
order where Xi is the last query, and (3) finalKD(Xjr , τ) = false for all r < c.

Our simulators only query Test on queriesXi for which finalKD(Xi, τ) = true;
we call such queries KD-completion queries and simulators satisfying this are
called c-amplifying. Note that (3) implies that there are at most q/c total KD-
completion queries in a q-query transcript.

Hash-dependent passwords. We do not allowM access to the random ora-
cle H . This removes from consideration hash-dependent passwords. Our results
should extend to cover hash-dependent passwords if one has explicit domain sep-
aration between use of H during password selection and during key derivation.
Otherwise, an indifferentiability-style approach as we use here will not work due
to limitations pointed out in [33]. A full analysis of the hash-dependent password
setting would therefore appear to require direct analysis of PBE schemes without
taking advantage of the modularity provided by simulation-based approaches.

Security of KD1. For a message sampler M, let γ(M, r) := Pr[∃i 6= j :
(pw[i], sa[i]) = (pw[j], sa[j])] where (pw, sa)←$M(r). We prove the following
theorem in [6].

Theorem 7. Fix r > 0. Let KD1 be as above. There exists a simulator S such

that for all adversaries D making q RO queries, of which qc are chain completion

queries, and all message samplers M,

Advkdf
KD1,M,r(D, S) ≤ 4 γ(P , r) +

2r2 + 7 (2q + rc)2

2n
.

The simulator S makes at most qc Test queries, and answers each query in time

O(c). �

Security of PBE.We are now in a position to analyze the security of password
based encryption as used in PKCS#5. The following theorem, proved in [6],
uses the multi-user left-or-right security notion from [3] whose formalization is
recalled in [6]:

14. Multi-Instance Security

16 Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro

Theorem 8. Let m ≥ 1, let SE [KD, SE] = (P , E ,D) be the encryption scheme

built from an (k, s, c)-KDF KD and an encryption scheme SE = (K, E ,D) with

k-bit keys. Let A be an adversary making ρ queries to Enc(i, ·, ·) for each

i ∈ {1, . . . ,m} and making at most qc < m corruption queries. Let S be a

c-amplifying simulator. Then there exists message sampler M and adversaries

D, C, and B such that

Advlorx
SE,m(A) ≤ m ·Advmu-lor

SE,ρ (C) + 2 ·Advguess
P,m,ρ(B) + 2 ·Advkdf

KD,M,mρ(D, S)

If A makes q queries to H, then: D makes at most q queries to its H oracle;

B makes at most ⌈q/c⌉ queries to Test and at most qc corruption queries; and

C makes a single query Enc(i, ·, ·) for each 1 ≤ i ≤ ρ. Moreover, C’s running

time equals tA + q · tS plus a small, absolute constant, and where tA is the

running time of A, and tS is the time needed by S to answer a query. Finally,

γ(M,mρ) ≤ m2ρ2/2s. �

Note that the theorem holds even when SE is only one-time secure (meaning
it can be deterministic), which implies that the analysis covers tools such as
WinZip (c.f., [22]). In terms of the bound we achieve, Theorem 7 for KD1 shows
that an adversary that makesAdvkdf

KD,P∗,mρ(D, S) large requires q ≈ 2n/2 queries
to H , provided salts are large. If H is SHA-256 then this is about 2128 work.
Likewise, a good choice of SE will ensure that Advmu-lor

SE,K,ρ(C) will be very small.
Thus the dominating term ends up the guessing advantage of B against P , which
measures its ability to guess m− qc passwords.

Acknowledgments

Bellare was supported in part by NSF grants CCF-0915675, CNS-0904380 and
CNS-1116800. Ristenpart was supported in part by NSF grant CNS-1065134.
Tessaro was supported in part by NSF grants CCF-0915675, CCF-1018064.

This material is based on research sponsored by DARPA under agreement
numbers FA8750-11-C-0096 and FA8750-11-2-0225. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

References

1. M. Abadi and B. Warinschi. Password-based encryption analyzed. In L. Caires,
G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, ICALP 2005,
volume 3580 of LNCS, pages 664–676. Springer, July 2005.

2. O. Baudron, D. Pointcheval, and J. Stern. Extended notions of security for mul-
ticast public key cryptosystems. In U. Montanari, J. D. P. Rolim, and E. Welzl,
editors, ICALP 2000, volume 1853 of LNCS, pages 499–511. Springer, July 2000.

14. Multi-Instance Security

Multi-instance Security and Password-based Cryptography 17

3. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In B. Preneel, editor, EUROCRYPT 2000,
volume 1807 of LNCS, pages 259–274. Springer, May 2000.

4. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In 38th FOCS, pages 394–403. IEEE Computer Society
Press, Oct. 1997.

5. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In B. Preneel, editor, EUROCRYPT 2000, volume 1807
of LNCS, pages 139–155. Springer, May 2000.

6. M. Bellare, T. Ristenpart, and S. Tessaro. Multi-instance security and its ap-
plication to password-based cryptography. Cryptology ePrint Archive, Report
2012/196, 2012. http://eprint.iacr.org/.

7. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press,
Nov. 1993.

8. X. Boyen. Halting password puzzles: hard-to-break encryption from human-
memorable keys. In Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium, page 9. USENIX Association, 2007.

9. X. Boyen. New paradigms for password security (keynote lecture). In Y. Mu,
W. Susilo, and J. Seberry, editors, ACISP 08, volume 5107 of LNCS, pages 1–5.
Springer, July 2008.

10. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally com-
posable password-based key exchange. In R. Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 404–421. Springer, May 2005.

11. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited:
How to construct a hash function. In V. Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 430–448. Springer, Aug. 2005.

12. Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk, and T. Rabin. Randomness extrac-
tion and key derivation using the CBC, cascade and HMAC modes. In M. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 494–510. Springer, Aug. 2004.

13. Y. Dodis, R. Impagliazzo, R. Jaiswal, and V. Kabanets. Security amplification for
interactive cryptographic primitives. In O. Reingold, editor, TCC 2009, volume
5444 of LNCS, pages 128–145. Springer, Mar. 2009.

14. R. Gennaro and Y. Lindell. A framework for password-based authenticated key
exchange. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages
524–543. Springer, May 2003.

15. O. Goldreich. Three XOR-Lemmas — An exposition, 1995. Available at: http:
//www.wisdom.weizmann.ac.il/.

16. O. Goldreich, R. Impagliazzo, L. A. Levin, R. Venkatesan, and D. Zuckerman.
Security preserving amplification of hardness. In 31st FOCS, pages 318–326. IEEE
Computer Society Press, Oct. 1990.

17. O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In
21st ACM STOC, pages 25–32. ACM Press, May 1989.

18. O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR-lemma. In Studies in
Complexity and Cryptography. Miscellanea on the Interplay between Randomness
and Computation, volume 6650 of LNCS, pages 273–301. Springer, 2011.

19. I. Haitner, D. Harnik, and O. Reingold. On the power of the randomized iterate.
In C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 22–40. Springer,
Aug. 2006.

14. Multi-Instance Security

18 Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro

20. R. Impagliazzo and V. Kabanets. Constructive proofs of concentration bounds.
In M. J. Serna, R. Shaltiel, K. Jansen, and J. D. P. Rolim, editors, APPROX-
RANDOM, volume 6302 of LNCS, pages 617–631. Springer, 2010.

21. J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure applications of low-entropy
keys. In E. Okamoto, G. I. Davida, and M. Mambo, editors, 1st Information
Security Workshop (ISW ’97), volume 1396 of LNCS, pages 121–134. Springer,
Sept. 1998.

22. T. Kohno. Attacking and repairing the winZip encryption scheme. In V. Atluri,
B. Pfitzmann, and P. McDaniel, editors, ACM CCS 04, pages 72–81. ACM Press,
Oct. 2004.

23. H. Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In
T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer,
Aug. 2010.

24. M. Luby and C. Rackoff. A study of password security. In C. Pomerance, editor,
CRYPTO’87, volume 293 of LNCS, pages 392–397. Springer, Aug. 1988.

25. U. M. Maurer, K. Pietrzak, and R. Renner. Indistinguishability amplification.
In A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 130–149.
Springer, Aug. 2007.

26. U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In
M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, Feb.
2004.

27. U. M. Maurer and S. Tessaro. Computational indistinguishability amplifica-
tion: Tight product theorems for system composition. In S. Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 355–373. Springer, Aug. 2009.

28. U. M. Maurer and S. Tessaro. A hardcore lemma for computational indistinguisha-
bility: Security amplification for arbitrarily weak PRGs with optimal stretch. In
D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 237–254. Springer,
Feb. 2010.

29. R. Morris and K. Thompson. Password security: a case history. Commun. ACM,
22:594–597, November 1979.

30. S. Myers. Efficient amplification of the security of weak pseudo-random function
generators. Journal of Cryptology, 16(1):1–24, Jan. 2003.

31. A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an
extension of the chernoff-hoeffding bounds. SIAM J. Comput., 26(2):350–368, 1997.

32. PKCS #5: Password-based cryptography standard (rfc 2898). RSA Data Security,
Inc., Sept. 2000. Version 2.0.

33. T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Lim-
itations of the indifferentiability framework. In K. G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 487–506. Springer, May 2011.

34. S. Tessaro. Security amplification for the cascade of arbitrarily weak PRPs: Tight
bounds via the interactive hardcore lemma. In Y. Ishai, editor, TCC 2011, volume
6597 of LNCS, pages 37–54. Springer, Mar. 2011.

35. F. Unger. A probabilistic inequality with applications to threshold direct-product
theorems. In 50th FOCS, pages 221–229. IEEE Computer Society Press, Oct. 2009.

36. D. Wagner and I. Goldberg. Proofs of security for the Unix password hashing
algorithm. In T. Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS,
pages 560–572. Springer, Dec. 2000.

37. A. C. Yao. Theory and applications of trapdoor functions. In 23rd FOCS, pages
80–91. IEEE Computer Society Press, Nov. 1982.

14. Multi-Instance Security

Multi-instance Security and Password-based Cryptography 19

38. F. F. Yao and Y. L. Yin. Design and analysis of password-based key derivation
functions. In A. Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages
245–261. Springer, Feb. 2005.

14. Multi-Instance Security

To Hash or Not to Hash Again?

(In)differentiability Results for H
2 and HMAC

Yevgeniy Dodis1, Thomas Ristenpart2, John Steinberger3, and
Stefano Tessaro4

1 New York University, dodis@cs.nyu.edu
2 University of Wisconsin–Madison, rist@cs.wisc.edu

3 Tsinghua University, jpsteinb@gmail.com
4 Massachusetts Institute of Technology, tessaro@csail.mit.edu

Abstract. We show that the second iterate H2(M) = H(H(M)) of a
random oracle H cannot achieve strong security in the sense of indiffer-
entiability from a random oracle. We do so by proving that indifferen-
tiability for H2 holds only with poor concrete security by providing a
lower bound (via an attack) and a matching upper bound (via a proof
requiring new techniques) on the complexity of any successful simulator.
We then investigate HMAC when it is used as a general-purpose hash
function with arbitrary keys (and not as a MAC or PRF with uniform,
secret keys). We uncover that HMAC’s handling of keys gives rise to
two types of weak key pairs. The first allows trivial attacks against its
indifferentiability; the second gives rise to structural issues similar to
that which ruled out strong indifferentiability bounds in the case of H2.
However, such weak key pairs do not arise, as far as we know, in any
deployed applications of HMAC. For example, using keys of any fixed
length shorter than d − 1, where d is the block length in bits of the un-
derlying hash function, completely avoids weak key pairs. We therefore
conclude with a positive result: a proof that HMAC is indifferentiable
from a RO (with standard, good bounds) when applications use keys of
a fixed length less than d− 1.

Keywords: Indifferentiability, Hash functions, HMAC.

1 Introduction

Cryptographic hash functions such as those in the MD and SHA families are
constructed by extending the domain of a fixed-input-length compression func-
tion via the Merkle-Damg̊ard (MD) transform. This applies some padding to a
message and then iterates the compression function over the resulting string to
compute a digest value. Unfortunately, hash functions built this way are vulnera-
ble to extension attacks that abuse the iterative structure underlying MD [22, 34]:
given the hash of a message H(M) an attacker can compute H(M ‖X) for some
arbitrary X , even without knowing M .

In response, suggestions for shoring up the security of MD-based hash func-
tions were made. The simplest is due to Ferguson and Schneier [20], who advocate

1

15. To Hash or Not to Hash Again?

a hash-of-hash construction: H2(M) = H(H(M)), the second iterate of H . An
earlier example is HMAC [5], which similarly applies a hash function H twice,
and can be interpreted as giving a hash function with an additional key input.
Both constructions enjoy many desirable features: they use H as a black box, do
not add large overheads, and appear to prevent the types of extension attacks
that plague MD-based hash functions.

Still, the question remains whether they resist other attacks. More generally,
we would like that H2 and HMAC behave like random oracles (ROs). In this
paper, we provide the first analysis of these functions as being indifferentiable
from ROs in the sense of [13, 29], which (if true) would provably rule out most
structure-abusing attacks. Our main results surface a seemingly paradoxical fact,
that the hash-of-hashH2 cannot be indifferentiable from a RO with good bounds,
even if H is itself modeled as a keyed RO. We then explore the fall out, which
also affects HMAC.

Indifferentiability. Coron et al. [13] suggest that hash functions be designed
so that they “behave like” a RO. To define this, they use the indifferentiability
framework of Maurer et al. [29]. Roughly, this captures that no adversary can
distinguish between a pair of oracles consisting of the construction (e.g., H2) and
its underlying ideal primitive (an ideal hash H) and the pair of oracles consisting
of a RO and a simulator (which is given access to the RO). A formal definition
is given in Section 2. Indifferentiability is an attractive goal because of the MRH
composition theorem [29]: if a scheme is secure when using a RO it is also secure
when the RO is replaced by a hash construction that is indifferentiable from a
RO. The MRH theorem is widely applicable (but not ubiquitously, c.f., [31]),
and so showing indifferentiability provides broad security guarantees.

While there exists a large body of work showing various hash constructions
to be indifferentiable from a RO (c.f., [1, 7, 11–13, 15, 16, 23]), none have yet ana-
lyzed either H2 or HMAC. Closest is the confusingly named HMAC construction
from [13], which hashes a message by computing H2(0d ‖M) where H is MD
using a compression function with block size d bits. This is not the same as
HMAC proper nor H2, but seems close enough to both that one would expect
that the proofs of security given in [13] apply to all three.

1.1 The Second Iterate Paradox

Towards refuting the above intuition, consider that H2(H(M)) = H(H2(M)).
This implies that an output of the construction H2(M) can be used as an inter-
mediate value to compute the hash of the message H(M). This property does
not exist in typical indifferentiable hash constructions, which purposefully en-
sure that construction outputs are unlikely to coincide with intermediate values.
However, and unlike where extension attacks apply (they, too, take advantage
of outputs being intermediate values), there are no obvious ways to distinguish
H2 from a RO.

Our first technical contribution, then, is detailing how this structural prop-
erty might give rise to vulnerabilities. Consider computing a hash chain of

2

15. To Hash or Not to Hash Again?

length ℓ using H2 as the hash function. That is, compute Y = H2ℓ(M). Do-
ing so requires 2ℓ H-applications. But the structural property of H2 identified
above means that, given M and Y one can compute H2ℓ(H(M)) using only
one H-application: H(Y) = H(H2ℓ(M)) = H2ℓ(H(M)). Moreover, the val-
ues computed along the first hash chain, namely the values Yi ← H2i(M) and
Y ′
i ← H2i(H(M)) for 0 ≤ i ≤ ℓ are disjoint with overwhelming probability

(when ℓ is not unreasonably large). Note that for chains of RO applications,
attempting to cheaply compute such a second chain would not lead to disjoint
chains. This demonstrates a way in which a RO and H2 differ.

We exhibit a cryptographic setting, called mutual proofs of work, in which
the highlighted structure of H2 can be exploited. In mutual proofs of work, two
parties prove to each other that they have computed some asserted amount of
computational effort. This task is inspired by, and similar to, client puzzles [18,
19, 24, 25, 33] and puzzle auctions [35]. We give a protocol for mutual proofs of
work whose computational task is computing hash chains. This protocol is secure
when using a random oracle, but when using instead H2 an attacker can cheat
by abusing the structural properties discussed above.

Indifferentiability lower bound. The mutual proofs of work example al-
ready points to the surprising fact that H2 does not “behave like” a RO. In fact,
it does more, ruling out proofs of indifferentiability for H2 with good bounds.
(The existence of a tight proof of indifferentiability combined with the compo-
sition theorem of [29] would imply security for mutual proofs of work, yielding
a contradiction.) However, we find that the example does not surface well why
simulators must fail, and the subtletly of the issues here prompt further inves-
tigation. We therefore provide a direct negative result in the form of an indif-
ferentiability distinguisher. We prove that should the distinguisher make q1, q2
queries to its two oracles, then for any simulator the indifferentiability advantage
of the distinguisher is lower-bounded by 1− (q1q2)/qS − q2S/2

n. (This is slightly
simpler than the real bound, see Section 3.2.) What this lower bound states is
that the simulator must make very close to min{q1q2, 2

n/2} queries to prevent
this distinguisher’s success. The result extends to structured underlying hash
functions H as well, for example should H be MD-based.

To the best of our knowledge, our results are the first to show lower bounds on
the number of queries an indifferentiability simulator must use. That a simulator
must make a large number of queries hinders the utility of indifferentiability.
When one uses the MRH composition theorem, the security of a scheme when
using a monolothic RO must hold up to the number of queries the simulator
makes. For example, in settings where one uses a hash function needing to be
collision-resistant and attempts to conclude security via some (hypothetical)
indifferentiability bound, our results indicate that the resulting security bound
for the application can be at most 2n/4 instead of the expected 2n/2.

Upper bounds for second iterates. We have ruled out good upper bounds
on indifferentiability, but the question remains whether weak bounds exist. We
provide proofs of indifferentiability for H2 that hold up to about 2n/4 distin-

3

15. To Hash or Not to Hash Again?

guisher queries (our lower bounds rule out doing better) when H is a RO. We
provide some brief intuition about the proof. Consider an indifferentiability ad-
versary making at most q1, q2 queries. The adversarial strategy of import is to
compute long chains using the left oracle, and then try to “catch” the simulator
in an inconsistency by querying it on a value at the end of the chain and, after-
wards, filling in the intermediate values via further left and right queries. But
the simulator can avoid being caught if it prepares long chains itself to help it
answer queries consistently. Intuitively, as long as the simulator’s chains are a bit
longer than q1 hops, then the adversary cannot build a longer chain itself (being
restricted to at most q1 queries) and will never win. The full proofs of these
results are quite involved, and so we defer more discussion until the body. We
are unaware of any indifferentiability proofs that requires this kind of nuanced
strategy by the simulator.

1.2 HMAC with Arbitrary Keys

HMAC was introduced by Bellare, Canetti, and Krawczyk [5] to be used as
a pseudorandom function or message authentication code. It uses an underly-
ing hash function H ; let H have block size d bits and output length n bits.
Computing a hash HMAC(K,M) works as follows [26]. If |K| > d then rede-
fine K ← H(K). Let K ′ be K padded with sufficiently many zeros to get a d
bit string. Then HMAC(K,M) = H(K ′⊕ opad ‖H(K ′⊕ ipad ‖M)) where opad

and ipad are distinct d-bit constants. The original (provable security) analyses of
HMAC focus on the setting that the keyK is honestly generated and secret [3, 5].
But what has happened is that HMAC’s speed, ubiquity, and assumed security
properties have lead it to be used in a wide variety of settings.

Of particular relevance are settings in which existing (or potential) proofs of
security model HMAC as a keyed RO, a function that maps each key, message
pair to an independent and uniform point. There are many examples of such
settings. The HKDF scheme builds from HMAC a general-purpose key derivation
function [27, 28] that uses as key a public, uniformly chosen salt. When used with
a source of sufficiently high entropy, Krawczyk proves security using standard
model techniques, but when not proves security assuming HMAC is a keyed
RO [28]. PKCS#5 standardizes password-based key derivation functions that
use HMAC with key being a (low-entropy) password [30]. Recent work provides
the first proofs of security when modeling HMAC as a RO [9]. Ristenpart and
Yilek [32], in the context of hedged cryptography [4], use HMAC in a setting
whose cryptographic security models allow adversarially specified keys. Again,
proofs model HMAC as a keyed RO.

As mentioned previously, we would expect a priori that one can show that
HMAC is indifferentiable from a keyed RO even when the attacker can query
arbitrary keys. Then one could apply the composition theorem of [29] to derive
proofs of security for the settings just discussed.

Weak key pairs in HMAC. We are the first to observe that HMAC has weak
key pairs. First, there exist K 6= K ′ for which HMAC(K,M) = HMAC(K ′,M).

4

15. To Hash or Not to Hash Again?

These pairs of keys arise because of HMAC’s ambiguous encoding of differing-
length keys. Trivial examples of such “colliding” keys include anyK,K ′ for which
either |K| < d and K ′ = K ‖ 0s (for any 1 ≤ s ≤ d− |K|), or |K| > d and K ′ =
H(K). Colliding keys enable an easy attack that distinguishes HMAC(·, ·) from a
random function R(·, ·), which also violates the indifferentiability of HMAC. On
the other hand, as long as H is collision-resistant, two keys of the same length
can never collide. Still, even if we restrict attention to (non-colliding) keys of
a fixed length, there still exist weak key pairs, but of a different form that we
term ambiguous. An example of an ambiguous key pair is K,K ′ of length d bits
such that K ⊕ ipad = K ′⊕ opad. Because the second least significant bit of ipad
and opad differ (see Section 4) and assuming d > n− 2, ambiguous key pairs of
a fixed length k only exist for k ∈ {d − 1, d}. The existence of ambiguous key
pairs in HMAC leads to negative results like those given for H2. In particular,
we straightforwardly extend the H2 distinguisher to give one that lower bounds
the number of queries any indifferentiability simulator must make for HMAC.

Upper bounds for HMAC. Fortunately, it would seem that weak key pairs do
not arise in typical applications. Using HMAC with keys of some fixed bit length
smaller than d− 1 avoids weak key pairs. This holds for several applications, for
example the recommendation with HKDF is to use n-bit uniformly chosen salts
as HMAC keys. This motivates finding positive results for HMAC when one
avoids the corner cases that allow attackers to exploit weak key pairs.

Indeed, as our main positive result, we prove that, should H be a RO or
an MD hash with ideal compression functions, HMAC is indifferentiable from

a keyed RO for all distinguishers that do not query weak key pairs. Our result
holds for the case that the keys queried are of length d or less. This upper bound
enjoys the best, birthday-bound level of concrete security possible (up to small
constants), and provides the first positive result about the indifferentiability of

the HMAC construction.

1.3 Discussion

The structural properties within H2 and HMAC are, in theory, straightforward
to avoid. Indeed, as mentioned above, Coron et al. [13] prove indifferentiable
from a RO the construction H2(0d ‖M) where H is MD using a compression
function with block size d bits and chaining value length n ≤ d bits. Analogously,
our positive results about HMAC imply as a special case that HMAC(K,M),
for any fixed constant K, is indifferentiable from a RO.

We emphasize that we are unaware of any deployed cryptographic applica-
tion for which the use of H2 or HMAC leads to a vulnerability. Still, our results
show that future applications should, in particular, be careful when using HMAC
with keys which are under partial control of the attacker. More importantly, our
results demonstrate the importance of provable security in the design of hash
functions (and elsewhere in cryptography), as opposed to the more common
“attack-fix” cycle. For example, the hash-of-hash suggestion of Ferguson and
Schneier [20] was motivated by preventing the extension attack. Unfortunately,

5

15. To Hash or Not to Hash Again?

in so doing they accidentally introduced a more subtle (although less danger-
ous) attack, which was not present on the original design.5 Indeed, we discov-
ered the subtlety of the problems within H2 and HMAC, including our explicit
attacks, only after attempting to prove indifferentiability of these constructions
(with typical, good bounds). In contrast, the existing indifferentiability proofs of
(seemingly) small modifications of these hash functions, such as H2(0d ‖M) [13],
provably rule out these attacks.

1.4 Prior Work

There exists a large body of work showing hash functions are indifferentiable
from a RO (c.f., [1, 7, 11–13, 15, 16, 23]), including analyses of variants of H2 and
HMAC. As mentioned, a construction called HMAC was analyzed in [13] but
this construction is not HMAC as standardized. Krawczyk [28] suggests that the
analysis of H2(0 ‖M) extends to the case of HMAC, but does not offer proof.6

HMAC has received much analysis in other contexts. Proofs of its security as
a pseudorandom function under reasonable assumptions appear in [3, 5]. These
rely on keys being uniform and secret, making the analyses inapplicable for
other settings. Analysis of HMAC’s security as a randomness extractor appear
in [14, 21]. These results provide strong information theoretic guarantees that
HMAC can be used as a key derivation function, but only in settings where the
source has a relatively large amount of min-entropy. This requirement makes the
analyses insufficient to argue security in many settings of practical importance.
See [28] for further discussion.

Full version. Due to space constraints, many of our technical results and
proofs are deferred to the full version of this paper [17].

2 Preliminaries

Notation and games. We denote the empty string by λ. If |X | < |Y | then
X ⊕ Y signifies that the X is padded with |Y | − |X | zeros first. For set X and

value x, we write X ∪← x to denote X ← X∪{x}. For non-empty sets Keys, Dom,
and Rng with |Rng | finite, a random oracle f : Keys×Dom→ Rng is a function
taken randomly from the space of all possible functions Keys × Dom → Rng .
We will sometimes refer to random oracles as keyed when Keys is non-empty,
whereas we omit the first parameter when Keys = ∅.

We use code-based games [10] to formalize security notions and within our
proofs. In the execution of a game G with adversary A, we denote by GA the
event that the game outputs true and by AG ⇒ y the event that the adversary

5 We note the prescience of the proposers of H2, who themselves suggested further
analysis was needed [20].

6 Fortunately, the HKDF application of [28] seems to avoid weak key pairs, and thus
our positive results for HMAC appear to validate this claim [28] for this particular
application.

6

15. To Hash or Not to Hash Again?

outputs y. Fixing some RAM model of computation, our convention is that the
running time Time(A) of an algorithm A includes its code size. Queries are unit
cost, and we will restrict attention to the absolute worst case running time which
must hold regardless of queries are answered.

Hash functions. A hash function H [P] : Keys × Dom → Rng is is a fam-
ily of functions from Dom to Rng , indexed by a set Keys, that possibly uses
(black-box) access to an underlying primitive P (e.g., a compression function).
We call the hash function keyed if Keys is non-empty, and key-less otherwise.
(In the latter case, we omit the first parameter.) We assume that the number
of applications of P in computing H [P](K,M) is the same for all K,M with
the same value of |K| + |M |. This allows us to define the cost of computing a
hash function H [P] on a key and message whose combined length is ℓ, denoted
Cost(H, ℓ), as the number of calls to P required to compute H [P](K,M) for
K,M with |K|+ |M | = ℓ. For a keyed random oracle R : Keys ×Dom→ Rng ,
we fix the convention that Cost(R, ℓ) = 1 for any ℓ for which there exists a key
K ∈ Keys and message M ∈ Dom such that |K|+ |M | = ℓ.

A compression function is a hash function for which Dom = {0, 1}n×{0, 1}d

and Rng = {0, 1}n for some numbers n, d > 0. Our focus will be on keyless
compression functions, meaning those of the form f : {0, 1}n×{0, 1}d → {0, 1}n.
Our results lift in a straightforward way to the dedicated-key setting [8]. The
ℓ-th iterate of H [P] is denoted Hℓ[P], and defined for ℓ > 0 by Hℓ[P](X) =
H [P](H [P](· · ·H [P](X)) · · ·) where the number of applications of H is ℓ. We
let H0[P](X) = X . We will often write H instead of H [P] when the underlying
primitive P is clear or unimportant.

Merkle-Damg̊ard. Let Pad : {0, 1}≤L → ({0, 1}n)+ be an injective padding
function. The one used in many of the hash functions within the SHA family
outputs M ‖ 10r ‖ 〈|M |〉64 where 〈|x|〉64 is the encoding of the length of M as
a 64-bit string and r is the smallest number making the length a multiple of d.
This makes L = 264 − 1. The function MD[f] : ({0, 1}n)+ → {0, 1}n is defined
as

MD[f](M) = f(f(· · · f(f(IV,M1),M2), · · ·),Mk)

where |M | = kd and M1 ‖ · · · ‖Mk. The function SMD[f] : {0, 1}≤L → {0, 1}n

is defined as SMD[f](M) = MD[f](Pad(M)).

Indifferentiability from a RO. Let R : Keys×Dom→ Rng be a random
oracle. Consider a hash construction H [P] : Keys ×Dom→ Rng from an ideal
primitive P . Let game RealH[P] be the game whose main procedure runs an

adversary AFunc,Prim and returns the bit that A outputs. The procedure Func on
input K ∈ Keys and M ∈ Dom returns H [P](K,M). The procedure Prim on
input X returns P (X). For a simulator S, let game IdealR,S be the game whose
main procedure runs an adversary AFunc,Prim and returns the bit that A outputs.
The procedure Func on input K ∈ Keys and M ∈ Dom returns R(K,M). The
procedure Prim on input X returns SR(X). The indifferentiability advantage

7

15. To Hash or Not to Hash Again?

of D is defined as

Advindiff
H[P],R,S(D) = Pr

[

RealDH[P] ⇒ y
]

− Pr
[

IdealDR,S ⇒ y
]

.

We focus on simulators that must work for any adversary, though our negative
results extend as well to the weaker setting in which the simulator can depend
on the adversary. The total query cost σ of an adversary D is the cumulative
cost of all its Func queries plus q2. (This makes σ the total number of P uses
in game RealH[P]. In line with our worst-case conventions, this means the same
maximums hold in IdealR,S although here it does not translate to P applica-
tions.)

We note that when Keys is non-empty, indifferentiability here follows [8] and
allows the distinguisher to choose keys during an attack. This reflects the desire
for a keyed hash function to be indistinguishable from a keyed random oracle
for arbitrary uses of the key input.

3 Second Iterates and their Security

Our investigation begins with the second iterate of a hash function, meaning
H2(M) = H(H(M)) where H : Dom→ Rng for sets Dom ⊇ Rng . For simplic-
ity, let Rng = {0, 1}n and assume that H is itself modeled as a RO. Is H2 good
in the sense of being like a RO? Given that we are modeling H as a RO, we
would expect that the answer would be “yes”. The truth is more involved. As
we’ll see in Section 4, similar subtleties exist in the case of the related HMAC
construction.

We start with the following observations. When computing H2(M) for some
M , we refer to the value H(M) as an intermediate value. Then, we note that the
value Y = H2(M) is in fact the intermediate value used when computing H2(X)
for X = H(M). Given Y = H2(M), then, one can compute H2(H(M)) directly
by computingH(Y). That the hash value Y is also the intermediate value used in
computing the hash of another message is cause for concern: other hash function
constructions that are indifferentiable from a RO (c.f., [2, 7, 8, 13, 23]) explicitly
attempt to ensure that outputs are not intermediate values (with overwhelming
probability over the randomness of the underlying idealized primitive). Moreover,
prior constructions for which hash values are intermediate values have been
shown to not be indifferentiable from a RO. For example Merkle-Damg̊ard-based
iterative hashes fall to extension attacks [13] for this reason. Unlike with Merkle-
Damg̊ard, however, it is not immediately clear how an attacker might abuse the
structure of H2.

We turn our attention to hash chains, where potential issues arise. For a hash
function H , we define a hash chain Y = (Y0, . . . , Yℓ) to be a sequence of ℓ + 1
values where Y0 is a message and Yi = H(Yi−1) for 1 ≤ i ≤ ℓ. Likewise when
using H2 a hash chain Y = (Y0, . . . , Yℓ) is a sequence of ℓ + 1 values where Y0

is a message and Yi = H2(Yi−1) for 1 ≤ i ≤ ℓ. We refer to Y0 as the start of the
hash chain and Yℓ as the end. Two chains Y, Y ′ are non-overlapping if no value
in one chain occurs in the other, meaning Yi 6= Y ′

j for all 0 ≤ i ≤ j ≤ ℓ.

8

15. To Hash or Not to Hash Again?

H HY0 YℓY1 · · · Yℓ−1HY ′
0 H Y ′

ℓ−1 H Y ′
ℓ

H2ℓ(Y0)

H2ℓ(Y ′
0)

Fig. 1. Diagram of two hash chains Y = (Y0, . . . , Yℓ) and Y ′ = (Y ′
0 , . . . , Y

′
ℓ) for

hash function H2.

For any hash function and given the start and end of a hash chain Y =
(Y0, . . . , Yℓ), one can readily compute the start and end of a new chain with just
two hash calculations. That is, set Y ′

0 ← H(Y0) and Y ′
ℓ ← H(Yℓ). However, the

chain Y ′ = (Y ′
0 , . . . , Y

′
ℓ) and the chain Y overlap. For good hash functions (i.e.,

ones that behave like a RO) computing the start and end of a non-overlapping
chain given the start and end of a chain Y0, Yℓ requires at least ℓ hash computa-
tions (assuming ℓ≪ 2n/2).

Now consider H2. Given the start and end of a chain Y = (Y0, . . . , Yℓ),
one can readily compute a non-overlapping chain Y ′ = (Y ′

0 , . . . , Y
′
ℓ) using just

two hash computations instead of the expected 2ℓ computations. Namely, let
Y ′
0 ← H(Y0) and Y ′

ℓ ← H(Yℓ). Then these are the start and end of the chain
Y ′ = (Y ′

0 , . . . , Y
′
ℓ) because

H2ℓ(Y ′
0) = H2ℓ(H(Y0)) = H(H2ℓ(Y0))

which we call the chain-shift property of H2. Moreover, assuming H is itself a
RO outputing n-bit strings, the two chains Y, Y ′ do not overlap with probability
at least 1− (2ℓ+2)2/2n. Figure 1 provides a pictoral diagram of the two chains
Y and Y ′.

3.1 A Vulnerable Application: Mutual Proofs of Work

In the last section we saw that the second iterate fails to behave like a RO in
the context of hash chains. But the security game detailed in the last section
may seem far removed from real protocols. For example, it’s not clear where
an attacker would be tasked with computing hash chains in a setting where it,
too, was given an example hash chain. We suggest that just such a setting could
arise in protocols in which parties want to assert to each other, in a verifiable
way, that they performed some amount of computation. Such a setting could
arise when parties must (provably) compare assertions of computational power,
as when using cryptographic puzzles [18, 19, 24, 25, 33, 35]. Or this might work
when trying to verifiably calibrate differing computational speeds of the two
parties’ computers. We refer to this task as a mutual proof of work.

Mutual proofs-of-work. For the sake of brevity, we present an example
hash-chain-based protocol and dispense with a more general treatment of mu-
tual proofs of work. Consider the two-party protocol shown in the left diagram

9

15. To Hash or Not to Hash Again?

P1 P2

X2 ←$ {0, 1}n
X2 - X1 ←$ {0, 1}n

X1�

Y1 ← Hℓ1 (X1)
ℓ1, Y1- Y2 ← Hℓ2 (X2)

ℓ2, Y2�

Ŷ1 ← {H
i(X1) | 0 ≤ i ≤ ℓ1} Ŷ1 ← {H

i(X1) | 0 ≤ i ≤ ℓ1}

Ŷ2 ← {H
i(X2) | 0 ≤ i ≤ ℓ2} Ŷ2 ← {H

i(X2) | 0 ≤ i ≤ ℓ2}

Y ′2 ← Hℓ2 (X2) Y ′1 ← Hℓ1 (X1)

Ret (Y ′2 = Y2)∧ Ret (Y ′1 = Y1)∧

(Ŷ1 ∩ Ŷ2 = ∅) (Ŷ1 ∩ Ŷ2 = ∅)

main POWH[P],n,ℓ1
:

X2 ←$ {0, 1}n

X1 ←$APrim(X2)

Y1 ← Hℓ1 [P](X1)

(ℓ2, Y2)←$APrim(ℓ1, Y1)

Ŷ1 ← {H
i[P](X1) | 0 ≤ i ≤ ℓ1}

Ŷ2 ← {H
i[P](X2) | 0 ≤ i ≤ ℓ2}

Y ′2 ← Hℓ2 [P](X2)

If q ≥ ℓ2 ·Cost(H, n) then

Ret false

Ret (Y ′2 = Y2 ∧ Ŷ1 ∩ Ŷ2 = ∅)

subroutine Prim(u)

q ← q + 1 ; Ret P (u)

Fig. 2. Example protocol (left) and adversarial P2 security game (right) for
mutual proofs of work.

of Figure 2. Each party initially chooses a random nonce and sends it to the
other. Then, each party computes a hash chain of some length —chosen by the
computing party— starting with the nonce chosen by the other party, and sends
the chain’s output along with the chain’s length to the other party. At this point,
both parties have given a witness that they performed a certain amount of work.
So now, each party checks the other’s asserted computation, determining if the
received value is the value resulting from chaining together the indicated number
of hash applications and checking that the hash chains used by each party are
non-overlapping. Note that unlike puzzles, which require fast verification, here
the verification step is as costly as puzzle solution.

The goal of the protocol is to ensure that the other party did compute exactly
their declared number of iterations. Slight changes to the protocol would lead
to easy ways of cheating. For example, if during verification the parties did not
check that the chains are non-overlapping, then P2 can easily cheat by choosing
X1 so that it can reuse a portion of the chain computed by P1

Security would be achieved should no cheating party succeed at convincing
an honest party using less than ℓ1 (resp. ℓ2) work to compute Y1 (resp. Y2). The
game POWH[P],n,ℓ1 formalizes this security goal for a cheating P2; see the right

portion of Figure 2. We let Advpow
H[P],n,ℓ1

(A) = Pr
[

POWA
H[P],n,ℓ1

]

. Note that

the adversary A only wins should it make q < ℓ2 ·Cost(H,n) queries, where ℓ2
is the value it declared and Cost(H) is the cost of computing H . Again we will
consider both the hash function H [P](M) = P (M) that just applies a RO P
and also H2[P](M) = P (P (M)), the second iterate of a RO. In the former case
the can make only ℓ2 − 1 queries and in the latter case 2ℓ2 − 1.

When H [P](M) = P (M), no adversary making q < ℓ2 queries to Prim can
win the POWH[P],n,ℓ1 game with high advantage. Intuitively, the reason is that,

despite being given X1 and Y1 where Y1 = P ℓ1(X1), a successful attacker must
still compute a full ℓ2-length chain and this requires ℓ2 calls to P . A more formal
treatment appears in the full version.

10

15. To Hash or Not to Hash Again?

Attack against any second iterate. Now let us analyze this protocol’s
security when we use as hash function H2[P] = P (P (M)) for a RO P : Dom→
Rng with Rng ⊆ Dom. We can abuse the chain-shift property of H2 in order to
win the POWH2,P,n,ℓ1 game for any n > 0 and ℓ1 > 2. Our adversary A works
as follows. It receives X2 and then chooses it’s nonce as X1 ← Prim(X2). When
it later receives Y1 = P 2ℓ1(X1), the adversary proceeds by setting ℓ2 = ℓ1 + 1
and setting Y2 ← Prim(Y1). Then by the chain-shift property we have that

Y2 = P (Y1) = P (P 2ℓ1(X1)) = P (P 2ℓ1(P (X2))) = P 2ℓ2(X2) .

The two chains will be non-overlapping with high probability (over the coins
used by P). Finally, A makes only 2 queries to Prim, so the requirement that
q < 2ℓ2 is met whenever ℓ1 > 1.

Discussion. As far as we are aware, mutual proofs of work have not before
been considered — the concept may indeed be of independent interest. A full
treatment is beyond the scope of this work. We also note that, of course, it is easy
to modify the protocols using H2 to be secure. Providing secure constructions
was not our goal, rather we wanted to show protocols which are insecure using
H2 but secure when H2 is replaced by a monolothic RO. This illustrates how,
hypothetically, the structure of H2 could give rise to subtle vulnerabilities in an
application.

3.2 Indifferentiability Lower and Upper Bounds

In this section we prove that any indifferentiability proof for the double iterate
H2 is subject to inherent quantitative limitations. Recall that indifferentiability
asks for a simulator S such that no adversary can distinguish between the pair of
oracles H2[P], P and R,S where P is some underlying ideal primitive and R is a
RO with the same domain and range as H2. The simulator can make queries to
R to help it in its simulation of P . Concretely, building on the ideas behind the
above attacks in the context of hash chains, we show that in order to withstand
a differentiating attack with q queries, any simulator for H2[P], for any hash
construction H [P] with output length n, must issue at least Ω(min{q2, 2n/2})
queries to the RO R. As we explain below, such a lower bound severely limits the
concrete security level which can be inferred by using the composition theorem
for indifferentiability, effectively neutralizing the benefits of using indifferentia-
bility in the first place.

The distinguisher. In the following, we let H = H [P] be an arbitrary hash
function with n-bit outputs relying on a primitive P , such as a fixed input-length
random oracle or an ideal cipher. We are therefore addressing an arbitrary second
iterate, and not focusing on some particular ideal primitive P (such as a RO as
in previous sections) or construction H . Indeed, H could equally well be Merkle-
Damg̊ard and P an ideal compression function, or H could be any number of
indifferentiable hash constructions using appropriate ideal primitive P .

Recall that Func and Prim are the oracles associated with construction and
primitive queries to H2 = H2[P] and P , respectively. Let w, ℓ be parameters (for

11

15. To Hash or Not to Hash Again?

now, think for convenience of w = ℓ). The attackerDw,ℓ starts by issuing ℓ queries
to Func to compute a chain of n-bit values (x0, x1, . . . , xℓ) where xi = H2(xi−1)
and x0 is a random n-bit string. Then, it also picks a random index j ∈ [1 .. w],
and creates a list of n-bit strings u[1], . . . ,u[w] with u[j] = xℓ, and all remaining
u[i] for i 6= j are chosen uniformly and independently. Then, for all i ∈ [1 .. w],
the distinguisher Dw,ℓ proceeds in asking all Prim queries in order to compute
v[i] = H(u[i]). Subsequently, the attacker compute y0 = H(x0) via Prim queries,
and also computes the chain (y0, y1, . . . , yℓ) such that yi = H2(yi−1) by making
ℓ Func queries. Finally, it decides to output 1 if and only if yℓ = v[j] and xℓ

as well as v[i] for i 6= j are not in {y0, y1, . . . , yℓ}. The attacker Dw,ℓ therefore
issues a total of 2ℓ Func queries and (2w + 1) · Cost(H,n) Prim queries.

In the real-world experiment, the distinguisher Dw,ℓ outputs 1 with very
high probability, as the condition yℓ = v[j] always holds by the chain-shifting
property of H2. In fact, the only reason for D outputting 0 is that one of xℓ and
v[i] for i 6= j incidentally happens to be in {y0, y1, . . . , yℓ}. The (typically small)
probability that this occurs obviously depends on the particular construction
H [P] at hand; it is thus convenient to define the shorthand

p(H,w, ℓ) = Pr [{xℓ, H(U1), . . . , H(Uw−1)} ∩ {y0, y1, . . . , yℓ} 6= ∅] ,

where x0, y0, x1, . . . , yℓ−1, xℓ, yℓ are the intermediate value of a chain of 2ℓ +
1 consecutive evaluations of H [P] starting at a random n-bit string x0, and
U1, . . . , Uw−1 are further independent random n-bit values. In the full version of
this paper we prove that for H [P] = P = R for a random oracle R : {0, 1}∗ →
{0, 1}n we have p(H,w, ℓ) = Θ((wℓ + ℓ2)/2n). Similar reasoning can be applied
to essentially all relevant constructions.

In contrast, in the ideal-world experiment, we expect the simulator to be
completely ignorant about the choice of j as long as it does not learn x0, and
in particular it does not know j while answering the Prim queries associated
with the evaluations of H(u[i]). Consequently, the condition required for Dw,ℓ

to output 1 appears to force the simulator, for all i ∈ [1 .. w], to prepare a distinct
chain of ℓ consecutive R evaluations ending in v[i], hence requiring w · ℓ random
oracle queries.

The following theorem quantifies the advantage achieved by the above distin-
guisher Dw,ℓ in differentiating against any simulator for the construction H [P].
Its proof is given in the full version.

Theorem 1. [Attack against H2] Let H [P] be an arbitrary hash construction

with n-bit outputs, calling a primitive P , and let R : {0, 1}∗ → {0, 1}n be a

random oracle. For all integer parameters w, ℓ ≥ 1, there exists an adversary

Dw,ℓ making 2ℓ Func-queries and (w+1) ·Cost(H,n) Prim-queries such that for

all simulators S,

Advindiff
H2 [P],R,S(Dw,ℓ) ≥ 1− p(H,w, ℓ)−

5ℓ2

2n+1
−

qSℓ

2n
−

q2S
2n
−

qS
w · ℓ

−
1

w
,

where qS is the overall number of R queries by S when replying to Dw,ℓ’s Prim

queries.

12

15. To Hash or Not to Hash Again?

Discussion. We now elaborate on Theorem 1. If we consider the distinguisher
Dw,ℓ from Theorem 1, we observe that by the advantage lower bound in the
theorem statement, if ℓ, w ≪ 2n/4 and consequently p(H,w, ℓ) ≈ 0, the num-
ber of queries made by the simulator, denoted qS = qS(2ℓ, w + 1) must satisfy
qS = Ω(w · ℓ) = Ω(q1 · q2) to ensure a sufficiently small indifferentiability advan-
tage. This in particular means that in the case where both q1 and q2 are large,
the simulator must make a quadratic effort to prevent the attacker from distin-
guishing. Below, in Theorem 2, we show that this simulation effort is essentially
optimal.

In many scenarios, this quadratic lower bound happens to be a problem, as
we now illustrate. As a concrete example, let SS = (key, sign, ver) be an arbitrary

signature scheme signing n bits messages, and let ˜SS[R] = (˜key
R
, ˜sign

R
, ṽer

R
)

forR : {0, 1}∗ → {0, 1}n be the scheme obtained via the hash-then-sign paradigm

such that ˜sign
R
(sk,m) = sign(sk,R(m)). It is well known that for an adversary

B making qsign signing and qR random oracle queries, there exists an adversary
C making qsign signing queries such that

Advuf-cma
S̃S[R]

(BR) ≤
(qsign + qR)2

2n
+Advuf-cma

SS (C) , (1)

where Advuf-cma
S̃S[R]

(BR) and Advuf-cma
SS (C) denote the respective advantages in

the standard uf-cma game for security of signature schemes (with and without

a random oracle, respectively). This in particular means that ˜SS is secure for
qsign and qR as large as Θ(2n/2), provided SS is secure for qsign signing queries.
However, let us now replaceR byH2[P] for an arbitrary constructionH = H [P].
Then, for all adversaries A making qP queries to P and qsign signing queries, we
can combine the concrete version of the MRH composition theorem proven in [31]
and (1) to infer that there exists an adversary C and a distinguisher D such that

Advuf-cma
S̃S[H2[P]]

(AP) ≤ Θ

(

(qsign · qP)
2

2n

)

+Advuf-cma
SS (C) +Advindiff

H2[P],R,S(D) ,

where C makes qsign signing queries . Note that even if the termAdvindiff
H2 [P],R,S(D)

is really small, this new bound can only ensure security for the resulting signature
scheme as long as qsign · qP = Θ(2n/2), i.e., if qsign = qP , we only get security up
to Θ(2n/4) queries, a remarkable loss with respect to the security bound in the
random oracle model.

We note that of course this does not mean that H2[P] for a concrete H
and P is unsuitable for a certain application, such as hash-then-sign. In fact,
H2[P] may well be optimally collision resistant. However, our result shows that
a sufficiently strong security level cannot be inferred from any indifferentiability
statement via the composition theorem, taking us back to a direct ad-hoc analysis
and completely loosing the one main advantage of having indifferentiability in
the first place.

Upper bound. Our negative results do not rule out positive results completely:
there could be indifferentiability upper bounds, though for simulators that make

13

15. To Hash or Not to Hash Again?

around O(q2) queries. Ideally, we would like upper bounds that match closely the
lower bounds given in prior sections. We do so for the special case ofH2[g](M) =
g(g(M)) for g : {0, 1}n → {0, 1}n being a RO.

Theorem 2. Let q1, q2 ≥ 0 and N = 2n. Let g : {0, 1}n → {0, 1}n and R :
{0, 1}n → {0, 1}n be uniform random functions. Then there exists a simulator S
such that

Advindiff
G[g],R,S(D) ≤

2((4q1 + 3)q2 + 2q1)
2

N
+

2((4q1 + 3)q2 + 2q1)(q1 + q2)

(N − 2q2 − 2q1)

for any adversary D making at most q1 queries to its left oracle and at most q2
queries to its right oracle. Moreover, for each query answer that it computes, S
makes at most 3q1 + 1 queries to RO and runs in time O(q1). �

The proof of the theorem appears in the full version of the paper. We note that
the simulator used must know the maximum number of queries the attacker will
make, but does not otherwise depend on the adversary’s strategy. The security
bound of the theorem is approximately (q1q2)

2/N , implying that security holds
up to q1q2 ≈ 2n/2.

4 HMAC as a General-purpose Keyed Hash Function

HMAC [5] uses a hash function to build a keyed hash function, i.e. one that
takes both a key and message as input. Fix some hash function7 H : {0, 1}∗ →
{0, 1}n. HMAC assumes this function H is built by iterating an underlying
compression function with a message block size of d ≥ n bits. We define the
following functions:

FK(M) = H((ρ(K)⊕ ipad) ‖M)

GK(M) = H((ρ(K)⊕ opad) ‖M)
where ρ(K) =

{

H(K) if |K| > d

K otherwise.

The two constants used are ipad = 0x36d/8 and opad = 0x5cd/8. These constants
are given in hexadecimal, translating to binary gives 0x36 = 0011 01102 and
0x5c = 0101 11002. Recall that we have defined the⊕ operator so that, if |K| < d,
it first silently pads out the shorter string by sufficiently many zeros before
computing the bitwise xor. It will also be convenient to define xpad = ipad⊕opad.
The function HMAC : {0, 1}∗ × {0, 1}∗ → {0, 1}n is defined by

HMAC(K,M) = GK(FK(M)) = (GK ◦ FK)(M) .

We sometimes write HMACd[P], HMACd, or HMAC[P] instead of HMAC when
we want to make the reliance on the block size and/or an underlying ideal
primitive explicit.

7 RFC 2104 defines HMAC over strings of bytes, but we chose to use bits to provide
more general positive results — all our negative results lift to a setting in which
only byte strings are used. Note also that for simplicity we assumed H with domain
{0, 1}∗. In practice hash functions often do have some maximal length (e.g., 264),
and in this case HMAC must be restricted to smaller lengths.

14

15. To Hash or Not to Hash Again?

In the following sections, we will therefore analyze the security of HMAC in
the sense of being indifferentiable from a keyed RO. As we will see, the story is
more involved than one might expect.

4.1 Weak Key Pairs in HMAC

Towards understanding the indifferentiability of HMAC, we start by observing
that the way HMAC handles keys gives rise to two worrisome classes of weak
key pairs.

Colliding keys. We say that keys K 6= K ′ collide if ρ(K) ‖ 0d−|ρ(K)| =
ρ(K ′) ‖ 0d−|ρ(K′)|. For any message M and colliding keys K,K ′ it holds that
HMAC(K,M) = HMAC(K ′,M). Colliding keys exist because of HMAC’s am-
biguous encoding of different-length keys. Examples of colliding keys include any
K,K ′ for which |K| < d and K ′ = K ‖ 0s where 1 ≤ s ≤ d− |K|. Or any K,K ′

such that |K| > d and K ′ = H(K). As long as H is collision-resistant, two keys
of the same length can never collide.

Colliding keys enable a simple attack against indifferentiability. Consider
HMAC[P] for any underlying function P . Then let A pick two keys K 6= K ′

that collide and an arbitrary message M . It queries its Func oracle on (K,M)
and (K ′,M) to retrieve two values Y, Y ′. If Y = Y ′ then it returns 1 (guessing
that it is in game RealHMAC[P],R) and returns 0 otherwise (guessing that it
is in game IdealR,S). The advantage of A is equal to 1 − 2n regardless of the
simulator S, which is never invoked.

Note that this result extends directly to rule out related-key attack secu-
rity [6] of HMAC as a PRF should a related-key function be available that
enables deriving colliding keys.

Ambiguous keys. A pair of keys K 6= K ′ is ambiguous if ρ(K) ⊕ ipad =
ρ(K ′)⊕ opad. For any X , both FK(X) = GK′(X) and GK(X) = FK′(X) when
K,K ′ are ambiguous. An example such pair is K,K ′ of length d bits for which
K ⊕K ′ = xpad.

For any key K, there exists one key K ′ that is easily computable and for
which K,K ′ are ambiguous: set K ′ = ρ(K) ⊕ xpad. Finding a third key K ′′

that is also ambiguous with K is intractable should H be collision resistant. The
easily-computable K ′ will not necessarily have the same length as K. In fact,
there exist ambiguous key pairs of the same length k only when k ∈ {d−1, d}. For
a fixed length shorter than d−1, no ambiguous key pairs exist due to the fact that
the second least significant bit of xpad is 1. For a fixed length longer than d bits,
if n < d− 1 then no ambiguous key pairs exist and if n ≥ d− 1 then producing
ambiguous key pairs would require finding K,K ′ such that H(K)⊕H(K ′) equals
the first n bits of xpad. This is intractable for any reasonable hash function H .

Ambiguous key pairs give rise to a chain-shift like property. Let M be some
message and K,K ′ be an ambiguous key pair. Then, we have that ρ(K ′) =
ρ(K)⊕ xpad and so FK(M) = GK′(M). Thus,

HMAC(K ′, FK(M)) = GK′(HMAC(K,M)) .

15

15. To Hash or Not to Hash Again?

FK GKY0 YℓY1 · · · Yℓ−1GKY ′
0 FK Y ′

ℓ−1 FK Y ′
ℓ

HMACℓ(K,Y0)

HMACℓ(K ′, Y ′
0)

Fig. 3. Diagram of two hash chains (K,Y) = (Y0, . . . , Yℓ) and (K ′, Y ′) =
(Y ′

0 , . . . , Y
′
ℓ) for HMAC where ρ(K ′) = ρ(K)⊕ xpad.

As with H2, this property gives rise to problems in the context of hash chains.
A hash chain Y = (K,Y0, . . . , Yℓ) is a key K, a message Y0, and a sequence of ℓ
values Yi = H(K,Yi−1) for 1 ≤ i ≤ ℓ. So a keyed hash chain Y = (K,Y0, . . . , Yℓ)
for HMAC has Yi = HMAC(K,Yi−1) for 1 ≤ i ≤ ℓ. Given K,Y0, Yℓ for a chain
Y = (K,Y0, . . . , Yℓ), it is easy for an adversary to compute the start and end of
a new chain Y ′ = (K ′, Y ′

0 , . . . , Y
′
ℓ) that does not overlap with Y . See Figure 3.

In the full version, we detail how this structure can be abused in the context of
an HMAC-based mutual proofs of work protocol. We also give an analogue of
Theorem 1, i.e., a lower bound on the indifferentiability of HMAC from a RO
when ambiguous key pairs can be queried.

4.2 Indifferentiability of HMAC with Restricted Keys

We have seen that HMAC’s construction gives rise to two kinds of weak key pairs
that can be abused to show that HMAC is not indifferentiable from a keyed RO
(with good bounds). But weak key pairs are serendipitously avoided in most
applications. For example, the recommended usage of HKDF [28] specifies keys
of a fixed length less than d− 1. Neither kind of weak key pairs exist within this
subset of the key space.

While one can show indifferentiability for a variety of settings in which weak
key pairs are avoided, we focus for simplicity on the case mentioned above. That
is, we restrict to keys K for which |K| = k and k is a fixed integer different less
than d− 1. The full version provides a more general set of results, covering also,
for example, use of HMAC with a fixed key of any length less than or equal to d.

As our first positive result, we have the following theorem, which establishes
the security of HMAC when modeling the underlying hash function as a RO.

Theorem 3. Fix d, k, n > 0 with k < d− 1. Let P : {0, 1}∗ → {0, 1}n be a RO,

and consider HMACd[P] restricted to k-bit keys. Let R : {0, 1}∗ × {0, 1}∗ →
{0, 1}n be a keyed RO. Then there exists a simulator S such that for any distin-

guisher A whose total query cost is σ it holds that

Advindiff
HMACd[P],R,S(A) ≤ O

(

σ2

2n

)

S makes at most q2 queries and runs in time O(q2 log q2) where q2 is the number

of Prim queries made by A. �

16

15. To Hash or Not to Hash Again?

The use of O(·) just hides small constants. The proof is given in the full
version. Combining Theorem 3 with the indifferentiability composition theorem
allows us to conclude security for HMACd[H] for underyling hash function H
that is, itself, indifferentiable from a RO. For example, should H be one of the
proven-indifferentiable SHA-3 candidates. This does not, however, give us a se-
curity guarantee should H not be indifferentiable from a RO, as is the case
with MD based hash functions. We therefore also prove, in the full version, the
following theorem that establishes indifferentiability of HMAC using an under-
lying hash function built via the strengthened Merkle-Damg̊ard (SMD) domain
extension transform.

Theorem 4. Fix d, k, n > 0 with k < d − 1 and d ≥ n. Let f : {0, 1}n ×
{0, 1}d → {0, 1}n be a RO and consider HMACd[SMD[f]] restricted to k-bit keys.
Let R : {0, 1}∗×{0, 1}∗ → {0, 1}n be a keyed RO. Then there exists a simulator

S such that for any distinguisher A whose total query cost is σ ≤ 2n−2 it holds

that

Advindiff
HMACd[SMD[f]],R,S(A) ≤ O

(

σ2

2n

)

S makes at most q2 queries and runs in time O(q2 log q2) where q2 is the number

of Prim queries by A. �

We note that the restriction to σ ≤ 2n−2 in the theorem statement is just
a technicality to make the bound simpler and likewise the use of O(·) in the
advantage statement hides just a small constant.

Unlike our positive results about H2, the bounds provided by Theorems 3
and 4 match, up to small constants, results for other now-standard indifferen-
tiable constructions (c.f., [13]). First, the advantage bounds both hold up to
the birthday bound, namely σ ≈ 2n/2. Second, the simulators are efficient and,
specifically, make at most one query per invocation. All this enables use of the
indifferentiability composition theorem in a way that yields strong, standard
concrete security bounds.

Acknowledgments

The authors thank Hugo Krawczyk for providing significant feedback and sug-
gestions, in particular encouraging the authors to include positive results for
the indifferentiability of HMAC; Niels Ferguson for in-depth discussions regard-
ing the security of H2; and the anonymous reviewers for their helpful sugges-
tions. Dodis was supported in part by NSF grants CNS-1065134, CNS-1065288,
CNS-1017471, CNS-0831299. Ristenpart was supported in part by NSF grant
CNS-1065134. Steinberger is supported by the National Basic Research Pro-
gram of China Grant 2011CBA00300, 2011CBA00301, the National Natural
Science Foundation of China Grant 61033001, 61061130540, 61073174, and by
NSF grant 0994380. Tessaro was supported in part by NSF grants CCF-0915675,
CCF-1018064.

17

15. To Hash or Not to Hash Again?

This material is based on research sponsored by DARPA under agreement
numbers FA8750-11-C-0096 and FA8750-11-2-0225. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

References

1. Elena Andreeva, Bart Mennink, and Bart Preneel. On the indifferentiability of
the Grøstl hash function. In Juan A. Garay and Roberto De Prisco, editors, SCN
10: 7th International Conference on Security in Communication Networks, volume
6280 of Lecture Notes in Computer Science, pages 88–105. Springer, September
2010.

2. Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton. Seven-
property-preserving iterated hashing: ROX. In Kaoru Kurosawa, editor, Advances
in Cryptology – ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer

Science, pages 130–146. Springer, December 2007.

3. Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006,
volume 4117 of Lecture Notes in Computer Science, pages 602–619. Springer, Au-
gust 2006.

4. Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Ho-
vav Shacham, and Scott Yilek. Hedged public-key encryption: How to protect
against bad randomness. In Mitsuru Matsui, editor, Advances in Cryptology –

ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages
232–249. Springer, December 2009.

5. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication. In Neal Koblitz, editor, Advances in Cryptology –

CRYPTO’96, volume 1109 of Lecture Notes in Computer Science, pages 1–15.
Springer, August 1996.

6. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key at-
tacks: RKA-PRPs, RKA-PRFs, and applications. In Eli Biham, editor, Advances
in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer

Science, pages 491–506. Springer, May 2003.

7. Mihir Bellare and Thomas Ristenpart. Multi-property-preserving hash domain
extension and the EMD transform. In Xuejia Lai and Kefei Chen, editors, Advances
in Cryptology – ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer

Science, pages 299–314. Springer, December 2006.

8. Mihir Bellare and Thomas Ristenpart. Hash functions in the dedicated-key set-
ting: Design choices and MPP transforms. In Lars Arge, Christian Cachin, Tomasz
Jurdzinski, and Andrzej Tarlecki, editors, ICALP 2007: 34th International Collo-

quium on Automata, Languages and Programming, volume 4596 of Lecture Notes

in Computer Science, pages 399–410. Springer, July 2007.

9. Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro. Multi-instance security
and its application to password-based cryptography. In Advances in Cryptology –

CRYPTO ‘12, Lecture Notes in Computer Science. Springer, 2012.

18

15. To Hash or Not to Hash Again?

10. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a frame-
work for code-based game-playing proofs. In Serge Vaudenay, editor, Advances

in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer

Science, pages 409–426. Springer, May / June 2006.
11. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the

indifferentiability of the sponge construction. In Nigel P. Smart, editor, Advances
in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer

Science, pages 181–197. Springer, April 2008.
12. Donghoon Chang and Mridul Nandi. Improved indifferentiability security analysis

of chopMD hash function. In Kaisa Nyberg, editor, Fast Software Encryption –

FSE 2008, volume 5086 of Lecture Notes in Computer Science, pages 429–443.
Springer, February 2008.

13. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damg̊ard revisited: How to construct a hash function. In Victor Shoup,
editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in

Computer Science, pages 430–448. Springer, August 2005.
14. Yevgeniy Dodis, Rosario Gennaro, Johan H̊astad, Hugo Krawczyk, and Tal Rabin.

Randomness extraction and key derivation using the CBC, cascade and HMAC
modes. In Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004,
volume 3152 of Lecture Notes in Computer Science, pages 494–510. Springer, Au-
gust 2004.

15. Yevgeniy Dodis, Leonid Reyzin, Ronald L. Rivest, and Emily Shen. Indifferentiabil-
ity of permutation-based compression functions and tree-based modes of operation,
with applications to MD6. In Orr Dunkelman, editor, Fast Software Encryption

– FSE 2009, volume 5665 of Lecture Notes in Computer Science, pages 104–121.
Springer, February 2009.

16. Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging Merkle-
Damg̊ard for practical applications. In Antoine Joux, editor, Advances in Cryp-

tology – EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science,
pages 371–388. Springer, April 2009.

17. Yevgeniy Dodis, Thomas Ristenpart, John Steinberger, and Stefano Tessaro. To
Hash or Not to Hash, Again? On the Indifferentiability of the Second Iterate and
HMAC, 2012. Full version of this paper. Available from authors’ websites.

18. Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.
In Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92, volume 740
of Lecture Notes in Computer Science, pages 139–147. Springer, August 1993.

19. Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In
Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 37–54. Springer, August 2005.

20. Niels Ferguson and Bruce Schneier. Practical cryptography. Wiley, 2003.
21. Pierre-Alain Fouque, David Pointcheval, and Sébastien Zimmer. HMAC is a ran-

domness extractor and applications to TLS. In Masayuki Abe and Virgil Gligor,
editors, ASIACCS 08: 3rd Conference on Computer and Communications Security,
pages 21–32. ACM Press, March 2008.

22. J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, and
L. Stewart. An Extension to HTTP: Digest Access Authentication. RFC 2069
(Proposed Standard), January 1997. Obsoleted by RFC 2617.

23. Shoichi Hirose, Je Hong Park, and Aaram Yun. A simple variant of the Merkle-
Damg̊ard scheme with a permutation. In Kaoru Kurosawa, editor, Advances in

Cryptology – ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Sci-

ence, pages 113–129. Springer, December 2007.

19

15. To Hash or Not to Hash Again?

24. Ari Juels and John G. Brainard. Client puzzles: A cryptographic countermeasure
against connection depletion attacks. In ISOC Network and Distributed System

Security Symposium – NDSS’99. The Internet Society, February 1999.
25. Ghassan Karame and Srdjan Capkun. Low-cost client puzzles based on modular

exponentiation. In Dimitris Gritzalis, Bart Preneel, and Marianthi Theoharidou,
editors, ESORICS 2010: 15th European Symposium on Research in Computer Secu-

rity, volume 6345 of Lecture Notes in Computer Science, pages 679–697. Springer,
2010.

26. H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message
Authentication. RFC 2104, February 1997.

27. H. Krawczyk and P. Eronen. Hmac-based extract-and-expand key derivation func-
tion (hkdf). RFC 5869 (Proposed Standard), January 2010.

28. Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme.
In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of
Lecture Notes in Computer Science, pages 631–648. Springer, August 2010.

29. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, im-
possibility results on reductions, and applications to the random oracle method-
ology. In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Conference,
volume 2951 of Lecture Notes in Computer Science, pages 21–39. Springer, Febru-
ary 2004.

30. PKCS #5: Password-based cryptography standard (rfc 2898). RSA Data Security,
Inc., September 2000. Version 2.0.

31. Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with com-
position: Limitations of the indifferentiability framework. In Kenneth G. Pater-
son, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture
Notes in Computer Science, pages 487–506. Springer, May 2011.

32. Thomas Ristenpart and Scott Yilek. When good randomness goes bad: Virtual
machine reset vulnerabilities and hedging deployed cryptography. In Network and

Distributed Systems Security – NDSS ’10. ISOC, 2010.
33. Douglas Stebila, Lakshmi Kuppusamy, Jothi Rangasamy, Colin Boyd, and

Juan Manuel González Nieto. Stronger difficulty notions for client puzzles and
denial-of-service-resistant protocols. In Aggelos Kiayias, editor, Topics in Cryp-

tology – CT-RSA 2011, volume 6558 of Lecture Notes in Computer Science, pages
284–301. Springer, February 2011.

34. Gene Tsudik. Message authentication with one-way hash functions. In Proceedings

IEEE INFOCOM’92, volume 3, pages 2055–2059. IEEE, 1992.
35. XiaoFeng Wang and Michael K. Reiter. Defending against denial-of-service attacks

with puzzle auction. In IEEE Symposium on Security and Privacy, pages 78–92,
2003.

20

15. To Hash or Not to Hash Again?

Design and Implementation of a Homomorphic-Encryption Library

Shai Halevi Victor Shoup

November 30, 2012

Abstract

We describe the design and implementation of a software library that implements the
Brakerski-Gentry-Vaikuntanathan (BGV) homomorphic encryption scheme, along with many
optimizations to make homomorphic evaluation runs faster, focusing mostly on effective use of
the Smart-Vercauteren ciphertext packing techniques. Our library is written in C++ and uses
the NTL mathematical library.

Partially supported by DARPA under agreement number FA8750-11-C-0096. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

Also paritally supported by the Intelligence Advanced Research Projects Activity (IARPA) via
Department of Interior National Business Center (DoI/NBC) contract number D11PC20202. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S.
Government.

1

16. Design and Implementation of a Homomorphic-Encryption Library

Contents

1 The BGV Homomorphic Encryption Scheme 1
1.1 Plaintext Slots . 2
1.2 Our Modulus Chain and Double-CRT Representation 2
1.3 Modules in our Library . 3

2 The Math Layers 3
2.1 The timing module . 3
2.2 NumbTh: Miscellaneous Utilities . 3
2.3 bluestein and Cmodulus: Polynomials in FFT Representation 4
2.4 PAlgebra: The Structure of Z∗m and Z∗m/ 〈2〉 . 5
2.5 PAlgebraModTwo/PAlgebraMod2r: Plaintext Slots . 6
2.6 IndexSet and IndexMap: Sets and Indexes . 8

2.6.1 The IndexSet class . 8
2.6.2 The IndexMap class . 9

2.7 FHEcontext: Keeping the parameters . 9
2.8 DoubleCRT: Efficient Polynomial Arithmetic . 10

3 The Crypto Layer 13
3.1 The Ctxt module: Ciphertexts and homomorphic operations 13

3.1.1 The SKHandle class . 14
3.1.2 The CtxtPart class . 15
3.1.3 The Ctxt class . 15
3.1.4 Noise estimate . 16
3.1.5 Modulus-switching operations . 18
3.1.6 Key-switching/re-linearization . 19
3.1.7 Native arithmetic operations . 21
3.1.8 More Ctxt methods . 23

3.2 The FHE module: Keys and key-switching matrices 24
3.2.1 The KeySwitch class . 24
3.2.2 The FHEPubKey class . 25
3.2.3 The FHESecKey class . 27

3.3 The KeySwitching module: What matrices to generate 28

4 The Data-Movement Layer 29
4.1 The classes EncryptedArray and EncryptedArrayMod2r 29

5 Using the Library 33
5.1 Homomorphic Operations over GF (28) . 34
5.2 Homomorphic Operations over Z25 . 35

A Proof of noise-estimate 37

16. Design and Implementation of a Homomorphic-Encryption Library

Organization of This Report

We begin in Section 1 with a brief high-level overview of the BGV cryptosystem and some important
features of the variant that we implemented and our choice of representation, as well as an overview
of the structure of our library. Then in Sections 2, 3,4 we give a bottom-up detailed description of
all the modules in the library. We conclude in Section 5 with some examples of using this library.

1 The BGV Homomorphic Encryption Scheme

A homomorphic encryption scheme [8, 3] allows processing of encrypted data even without know-
ing the secret decryption key. In this report we describe the design and implementation of a
software library that we wrote to implements the Brakerski-Gentry-Vaikuntanathan (BGV) ho-
momorphic encryption scheme [2]. We begin by a high-level description of the the BGV variant
that we implemented, followed by a detailed description of the various software components in our
implementation. the description in this section is mostly taken from the full version of [5].

Below we denote by [·]q the reduction-mod-q function, namely mapping an integer z ∈ Z to the
unique representative of its equivalence class modulo q in the interval (−q/2, q/2]. We use the same
notation for modular reduction of vectors, matrices, and polynomials (in coefficient representation).

Our BGV variant is defined over polynomial rings of the form A = Z[X]/Φm(X) where m
is a parameter and Φm(X) is the m’th cyclotomic polynomial. The “native” plaintext space for
this scheme is usually the ring A2 = A/2A, namely binary polynomials modulo Φm(X). (Our
implementation supports other plaintext spaces as well, but in this report we mainly describe the
case of plaintext space A2. See some more details in Section 2.4.) We use the Smart-Vercauteren
CTR-based encoding technique [10] to “pack” a vector of bits in a binary polynomial, so that
polynomial arithmetic in A2 translates to entry-wise arithmetic on the packed bits.

The ciphertext space for this scheme consists of vectors over Aq = A/qA, where q is an odd
modulus that evolves with the homomorphic evaluation. Specifically, the system is parametrized
by a “chain” of moduli of decreasing size, q0 > q1 > · · · > qL and freshly encrypted ciphertexts are
defined over Rq0 . During homomorphic evaluation we keep switching to smaller and smaller moduli
until we get ciphertexts over AqL , on which we cannot compute anymore. We call ciphertexts that
are defined over Aqi “level-i ciphertexts”. These level-i ciphertexts are 2-element vectors over Rqi ,
i.e., ~c = (c0, c1) ∈ (Aqi)2.

Secret keys are polynomials s ∈ A with “small” coefficients, and we view s as the second element
of the 2-vector ~s = (1, s). A level-i ciphertext ~c = (c0, c1) encrypts a plaintext polynomial m ∈ A2

with respect to ~s = (1, s) if we have the equality over A, [〈~c,~s〉]qi = [c0 + s · c1]qi ≡ m (mod 2), and
moreover the polynomial [c0 +s ·c1]qi is “small”, i.e. all its coefficients are considerably smaller than
qi. Roughly, that polynomial is considered the “noise” in the ciphertext, and its coefficients grow
as homomorphic operations are performed. We note that the crux of the noise-control technique
from [2] is that a level-i ciphertext can be publicly converted into a level-(i + 1) ciphertext (with
respect to the same secret key), and that this transformation reduces the noise in the ciphertext
roughly by a factor of qi+1/qi.

Following [7, 4, 5], we think of the “size” of a polynomial a ∈ A the norm of its canonical
embedding. Recall that the canonical embedding of a ∈ A into Cφ(m) is the φ(m)-vector of complex
numbers σ(a) = (a(τ jm))j where τm is a complex primitive m-th root of unity (τm = e2πi/m) and
the indexes j range over all of Z∗m. We denote the l2-norm of the canonical embedding of a by

1

16. Design and Implementation of a Homomorphic-Encryption Library

‖a‖canon
2 .
The basic operations that we have in this scheme are the usual key-generation, encryption, and

decryption, the homomorphic evaluation routines for addition, multiplication and automorphism
(and also addition-of-constant and multiplication-by-constant), and the “ciphertext maintenance”
operations of key-switching and modulus-switching. These are described in the rest of this report,
but first we describe our plaintext encoding conventions and our Double-CRT representation of
polynomials.

1.1 Plaintext Slots

The native plaintext space of our variant of BGV are elements of A2, and the polynomial Φm(X)
factors modulo 2 into ` irreducible factors, Φm(X) = F1(X) ·F2(X) · · ·F`(X) (mod 2), all of degree
d = φ(m)/`. Just as in [2, 4, 10] each factor corresponds to a “plaintext slot”. That is, we can
view a polynomial a ∈ A2 as representing an `-vector (a mod Fi)

`
i=1.

More specifically, for the purpose of packing we think of a polynomial a ∈ A2 not as a binary
polynomial but as a polynomial over the extension field F2d (with some specific representation),
and the plaintext values that are encoded in a are its evaluations at ` specific primitive m-th roots
of unity in F2d . In other words, if ρ ∈ F2d is a particular fixed primitive m-th root of unity, and our
distinguished evaluation points are ρt1 , ρt2 , . . . , ρt` (for some set of indexes T = {t1, . . . , t`}), then
the vector of plaintext values encoded in a is:(

a(ρtj) : tj ∈ T
)
.

See Section 2.4 for a discussion of the choice of representation of F2d and the evaluation points.
It is standard fact that the Galois group Gal = Gal(Q(ρm)/Q) consists of the mappings κk :

a(X) 7→ a(Xk) mod Φm(X) for all k co-prime with m, and that it is isomorphic to Z∗m. As noted
in [4], for each i, j ∈ {1, 2, . . . , `} there is an element κk ∈ Gal which sends an element in slot i to
an element in slot j. Indeed if we set k = t−1

j · ti (mod m) and b = κk(a) then we have

b(ρtj) = a(ρtjk) = a(ρtj ·t
−1
j ti) = a(ρti),

so the element in the j’th slot of b is the same as that in the i’th slot of a. In addition to these “data-
movement maps”, Gal contains also the Frobenius maps, X −→ X2i , which also act as Frobenius
on the individual slots separately.

We note that the values that are encoded in the slots do not have to be individual bits, in
general they can be elements of the extension field F2d (or any sub-field of it). For example, for the
AES application we may want to pack elements of F28 in the slots, so we choose the parameters so
that F28 is a sub-field of F2d (which means that d is divisible by 8).

1.2 Our Modulus Chain and Double-CRT Representation

We define the chain of moduli by choosing L+1 “small primes” p0, p1, . . . , pL and the l’th modulus
in our chain is defined as ql =

∏l
j=0 pj . The primes pi’s are chosen so that for all i, Z/piZ

contains a primitive m-th root of unity (call it ζi) so Φm(X) factors modulo pi to linear terms
Φm(X) =

∏
j∈Z∗m(X − ζji) (mod pi).

A key feature of our implementation is that we represent an element a ∈ Aql via double-CRT
representation, with respect to both the integer factors of ql and the polynomial factor of Φm(X)

2

16. Design and Implementation of a Homomorphic-Encryption Library

mod ql. A polynomial a ∈ Aq is represented as the (l + 1) × φ(m) matrix of its evaluation at the
roots of Φm(X) modulo pi for i = 0, . . . , l:

DoubleCRTl(a) =
(
a(ζji) mod pi

)
0≤i≤l, j∈Z∗m

.

Addition and multiplication in Aq can be computed as component-wise addition and multipli-
cation of the entries in the two tables (modulo the appropriate primes pi),

DoubleCRTl(a+ b) = DoubleCRTl(a) + DoubleCRTl(b),

DoubleCRTl(a · b) = DoubleCRTl(a) · DoubleCRTl(b).

Also, for an element of the Galois group κ ∈ Gal, mapping a(X) ∈ A to a(Xk) mod Φm(X), we can
evaluate κ(a) on the double-CRT representation of a just by permuting the columns in the matrix,
sending each column j to column j · k mod m.

1.3 Modules in our Library

Very roughly, our HE library consists of four layers: in the bottom layer we have modules for
implementing mathematical structures and various other utilities, the second layer implements
our Double-CRT representation of polynomials, the third layer implements the cryptosystem itself
(with the “native” plaintext space of binary polynomials), and the top layer provides interfaces
for using the cryptosystem to operate on arrays of plaintext values (using the plaintext slots as
described in Section 1.1). We think of the bottom two layers as the “math layers”, and the top
two layers as the “crypto layers”, and describe then in detail in Sections 2 and 3, respectively.
A block-diagram description of the library is given in Figure 1. Roughly, the modules NumbTh,
timing, bluestein, PAlgebra, PAlgebraModTwo, PAlgebraMod2r, Cmodulus, IndexSet and IndexMap
belong to the bottom layer, FHEcontext, SingleCRT and DoubleCRT belong to the second layer,
FHE, Ctxt and KeySwitching are in the third layer, and EncryptedArray and EncryptedArrayMod2r
are in the top layer.

2 The Math Layers

2.1 The timing module

This module contains some utility function for measuring the time that various methods take to
execute. To use it, we insert the macro FHE TIMER START at the beginning of the method(s) that
we want to time and FHE TIMER STOP at the end, then the main program needs to call the function
setTimersOn() to activate the timers and setTimersOff() to pause them. We can have at most
one timer per method/function, and the timer is called by the same name as the function itself
(using the pre-defiend variable func). To obtain the value of a given timer (in seconds), the
application can use the function double getTime4func(const char *fncName), and the function
printAllTimers() prints the values of all timers to the standard output.

2.2 NumbTh: Miscellaneous Utilities

This module started out as an implementation of some number-theoretic algorithms (hence the
name), but since then it grew to include many different little utility functions. For example, CRT-

3

16. Design and Implementation of a Homomorphic-Encryption Library

PAlgebra
Structure of Zm*, §2.4

PAlgebra2/PAlgebra2r
plaintext-slot algebra, §2.5

NumbTh
miscellaneous
utilities, §2.2

CModulus
polynomials mod p, §2.3 M

at
h

SingleCRT/DoubleCRT
polynomial arithmetic, §2.8

FHE
KeyGen/Enc/Dec, §3.2

Ctxt
Ciphertext operations, §3.1

C
ry

p
to

EncryptedArray/EncrytedArrayMod2r
Routing plaintext slots, §4.1

IndexSet/IndexMap
Indexing utilities, §2.6

FH
Ec

o
n

te
xt

p

ar
am

e
te

rs
, §

2
.7

bluestein
FFT/IFFT, §2.3

timing
§2.1

KeySwitching
Matrices for key-switching, §3.3

Figure 1: A block diagram of the Homomorphic-Encryption library

reconstruction of polynomials in coefficient representation, conversion functions between different
types, procedures to sample at random from various distributions, etc.

2.3 bluestein and Cmodulus: Polynomials in FFT Representation

The bluestein module implements a non-power-of-two FFT over a prime field Zp, using the Bluestein
FFT algorithm [1]. We use modulo-p polynomials to encode the FFTs inputs and outputs. Specif-
ically this module builds on Shoup’s NTL library [9], and contains both a bigint version with types
ZZ p and ZZ pX, and a smallint version with types zz p and zz pX. We have the following functions:

void BluesteinFFT(ZZ_pX& x, const ZZ_pX& a, long n, const ZZ_p& root,

ZZ_pX& powers, FFTRep& Rb);

void BluesteinFFT(zz_pX& x, const zz_pX& a, long n, const zz_p& root,

zz_pX& powers, fftRep& Rb);

These functions compute length-n FFT of the coefficient-vector of a and put the result in x. If the
degree of a is less than n then it treats the top coefficients as 0, and if the degree is more than n
then the extra coefficients are ignored. Similarly, if the top entries in x are zeros then x will have
degree smaller than n. The argument root needs to be a 2n-th root of unity in Zp. The inverse-FFT
is obtained just by calling BluesteinFFT(...,root−1,...), but this procedure is NOT SCALED.
Hence calling BluesteinFFT(x,a,n,root,...) and then BluesteinFFT(b,x,n,root−1,...) will
result in having b = n× a.

In addition to the size-n FFT of a which is returned in x, this procedure also returns the
powers of root in the powers argument, powers =

(
1, root, root4, root9, . . . , root(n−1)2

)
. In the

Rb argument it returns the size-N FFT representation of the negative powers, for some N ≥ 2n−1,
N a power of two:

Rb = FFTN
(
0, . . . , 0, root−(n−1)2 , . . . , root−4, root−1, 1, root−1, root−4, . . . , root−(n−1)20, . . . , 0

)
.

4

16. Design and Implementation of a Homomorphic-Encryption Library

On subsequent calls with the same powers and Rb, these arrays are not computed again but taken
from the pre-computed arguments. If the powers and Rb arguments are initialized, then it is
assumed that they were computed correctly from root. The behavior is undefined when calling
with initialized powers and Rb but a different root. (In particular, to compute the inverse-FFT
using root−1, one must provide different powers and Rb arguments than those that were given
when computing in the forward direction using root.) This procedure cannot be used for in-place
FFT, calling BluesteinFFT(x, x, · · ·) will just zero-out the polynomial x.

The classes Cmodulus and CModulus. These classes provide an interface layer for the FFT
routines above, relative to a single prime (where Cmodulus is used for smallint primes and CModulus

for bigint primes). They keep the NTL “current modulus” structure for that prime, as well as the
powers and Rb arrays for FFT and inverse-FFT under that prime. They are constructed with the
constructors

Cmodulus(const PAlgebra& ZmStar, const long& q, const long& root);

CModulus(const PAlgebra& ZmStar, const ZZ& q, const ZZ& root);

where ZmStar described the structure of Z∗m (see Section 2.4), q is the prime modulus and root

is a primitive 2m−’th root of unity modulo q. (If the constructor is called with root = 0 then it
computes a 2m-th root of unity by itself.) Once an object of one of these classes is constructed, it
provides an FFT interfaces via

void Cmodulus::FFT(vec long& y, const ZZX& x) const; // y = FFT(x)

void Cmodulus::iFFT(ZZX& x, const vev long& y) const; // x = FFT−1(y)

(And similarly for CModulus using vec ZZ instead of vec long). These method are inverses of
each other. The methods of these classes affect the NTL “current modulus”, and it is the re-
sponsibility of the caller to backup and restore the modulus if needed (using the NTL constructs
zz pBak/ZZ pBak).

2.4 PAlgebra: The Structure of Z∗m and Z∗m/ 〈2〉

The class PAlgebra is the base class containing the structure of Z∗m, as well as the quotient group
Z∗m/ 〈2〉. We represent Z∗m as Z∗m = 〈2〉 × 〈g1, g2, . . .〉 × 〈h1, h2, . . .〉, where the gi’s have the same
order in Z∗m as in Z∗m/ 〈2〉, and the hi’s generate the group Z∗m/ 〈2, g1, g2, . . .〉 and they do not have
the same order in Z∗m as in Z∗m/ 〈2〉.

We compute this representation in a manner similar (but not identical) to the proof of the fun-
damental theorem of finitely generated abelian groups. Namely we keep the elements in equivalence
classes of the “quotient group so far”, and each class has a representative element (called a pivot),
which in our case we just choose to be the smallest element in the class. Initially each element
is in its own class. At every step, we choose the highest order element g in the current quotient
group and add it as a new generator, then unify classes if their members are a factor of g from each
other, repeating this process until no further unification is possible. Since we are interested in the
quotient group Z∗m/ 〈2〉, we always choose 2 as the first generator.

One twist in this routine is that initially we only choose an element as a new generator if its
order in the current quotient group is the same as in the original group Z∗m. Only after no such
elements are available, do we begin to use generators that do not have the same order as in Z∗m.

Once we chose all the generators (and for each generator we compute its order in the quotient
group where it was chosen), we compute a set of “slot representatives” as follows: Putting all the

5

16. Design and Implementation of a Homomorphic-Encryption Library

gi’s and hi’s in one list, let us denote the generators of Z∗m/ 〈2〉 by {f1, f2, . . . , fn}, and let ord(fi)
be the order of fi in the quotient group at the time that it was added to the list of generators. The
the slot-index representative set is

T
def
=

{
n∏
i=1

feii mod m : ∀i, ei ∈ {0, 1, . . . , ord(fi)− 1}

}
.

Clearly, we have T ⊂ Z∗m, and moreover T contains exactly one representative from each equivalence
class of Z∗m/ 〈2〉. Recall that we use these representatives in our encoding of plaintext slots, where
a polynomial a ∈ A2 is viewed as encoding the vector of F2d elements

(
a(ρt) ∈ F2d : t ∈ T

)
, where

ρ is some fixed primitive m-th root of unity in F2d .
In addition to defining the sets of generators and representatives, the class PAlgebra also provides

translation methods between representations, specifically:

int ith rep(unsigned i) const;

Returns ti, i.e., the i’th representative from T .

int indexOfRep(unsigned t) const;

Returns the index i such that ith rep(i) = t.

int exponentiate(const vector<unsigned>& exps, bool onlySameOrd=false) const;

Takes a vector of exponents, (e1, . . . , en) and returns t =
∏n
i=1 f

ei
i ∈ T .

const int* dLog(unsigned t) const;

On input some t ∈ T , returns the discrete-logarithm of t with the fi’s are bases. Namely, a
vector exps= (e1, . . . , en) such that exponentiate(exps)= t, and moreover 0 ≤ ei ≤ ord(fi)
for all i.

2.5 PAlgebraModTwo/PAlgebraMod2r: Plaintext Slots

These two classes implements the structure of the plaintext spaces, either A2 = A/2A (when using
mod-2 arithmetic for the plaintext space) or A2r = A/2rA (when using mod-2r arithmetic, for
some small vale of r, e.g. mod-128 arithmetic). We typically use the mod-2 arithmetic for real
computation, but we expect to use the mod-2r arithmetic for bootstrapping, as described in [6].
Below we cover the mod-2 case first, then extend it to mod-2r.

For the mod-2 case, the plaintext slots are determined by the factorization of Φm(X) modulo 2
into ` degree-d polynomials. Once we have that factorization, Φm(X) =

∏
j Fj(X) (mod 2), we

choose an arbitrary factor as the “first factor”, denote it F1(X), and this corresponds to the first
input slot (whose representative is 1 ∈ T). With each representative t ∈ T we then associate
the factor GCD(F1(Xt),Φm(X)), with polynomial-GCD computed modulo 2. Note that fixing a
representation of the field K = Z2[X]/F1(X) ∼= F2d and letting ρ be a root of F1 in K, we get that
the factor associated with the representative t is the minimal polynomial of ρ1/t. Yet another way
of saying the same thing, if the roots of F1 in K are ρ, ρ2, ρ4, . . . , ρ2d−1

then the roots of the factor
associated to t are ρ1/t, ρ2/t, ρ4/t, . . . , ρ2d−1/t, where the arithmetic in the exponent is modulo m.

After computing the factors of Φm(X) modulo 2 and the correspondence between these factors
and the representatives from T , the class PAlgebraModTwo provide encoding/decoding methods to
pack elements in polynomials and unpack them back. Specifically we have the following methods:

6

16. Design and Implementation of a Homomorphic-Encryption Library

void mapToSlots(vector<GF2X>& maps, const GF2X& G) const;

Computes the mapping between base-G representation and representation relative to the slot
polynomials. (See more discussion below.)

void embedInSlots(GF2X&a, const vector<GF2X>&alphas, const vector<GF2X>&maps) const;

Use the maps that were computed in mapToSlots to embeds the plaintext values in alphas

into the slots of the polynomial a ∈ A2. Namely, for every plaintext slot i with representative
ti ∈ T , we have a(ρti) = alphas[i]. Note that alphas[i] is an element in base-G represen-
tation, while a(ρt) is computed relative to the representation of F2d as Z2[X]/F1(X). (See
more discussion below.)

void decodePlaintext(vector<GF2X>& alphas, const GF2X& a,

const GF2X& G, const vector<GF2X>& maps) const;

This is the inverse of embedInSlots, it returns in alphas a vector of base-G elements such
that alphas[i] = a(ρti).

void CRT decompose(vector<GF2X>& crt, const GF2X& p) const;

Returns a vector of polynomials such that crt[i] = p mod Fti (with ti being the i’th repre-
sentative in T).

void CRT reconstruct(GF2X& p, vector<GF2X>& crt) const;

Returns a polynomial p ∈ A2) s.t. for every i < ` and ti = T [i], we have p ≡ crt[i] (mod Ft).

The use of the first three functions may need some more explanation. As an illustrative example,
consider the case of the AES computation, where we embed bytes of the AES state in the slots,
considered as elements of F28 relative to the AES polynomial G(X) = X8 + X4 + X3 + X + 1.
We choose our parameters so that we have 8|d (where d is the order of 2 in Z∗m), and then use the
functions above to embed the bytes into our plaintext slots and extract them back.

We first call mapToSlots(maps,G) to prepare compute the mapping from the base-G represen-
tation that we use for AES to the “native” representation o four cryptosystem (i.e., relative to F1,
which is one of the degree-d factors of Φm(X)). Once we have maps, we use them to embed bytes
in a polynomial with embedInSlots, and to decode them back with decodePlaintext.

The case of plaintext space modulo 2r, implemented in the class PAlgebraMod2r, is similar.
The partition to factors of Φm(X) modulo 2r and their association with representatives in T is
done similarly, by first computing everything modulo 2, then using Hensel lifting to lift into a
factorization modulo 2r. In particular we have the same number ` of factors of the same degree d.
One difference between the two classes is that when working modulo-2 we can have elements of
an extension field F2d in the slots, but when working modulo 2r we enforce the constraint that
the slots contain only scalars (i.e., r-bit signed integers, in the range [−2r−1, 2r−1)). This means
that the polynomial G that we use for the representation of the plaintext values is set to the linear
polynomial G(X) = X. Other than this change, the methods for PAlgebraMod2r are the same as
these of PAlgebraModTwo, except that we use the NTL types zz p and zz pX rather than GF2 and
GF2X. The methods of the PAlgebraMod2r class affect the NTL “current modulus”, and it is the
responsibility of the caller to backup and restore the modulus if needed (using the NTL constructs
zz pBak/ZZ pBak).

7

16. Design and Implementation of a Homomorphic-Encryption Library

2.6 IndexSet and IndexMap: Sets and Indexes

In our implementation, all the polynomials are represented in double-CRT format, relative to some
subset of the small primes in our list (cf. Section 1.2). The subset itself keeps changing throughout
the computation, and so we can have the same polynomial represented at one point relative to
many primes, then a small number of primes, then many primes again, etc. (For example see the
implementation of key-switching in Section 3.1.6.) To provide flexibility with these transformations,
the IndexSet class implements an arbitrary subset of integers, and the IndexMap class implements
a collection of data items that are indexed by such a subset.

2.6.1 The IndexSet class

The IndexSet class implements all the standard interfaces of the abstract data-type of a set, along
with just a few extra interfaces that are specialized to sets of integers. It uses the standard C++
container vector<bool> to keep the actual set, and provides the following methods:

Constructors. The constructors IndexSet(), IndexSet(long j), and IndexSet(long low, long

high), initialize an empty set, a singleton, and an interval, respectively.

Empty sets and cardinality. The static method IndexSet::emptySet() provides a read-only ac-
cess to an empty set, and the method s.clear() removes all the elements in s, which is
equivalent to s=IndexSet::emptySet().

The method s.card() returns the number of elements in s.

Traversing a set. The methods s.first() and s.last() return the smallest and largest element
in the set, respectively. For an empty set s, s.first() returns 0 and s.last() returns −1.

The method s.next(j) return the next element after j, if any; otherwise j + 1. Similarly
s.prev(j) return the previous element before j, if any; otherwise j−1. With these methods,
we can iterate through a set s using one of:

for (long i = s.first(); i <= s.last(); i = s.next(i)) ...

for (long i = s.last(); i >= s.first(); i = s.prev(i)) ...

Comparison and membership methods. operator== and operator!= are provided to test for
equality, whereas s1.disjointFrom(s2) and its synonym disjoint(s1,s2) test if the two
sets are disjoint. Also, s.contains(j) returns true if s contains the element j, s.contains(other)
returns true if s is a superset of other. For convenience, the operators <=, <, >= and > are
also provided for testing the subset relation between sets.

Set operations. The method s.insert(j) inserts the integer j if it is not in s, and s.remove(j)

removes it if it is there.

Similarly s1.insert(s2) returns in s1 the union of the two sets, and s1.remove(s2) returns
in s1 the set difference s1 \ s2. Also, s1.retain(s2) returns in s1 the intersection of the
two sets. For convenience we also provide the operators s1|s2 (union), s1&s2 (intersection),
s1^s2 (symmetric difference, aka xor), and s1/s2 (set difference).

8

16. Design and Implementation of a Homomorphic-Encryption Library

2.6.2 The IndexMap class

The class template IndexMap<T> implements a map of elements of type T, indexed by a dynamic
IndexSet. Additionally, it allows new elements of the map to be initialized in a flexible manner,
by providing an initialization function which is called whenever a new element (indexed by a new
index j) is added to the map.

Specifically, we have a helper class template IndexMapInit<T> that stores a pointer to an
initialization function, and possibly also other parameters that the initialization function needs.
We then provide a constructor IndexMap(IndexMapInit<T>* initObject=NULL) that associates
the given initialization object with the new IndexMap object. Thereafter, When a new index j is
added to the index set, an object t of type T is created using the default constructor for T, after
which the function initObject->init(t) is called.

In our library, we use an IndexMap to store the rows of the matrix of a Double-CRT object.
For these objects we have an initialization object that stores the value of φ(m), and the initializa-
tion function, which is called whenever we add a new row, ensures that all the rows have length
exactly φ(m).

After initialization an IndexMap object provides the operator map[i] to access the type-T object
indexed by i (if i currently belongs to the IndexSet), as well as the methods map.insert(i) and
map.remove(i) to insert or delete a single data item indexed by i, and also map.insert(s) and
map.remove(s) to insert or delete a collection of data items indexed by the IndexSet s.

2.7 FHEcontext: Keeping the parameters

Objects in higher layers of our library are defined relative to some parameters, such as the integer
parameter m (that defines the groups Z∗m and Z∗m/ 〈2〉 and the ring A = Z[X]/Φm(X)) and the
sequence of small primes that determine our modulus-chain. To allow convenient access to these
parameters, we define the class FHEcontext that keeps them all and provides access methods and
some utility functions.

One thing that’s included in FHEcontext is a vector of Cmodulus objects, holding the small
primes that define our modulus chain:

vector<Cmodulus> moduli; // Cmodulus objects for the different primes

We provide access to the Cmodulus objects via context.ithModulus(i) (that returns a ref-
erence of type const Cmodulus&), and to the small primes themselves via context.ithPrime(i)

(that returns a long). The FHEcontext includes also the various algebraic structures for plaintext
arithmetic, specifically we have the three data members:

PAlgebra zMstar; // The structure of Z∗m
PAlgebraModTwo modTwo; // The structure of Z[X]/(Φm(X), 2)
PAlgebraMod2r mod2r; // The structure of Z[X]/(Φm(X), 2r)

In addition to the above, the FHEcontext contains a few IndexSet objects, describing various
partitions of the index-set in the vector of moduli. These partitions are used when generating the
key-switching matrices in the public key, and when using them to actually perform key-switching
on ciphertexts.

One such partition is “ciphertext” vs. “special” primes: Freshly encrypted ciphertexts are
encrypted relative to a subset of the small primes, called the ciphertext primes. All other primes
are only used during key-switching, these are called the special primes. The ciphertext primes, in

9

16. Design and Implementation of a Homomorphic-Encryption Library

turn, are sometimes partitioned further into a number of “digits”, corresponding to the columns in
our key-switching matrices. (See the explanation of this partition in Section 3.1.6.) These subsets
are stored in the following data members:

IndexSet ctxtPrimes; // the ciphertext primes

IndexSet specialPrimes; // the "special" primes

vector<IndexSet> digits; // digits of ctxt/columns of key-switching matrix

The FHEcontext class provides also some convenience functions for computing the product of a
subset of small primes, as well as the “size” of that product (i.e., its logarithm), via the methods:

ZZ productOfPrimes(const IndexSet& s) const;

void productOfPrimes(ZZ& p, const IndexSet& s) const;

double logOfPrime(unsigned i) const; // = log(ithPrime(i))

double logOfProduct(const IndexSet& s) const;

Finally, the FHEcontext module includes some utility functions for adding moduli to the chain.
The method addPrime(long p, bool isSpecial) adds a single prime p (either “special” or not),
after checking that p has 2m’th roots of unity and it is not already in the list. Then we have three
higher-level functions:

double AddPrimesBySize(FHEcontext& c, double size, bool special=false);

Adds to the chain primes whose product is at least exp(size), returns the natural logarithm
of the product of all added primes.

double AddPrimesByNumber(FHEcontext& c, long n, long atLeast=1, bool special=false);

Adds n primes to the chain, all at least as large as the atLeast argument, returns the natural
logarithm of the product of all added primes.

void buildModChain(FHEcontext& c, long d, long t=3);

Build modulus chain for a circuit of depth d, using t digits in key-switching. This function
puts d ciphertext primes in the moduli vector, and then as many “special” primes as needed
to mod-switch fresh ciphertexts (see Section 3.1.6).

2.8 DoubleCRT: Efficient Polynomial Arithmetic

The heart of our library is the DoubleCRT class that manipulates polynomials in Double-CRT
representation. A DoubleCRT object is tied to a specific FHEcontext, and at any given time it is
defined relative to a subset of small primes from our list, S ⊆ [0, . . . , context.moduli.size()− 1].
Denoting the product of these small primes by q =

∏
i∈S pi, a DoubleCRT object represents a

polynomial a ∈ Aq by a matrix with φ(m) columns and one row for each small prime pi (with i ∈ S).

The i’th row contains the FFT representation of a modulo pi, i.e. the evaluations {[a(ζ j
i)]pi : j ∈

Z∗m}, where ζi is some primitive m-th root of unity modulo pi.
Although the FHEcontext must remain fixed throughout, the set S of primes can change dy-

namically, and so the matrix can lose some rows and add other ones as we go. We thus keep these
rows in a dynamic IndexMap data member, and the current set of indexes S is available via the
method getIndexSet(). We provide the following methods for changing the set of primes:

10

16. Design and Implementation of a Homomorphic-Encryption Library

void addPrimes(const IndexSet& s);

Expand the index set by s. It is assumed that s is disjoint from the current index set. This is
an expensive operation, as it needs to convert to coefficient representation and back, in order
to determine the values in the added rows.

double addPrimesAndScale(const IndexSet& S);

Expand the index set by S, and multiply by qdiff =
∏
i∈S pi. The set S is assumed to be

disjoint from the current index set. Returns log(qdiff). This operation is typically much faster
than addPrimes, since we can fill the added rows with zeros.

void removePrimes(const IndexSet& s);

Remove the primes pi with i ∈ s from the current index set.

void scaleDownToSet(const IndexSet& s, long ptxtSpace);

This is a modulus-switching operation. Let ∆ be the set of primes that are removed,
∆ = getIndexSet() \ s, and qdiff =

∏
i∈∆ pi. This operation removes the primes pi, i ∈ ∆,

scales down the polynomial by a factor of qdiff , and rounds so as to keep a mod ptxtSpace

unchanged.

We provide some conversion routines to convert polynomials from coefficient-representation
(NTL’s ZZX format) to DoubleCRT and back, using the constructor

DoubleCRT(const ZZX&, const FHEcontext&, const IndexSet&);

and the conversion function ZZX to ZZX(const DoubleCRT&). We also provide translation routines
between SingleCRT and DoubleCRT.

We support the usual set of arithmetic operations on DoubleCRT objects (e.g., addition, multi-
plication, etc.), always working in Aq for some modulus q. We only implemented the “destructive”
two-argument version of these operations, where one of the input arguments is modified to return
the result. These arithmetic operations can only be applied to DoubleCRT objects relative to the
same FHEcontext, else an error is raised.

On the other hand, the DoubleCRT class supports operations between objects with different
IndexSet’s, offering two options to resolve the differences: Our arithmetic operations take a boolean
flag matchIndexSets, when the flag is set to true (which is the default), the index-set of the result is
the union of the index-sets of the two arguments. When matchIndexSets=false then the index-set
of the result is the same as the index-set of *this, i.e., the argument that will contain the result
when the operation ends. The option matchIndexSets=true is slower, since it may require adding
primes to the two arguments. Below is a list of the arithmetic routines that we implemented:

DoubleCRT& Negate(const DoubleCRT& other); // *this = -other

DoubleCRT& Negate(); // *this = -*this;

DoubleCRT& operator+=(const DoubleCRT &other); // Addition

DoubleCRT& operator+=(const ZZX &poly); // expensive

DoubleCRT& operator+=(const ZZ &num);

DoubleCRT& operator+=(long num);

DoubleCRT& operator-=(const DoubleCRT &other); // Subtraction

DoubleCRT& operator-=(const ZZX &poly); // expensive

11

16. Design and Implementation of a Homomorphic-Encryption Library

DoubleCRT& operator-=(const ZZ &num);

DoubleCRT& operator-=(long num);

// These are the prefix versions, ++dcrt and --dcrt.

DoubleCRT& operator++();

DoubleCRT& operator--();

// Postfix versions (return type is void, it is offered just for style)

void operator++(int);

void operator--(int);

DoubleCRT& operator*=(const DoubleCRT &other); // Multiplication

DoubleCRT& operator*=(const ZZX &poly); // expensive

DoubleCRT& operator*=(const ZZ &num);

DoubleCRT& operator*=(long num);

// Procedural equivalents, providing also the matchIndexSets flag

void Add(const DoubleCRT &other, bool matchIndexSets=true);

void Sub(const DoubleCRT &other, bool matchIndexSets=true);

void Mul(const DoubleCRT &other, bool matchIndexSets=true);

DoubleCRT& operator/=(const ZZ &num); // Division by constant

DoubleCRT& operator/=(long num);

void Exp(long k); // Small-exponent polynomial exponentiation

// Automorphism F(X) --> F(X^k) (with gcd(k,m)==1)

void automorph(long k);

DoubleCRT& operator>>=(long k);

We also provide methods for choosing at random polynomials in DoubleCRT format, as follows:

void randomize(const ZZ* seed=NULL);

Fills each row i ∈ getIndexSet() with random integers modulo pi. This procedure uses the
NTL PRG, setting the seed to the seed argument if it is non-NULL, and using the current
PRG state of NTL otherwise.

void sampleSmall();

Draws a random polynomial with coefficients −1, 0, 1, and converts it to DoubleCRT format.
Each coefficient is chosen as 0 with probability 1/2, and as ±1 with probability 1/4 each.

void sampleHWt(long weight);

Draws a random polynomial with coefficients −1, 0, 1, and converts it to DoubleCRT format.
The polynomial is chosen at random subject to the condition that all but weight of its
coefficients are zero, and the non-zero coefficients are random in ±1.

12

16. Design and Implementation of a Homomorphic-Encryption Library

void sampleGaussian(double stdev=3.2);

Draws a random polynomial with coefficients −1, 0, 1, and converts it to DoubleCRT format.
Each coefficient is chosen at random from a Gaussian distribution with zero mean and variance
stdev2, rounded to an integer.

In addition to the above, we also provide the following methods:

DoubleCRT& SetZero(); // set to the constant zero

DoubleCRT& SetOne(); // set to the constant one

const FHEcontext& getContext() const; // access to context

const IndexSet& getIndexSet() const; // the current set of primes

void breakIntoDigits(vector<DoubleCRT>&, long) const; // used in key-switching

The method breakIntoDigits above is described in Section 3.1.6, where we discuss key-switching.

The SingleCRT class. SingleCRT is a helper class, used to gain some efficiency in expensive
DoubleCRT operations. A SingleCRT object is also defined relative to a fixed FHEcontext and a
dynamic subset S of the small primes. This SingleCRT object holds an IndexMap of polynomials
(in NTL’s ZZX format), where the i’th polynomial contains the coefficients modulo the ith small
prime in our list.

Although SingleCRT and DoubleCRT objects can interact in principle, translation back and
forth are expensive since they involve FFT (or inverse FFT) modulo each of the primes. Hence
support for interaction between them is limited to explicit conversions.

3 The Crypto Layer

The third layer of our library contains the implementation of the actual BGV homomorphic cryp-
tosystem, supporting homomorphic operations on the “native plaintext space” of polynomials in A2

(or more generally polynomials in A2r for some parameter r). We partitioned this layer (somewhat
arbitrarily) into the Ctxt module that implements ciphertexts and ciphertext arithmetic, the FHE

module that implements the public and secret keys, and the key-switching matrices, and a helper
KeySwitching module that implements some common strategies for deciding what key-switching
matrices to generate. Two high-level design choices that we made in this layer is to implement
ciphertexts as arbitrary-length vectors of polynomials, and to allow more than one secret-key per
instance of the system. These two choices are described in more details in Sections 3.1 and 3.2
below, respectively.

3.1 The Ctxt module: Ciphertexts and homomorphic operations

Recall that in the BGV cryptosystem, a “canonical” ciphertext relative to secret key s ∈ A is a
vector of two polynomials (c0, c1) ∈ A 2

q (for the “current modulus” q), such that m = [c0 + c1s]q is
a polynomial with small coefficients, and the plaintext that is encrypted by this ciphertext is the
binary polynomial [m]2 ∈ A2. However the library has to deal also with “non-canonical” cipher-
texts: for example when multiplying two ciphertexts as above we get a vector of three polynomials
(c0, c1, c2), which is encrypted by setting m = [c0 + c1s + c2s

2]q and outputting [m]2. Also, after a

13

16. Design and Implementation of a Homomorphic-Encryption Library

homomorphic automorphism operation we get a two-polynomial ciphertext (c0, c1) but relative to
the key s′ = κ(s) (where κ is the same automorphism that we applied to the ciphertext, namely
s′(X) = s(Xt) for some t ∈ Z∗m).

To support all of these options, a ciphertext in our library consists of an arbitrary-length vector
of “ciphertext parts”, where each part is a polynomial, and each part contains a “handle” that
points to the secret-key that this part should be multiply by during decryption. Handles, parts,
and ciphertexts are implemented using the classes SKHandle, CtxtPart, and Ctxt, respectively.

3.1.1 The SKHandle class

An object of the SKHandle class “points” to one particular secret-key polynomial, that should
multiply one ciphertext-part during decryption. Recall that we allow multiple secret keys per
instance of the cryptosystem, and that we may need to reference powers of these secret keys (e.g.
s2 after multiplication) or polynomials of the form s(Xt) (after automorphism). The general form
of these secret-key polynomials is therefore sri (X

t), where si is one of the secret keys associated
with this instance, r is the power of that secret key, and t is the automorphism that we applied to
it. To uniquely identify a single secret-key polynomial that should be used upon decryption, we
should therefore keep the three integers (i, r, t).

Accordingly, a SKHandle object has three integer data members, powerOfS, powerOfX, and
secretKeyID. It is considered a reference to the constant polynomial 1 whenever powerOfS= 0,
irrespective of the other two values. Also, we say that a SKHandle object points to a base secret
key if it has powerOfS = powerOfX = 1.

Observe that when multiplying two ciphertext parts, we get a new ciphertext part that should
be multiplied upon decryption by the product of the two secret-key polynomials. This gives
us the following set of rules for multiplying SKHandle objects (i.e., computing the handle of
the resulting ciphertext-part after multiplication). Let {powerOfS, powerOfX, secretKeyID} and
{powerOfS′, powerOfX′, secretKeyID′} be two handles to be multiplied, then we have the following
rules:

• If one of the SKHandle objects points to the constant 1, then the result is equal to the other
one.

• If neither points to one, then we must have secretKeyID = secretKeyID′ and powerOfX =
powerOfX′, otherwise we cannot multiply. If we do have these two equalities, then the result
will also have the same t = powerOfX and i = secretKeyID, and it will have r = powerOfS+
powerOfS′.

The methods provided by the SKHandle class are the following:

SKHandle(long powerS=0, long powerX=1, long sKeyID=0); // constructor

long getPowerOfS() const; // returns powerOfS;

long getPowerOfX() const; // returns powerOfX;

long getSecretKeyID() const; // return secretKeyID;

void setBase(); // set to point to a base secret key

void setOne(); // set to point to the constant 1

bool isBase() const; // does it point to base?

14

16. Design and Implementation of a Homomorphic-Encryption Library

bool isOne() const; // does it point to 1?

bool operator==(const SKHandle& other) const;

bool operator!=(const SKHandle& other) const;

bool mul(const SKHandle& a, const SKHandle& b); // multiply the handles

// result returned in *this, returns true if handles can be multiplied

3.1.2 The CtxtPart class

A ciphertext-part is a polynomial with a handle (that “points” to a secret-key polynomial). Ac-
cordingly, the class CtxtPart is derived from DoubleCRT, and includes an additional data member of
type SKHandle. This class does not provide any methods beyond the ones that are provided by the
base class DoubleCRT, except for access to the secret-key handle (and constructors that initialize
it).

3.1.3 The Ctxt class

A Ctxt object is always defined relative to a fixed public key and context, both must be supplied
to the constructor and are fixed thereafter. As described above, a ciphertext contains a vector of
parts, each part with its own handle. This type of representation is quite flexible, for example you
can in principle add ciphertexts that are defined with respect to different keys, as follows:

• For parts of the two ciphertexts that point to the same secret-key polynomial (i.e., have the
same handle), you just add the two DoubleCRT polynomials.

• Parts in one ciphertext that do not have counter-part in the other ciphertext will just be
included in the result intact.

For example, suppose that you wanted to add the following two ciphertexts. one “canonical” and
the other after an automorphism X 7→ X3:

~c = (c0[i = 0, r = 0, t = 0], c1[i = 0, r = 1, t = 1])

and ~c ′ = (c′0[i = 0, r = 0, t = 0], c′3[i = 0, r = 1, t = 3]).

Adding these ciphertexts, we obtain a three-part ciphertext,

~c+ ~c ′ = ((c0 + c′0)[i = 0, r = 0, t = 0], c1[i = 0, r = 1, t = 1], c′3[i = 0, r = 1, t = 3]).

Similarly, we also have flexibility in multiplying ciphertexts using a tensor product, as long as all
the pairwise handles of all the parts can be multiplied according to the rules from Section 3.1.1
above.

The Ctxt class therefore contains a data member vector<CtxtPart> parts that keeps all of
the ciphertext-parts. By convention, the first part, parts[0], always has a handle pointing to
the constant polynomial 1. Also, we maintain the invariant that all the DoubleCRT objects in the
parts of a ciphertext are defined relative to the same subset of primes, and the IndexSet for this
subset is accessible as ctxt.getPrimeSet(). (The current BGV modulus for this ciphertext can
be computed as q = ctxt.getContext().productOfPrimes(ctxt.getPrimeSet()).)

15

16. Design and Implementation of a Homomorphic-Encryption Library

For reasons that will be discussed when we describe modulus-switching in Section 3.1.5, we
maintain the invariant that a ciphertext relative to current modulus q and plaintext space p has
an extra factor of q mod p. Namely, when we decrypt the ciphertext vector ~c using the secret-key
vector ~s, we compute m = [〈~s,~c〉]p and then output the plaintext m = [q−1 · m]p (rather than just
m = [m]p). Note that this has no effect when the plaintext space is p = 2, since q−1 mod p = 1 in
this case.

The basic operations that we can apply to ciphertexts (beyond encryption and decryption) are
addition, multiplication, addition and multiplication by constants, automorphism, key-switching
and modulus switching. These operations are described in more details later in this section.

3.1.4 Noise estimate

In addition to the vector of parts, a ciphertext contains also a heuristic estimate of the “noise
variance”, kept in the noiseVar data member: Consider the polynomial m = [〈~c,~s〉]q that we
obtain during decryption (before the reduction modulo 2). Thinking of the ciphertext ~c and the
secret key ~s as random variables, this makes also m a random variable. The data members noiseVar
is intended as an estimate of the second moment of the random variable m(τm), where τm = e2πi/m

is the principal complex primitive m-th root of unity. Namely, we have noiseVar ≈ E[|m(τm)|2] =
E[m(τm) ·m(τm)], with m(τm) the complex conjugate of m(τm).

The reason that we keep an estimate of this second moment, is that it gives a convenient handle
on the l2 canonical embedding norm of m, which is how we measure the noise magnitude in the
ciphertext. Heuristically, the random variables m(τ jm) for all j ∈ Z∗m behave as if they are identically
distributed, hence the expected squareds l2 norm of the canonical embedding of m is

E
[
(‖m‖canon

2)2
]

=
∑
j∈Z∗m

E
[∣∣m(τ jm)

∣∣2] ≈ φ(m) · E
[
|m(τm)|2

]
≈ φ(m) · noiseVar.

As the l2 norm of the canonical embedding of m is larger by a
√
φ(m) factor than the l2 norm of

its coefficient vector, we therefore use the condition
√
noiseVar ≥ q/2 (with q the current BGV

modulus) as our decryption-error condition. The library never checks this condition during the
computation, but it provides a method ctxt.isCorrect() that the application can use to check
for it. The library does use the noise estimate when deciding what primes to add/remove during
modulus switching, see description of the MultiplyBy method below.

Recalling that the j’th ciphertext part has a handle pointing to some s
rj
j (Xtj), we have that

m = [〈~c,~s〉]q = [
∑

j cjs
rj
j]q. A valid ciphertext vector in the BGV cryptosystem can always be

written as ~c = ~r + ~e such that ~r is some masking vector satisfying [〈~r,~s〉]q = 0 and ~e = (e1, e2, . . .)
is such that ‖ej · s

rj
j (Xtj)‖ � q. We therefore have m = [〈~c,~s〉]q =

∑
j ejs

rj
j , and under the

heuristic assumption that the “error terms” ej are independent of the keys we get E[|m(τm)|2] =∑
j E[|ej(τm)|2] · E[|sj(τ

tj
m)rj |2] ≈

∑
j E[|ej(τm)|2] · E[|sj(τm)rj |2]. The terms E[|ej(τm)|2] depend on

the the particular error polynomials that arise during the computation, and will be described when
we discuss the specific operations. For the secret-key terms we use the estimate

E
[
|s(τm)r|2

]
≈ r! ·Hr,

where H is the Hamming-weight of the secret-key polynomial s. For r = 1, it is easy to see that
E[|s(τm)|2] = H: Indeed, for every particular choice of the H nonzero coefficients of s, the random

16

16. Design and Implementation of a Homomorphic-Encryption Library

variable s(τm) (defined over the choice of each of these coefficients as ±1) is a zero-mean complex
random variable with variance exactly H (since it is a sum of exactly H random variables, each
obtained by multiplying a uniform ±1 by a complex constant of magnitude 1). For r > 1, it is
clear that E[|s(τm)r|2] ≥ E[|s(τm)|2]r = Hr, but the factor of r! may not be clear. We obtained that
factor experimentally for the most part, by generating many polynomials s of some given Hamming
weight and checking the magnitude of s(τm). Then we validated this experimental result the case
r = 2 (which is the most common case when using our library), as described in the appendix. The
rules that we use for computing and updating the data member noiseVar during the computation,
as described below.

Encryption. For a fresh ciphertext, encrypted using the public encryption key, we have noiseVar =
σ2(1 + φ(m)2/2 + φ(m)(H + 1)), where σ2 is the variance in our RLWE instances, and H is
the Hamming weight of the first secret key.

When the plaintext space modulus is p > 2, that quantity is larger by a factor of p2. See
Section 3.2.2 for the reason for these expressions.

Modulus-switching. The noise magnitude in the ciphertexts scales up as we add primes to the
prime-set, while modulus-switching down involves both scaling down and adding some term
(corresponding to the rounding errors for modulus-switching). Namely, when adding more
primes to the prime-set we scale up the noise estimate as noiseVar′ = noiseVar ·∆2, with
∆ the product of the added primes.

When removing primes from the prime-set we scale down and add an extra term, setting
noiseVar′ = noiseVar/∆2+addedNoise, where the added-noise term is computed as follows:
We go over all the parts in the ciphertext, and consider their handles. For any part j with a
handle that points to s

rj
j (Xtj), where sj is a secret-key polynomial whose coefficient vector

has Hamming-weight Hj , we add a term (p2/12) · φ(m) · (rj)! ·H
rj
j . Namely, when modulus-

switching down we set

noiseVar′ = noiseVar/∆2 +
∑
j

p2

12
· φ(m) · (rj)! ·H

rj
j .

See Section 3.1.5 for the reason for this expression.

Re-linearization/key-switching. When key-switching a ciphertext, we modulus-switch down to
remove all the “special primes” from the prime-set of the ciphertext if needed (cf. Section 2.7).
Then, the key-switching operation itself has the side-effect of adding these “special primes”
back. These two modulus-switching operations have the effect of scaling the noise down, then
back up, with the added noise term as above. Then add yet another noise term as follows:

The key-switching operation involves breaking the ciphertext into some number n′ of “digits”
(see Section 3.1.6). For each digit i of size Di and every ciphertext-part that we need to
switch (i.e., one that does not already point to 1 or a base secret key), we add a noise-term
φ(m)σ2 · p2 ·D2

i /4, where σ2 is the variance in our RLWE instances. Namely, if we need to
switch k parts and if noiseVar′ is the noise estimate after the modulus-switching down and
up as above, then our final noise estimate after key-switching is

noiseVar′′ = noiseVar′ + k · φ(m)σ2 · p2 ·
n′∑
i=1

D2
i /4

17

16. Design and Implementation of a Homomorphic-Encryption Library

where Di is the size of the i’th digit. See Section 3.1.6 for more details.

addConstant. We roughly add the size of the constant to our noise estimate. The calling
application can either specify the size of the constant, or else we use the default value
sz = φ(m) · (p/2)2. Recalling that when current modulus is q we need to scale up the
constant by q mod p, we therefore set noiseVar′ = noiseVar + (q mod p)2 · sz.

multByConstant. We multiply our noise estimate by the size of the constant. Again, the calling
application can either specify the size of the constant, or else we use the default value sz =
φ(m) · (p/2)2. Then we set noiseVar′ = noiseVar · sz.

Addition. We first add primes to the prime-set of the two arguments until they are both defined
relative to the same prime-set (i.e. the union of the prime-sets of both arguments). Then
we just add the noise estimates of the two arguments, namely noiseVar′ = noiseVar +
other.noiseVar.

Multiplication. We first remove primes from the prime-set of the two arguments until they are
both defined relative to the same prime-set (i.e. the intersection of the prime-sets of both
arguments). Then the noise estimate is set to the product of the noise estimates of the two
arguments, multiplied by an additional factor which is computed as follows: Let r1 be the
highest power of s (i.e., the powerOfS value) in all the handles in the first ciphertext, and
similarly let r2 be the highest power of s in all the handles in the second ciphertext, then the
extra factor is

(
r1+r2
r1

)
. Namely, we have noiseVar′ = noiseVar · other.noiseVar ·

(
r1+r2
r1

)
.

(In particular if the two arguments are canonical ciphertexts then the extra factor is
(

2
1

)
= 2.)

See Section 3.1.7 for more details.

Automorphism. The noise estimate does not change by an automorphism operation.

3.1.5 Modulus-switching operations

Our library supports modulus-switching operations, both adding and removing small primes from
the current prime-set of a ciphertext. In fact, our decision to include an extra factor of (q mod p)
in a ciphertext relative to current modulus q and plaintext-space modulus p, is mainly intended to
somewhat simplify these operations.

To add primes, we just apply the operation addPrimesAndScale to all the ciphertext parts
(which are polynomials in Double-CRT format). This has the effect of multiplying the ciphertext
by the product of the added primes, which we denote here by ∆, and we recall that this operation
is relatively cheap (as it involves no FFTs or CRTs, cf. Section 2.8). Denote the current modulus
before the modulus-UP transformation by q, and the current modulus after the transformation by
q′ = q · ∆. If before the transformation we have [〈~c,~s〉]q = m, then after this transformation we
have 〈~c′, ~s〉 = 〈∆ · ~c,~s〉 = ∆ · 〈~c,~s〉, and therefore [〈~c′, ~s〉]q·∆ = ∆ ·m. This means that if before the
transformation we had by our invariant [〈~c,~s〉]q = m ≡ q ·m (mod p), then after the transformation
we have [〈~c,~s〉]q′ = ∆ ·m ≡ q′ ·m (mod p), as needed.

For a modulus-DOWN operation (i.e., removing primes) from the current modulus q to the
smallest modulus q′, we need to scale the ciphertext ~c down by a factor of ∆ = q/q′ (thus getting
a fractional ciphertext), then round appropriately to get back an integer ciphertext. Using our
invariant about the extra factor of (q mod p) in a ciphertext relative to modulus q (and plaintext

18

16. Design and Implementation of a Homomorphic-Encryption Library

space modulus p), we need to convert ~c into another ciphertext vector ~c′ satisfying (a) (q′)−1~c′ ≡
q−1~c (mod p), and (b) the “rounding error term” ε

def
= ~c′ − (q′/q)~c is small. As described in [5], we

apply the following optimized procedure:

1. Let ~δ = ~c mod ∆,

2. Add or subtract multiples of ∆ from the coefficients in ~δ until it is divisible by p,

3. Set ~c∗ = ~c− ~δ, // ~c∗ divisible by ∆, and ~c∗ ≡ ~c (mod p)
4. Output ~c′ = ~c/∆.

An argument similar to the proof of [2, Lemma 4] shows that if before the transformation we
had m = [〈~c,~s〉]q ≡ q ·m (mod p), then after the transformation we have m′ = [〈~c′, ~s〉]q′ ≡ q′ ·m
(mod p), as needed. (The difference from [2, Lemma 4] is that we do not assume that q, q′ ≡ 1
(mod p).)

Considering the noise magnitude, we can write ~c′ = ~c/∆ +~ε where ~ε is the rounding error (i.e.,
the terms that are added in Step 2 above, divided by ∆). The noise polynomial is thus scaled down

by a ∆ factor, then increased by the additive term a
def
= 〈~ε, ~s〉 =

∑
j εj(X) · s rjj (Xtj) (with a ∈ A).

We make the heuristic assumption that the coefficients in all the εj ’s behave as if they are chosen
uniformly in the interval −[p/2, p/2). Under this assumption, we have

E
[
|εj(τm)|2

]
= φ(m) · p2/12,

since the variance of a uniform random variable in −[p/2, p/2) is p2/12, and εj(τm) is a sum of
φ(m) such variables, scaled by different magnitude-1 complex constants. Assuming heuristically
that the εj ’s are independent of the public key, we have

E
[
|a(τm)|2

]
=
∑
j

E
[
|εj(ρm)|2

]
· E
[∣∣∣s rjj (Xtj)

∣∣∣2] ≈∑
j

(φ(m) · p2/12) · (rj)! ·H
rj
j ,

where p is the plaintext-space modulus, Hj is the Hamming weight of the secret key for the j’th
part, and rj is the power of that secret key.

3.1.6 Key-switching/re-linearization

The re-linearization operation ensures that all the ciphertext parts have handles that point to either
the constant 1 or a base secret-key: Any ciphertext part j with a handle pointing to s

rj
j (Xtj) with

either rj > 1 or rj = 1 and tj > 1, is replace by two adding two parts, one that points to 1 and
the other than points to sj(X), using some key-switching matrices from the public key. Also, a
side-effect of re-linearization is that we add all the “special primes” to the prime-set of the resulting
ciphertext.

To explain the re-linearization procedure, we begin by recalling that the “ciphertext primes”
that define our moduli-chain are partitioned into some number n ≥ 1 of “digits”, of roughly equal
size. (For example, say that we have 15 small primes in the chain and we partition them to three
digits, then we may take the first five primes to be the first digit, the next five primes to be the
second, and the last five primes to be the third.) The size of a digit is the product of all the primes
that are associated with it, and below we denote by Di the size of the i’th digit.

19

16. Design and Implementation of a Homomorphic-Encryption Library

When key-switching a ciphertext ~c using n > 1 digits, we begin by breaking ~c into a collection
of (at most) n lower-norm ciphertexts ~ci. First we remove all the special primes from the prime-set
of the ciphertext by modulus-DOWN, if needed. Then we determine the smallest n′ such that the
product of of the first n′ digits exceeds the current modulus q, and then we set

1. ~d1 := ~c
2. For i = 1 to n′ do:

3. ~ci := ~di mod Di // |~ci| < Di/2

4. ~di+1 := (~di − ~ci)/Di // (~di − ~ci) divisible by Di

Note that ~c =
∑n′

i=1 ~ci ·
∏
j<iDi, and also since ‖~c‖∞ ≤ q/2 ≤ (

∏
iDi)/2, then it follows that

‖~ci‖∞ ≤ Di/2 for all i. Below we assume that the current modulus q is equal to the product of the
first n′ digits. (The case where q <

∏
iDi is very similar, but requires somewhat more complicated

notations, in that case we just remove primes from the last digit until the product is equal to q.)
Consider now one particular ciphertext-part cj in ~c, with a handle that points to some s′j(X) =

s
rj
j (Xtj), with either rj > 1 or rj = 1 and tj > 1. Let us denote by ci,j the ciphertext-parts

corresponding to cj in the low-norm ciphertexts ~ci. That is, we have cj =
∑n′

i=1 ci,j ·
∏
j<iDi, and

also ‖ci,j‖∞ ≤ Di/2 for all i. Moreover we need to have in the public-key a key-switching matrix
for that handle, W = W [s′j ⇒ sj]. This W is a 2×n matrix of polynomials in Double-CRT format,
defined relative to the product of all the small primes in our chain (special or otherwise). Below
we denote the product of all these small primes by Q. The i’th column in the matrix encrypts the
“plaintext polynomial” s′j ·

∏
j<iDi under the key sj , namely a vector (ai, bi)

T ∈ A 2
Q such that

[bi + aisj]Q = (
∏
j<iDi) · s′j + p · ei, for a small polynomial ei (and the plaintext-space modulus p).

Moreover, as long as (
∏
j<iDi)·s′j+p·ei is short enough, the same equality holds also modulo smaller

moduli that divide Q. In particular, denoting the product of the “special primes” by Q∗ and the
product of the n′ digits that we use by q, then for all i ≤ n′ we have ‖(

∏
j<iDi)·s′j+p·ei‖∞ < qQ∗/2,

and therefore [
bi + aisj

]
qQ∗

= (
∏
j<i

Di) · s′j + p · ei.

We therefore reduce the key-switching matrix modulo qQ∗, and add the small primes corresponding
to qQ∗ to all the ci,j ’s. We replace cj by ciphertext-parts that point to 1 and base, by multiplying
the n′-vector c̃j = (c1,j , . . . , cn′,j)

T by (the first n′ columns of) the key-switching matrix W , setting

(c′′j , c
′
j)
T :=

[
W [1 : n′]× c̃j

]
qQ∗

= [
n′∑
i=1

(ai, bi)
T · ci,j]qQ∗ .

It is not hard to see that for these two new ciphertext-parts we have:

c′′j + c′jsj =

n′∑
i=1

(bi + aisj) · ci,j =
n′∑
i=1

(
(
∏
j<i

Di) · s′j + p · ei
)
· ci,j

=

 n′∑
i=1

(
∏
j<i

Di)ci,j

 s′j + p ·
n′∑
i=1

eici,j = cjs
′
j + p

n′∑
i=1

eici,j (mod qQ∗)

Replacing all the parts cj by pairs (c′′j , c
′
j)
T as above (and adding up all the parts that point to 1,

as well as all the parts that point to the base sj), we thus get a canonical ciphertext ~c′ = (c̃2, c̃1)T ,

20

16. Design and Implementation of a Homomorphic-Encryption Library

with c̃2 = [
∑

j c
′′
j]qQ∗ and c̃1 = [

∑
j c
′
j]qQ∗ , and we have

c̃2 + c̃1sj =

∑
j

cjs
′
j

+ p
(∑
i,j

eici,j
)

= m + p
(∑
i,j

eici,j
)

(mod qQ∗).

Hence, as long as the additive term p(
∑

i,j eici,j) is small enough, decrypting the new ciphertext
yields the same plaintext value modulo p as decrypting the original ciphertext ~c.

In terms of noise magnitude, we first scale up the noise by a factor of Q∗ when adding all the
special primes, and then add the extra noise term p ·

∑
i,j eici,j . Since the ci,j ’s have coefficients of

magnitude at most Di/2 and the polynomials ei are RLWE error terms with zero-mean coefficients
and variance σ2, then the second moment of ei(τm) · ci,j(τm) is no more than φ(m)σ2 ·D2

i /4. Thus
for every ciphertext part that we need to switch (i.e. that has a handle that points to something
other than 1 or base), we add a term of φ(m)σ2 · p2 ·D2

i /4. Therefore, if our noise estimate after
the scale-up is noiseVar′ and we need to switch k

noiseVar′′ = noiseVar′ + k · φ(m)σ2 · p2 ·
n′∑
i=1

D2
i /4

3.1.7 Native arithmetic operations

The native arithmetic operations that can be performed on ciphertexts are negation, addition/subtraction,
multiplication, addition of constants, multiplication by constant, and automorphism. In our li-
brary we expose to the application both the operations in their “raw form” without any additional
modulus- or key-switching, as well as some higher-level interfaces for multiplication and automor-
phisms that include also modulus- and key-switching.

Negation. The method Ctxt::negate() transforms an encryption of a polynomial m ∈ Ap to
an encryption of [−m]p, simply by negating all the ciphertext parts modulo the current modulus.
(Of course this has an effect on the plaintext only when p > 2.) The noise estimate is unaffected.

Addition/subtraction. Both of these operations are implemented by the single method
void Ctxt::addCtxt(const Ctxt& other, bool negative=false);

depending on the negative boolean flag. For convenience, we provide the methods Ctxt::operator+=
and Ctxt::operator-= that call addCtxt with the appropriate flag. A side effect of this operation
is that the prime-set of *this is set to the union of the prime sets of both ciphertexts. After this
scaling (if needed), every ciphertext-part in other that has a matching part in *this (i.e. a part
with the same handle) is added to this matching part, and any part in other without a match is
just appended to *this. We also add the noise estimate of both ciphertexts.

Constant addition. Implemented by the methods
void Ctxt::addConstant(const ZZX& poly, double size=0.0);

void Ctxt::addConstant(const DoubleCRT& poly, double size=0.0);

The constant is scaled by a factor f = (q mod p), with q the current modulus and p the ciphertext
modulus (to maintain our invariant that a ciphertext relative to q has this extra factor), then added
to the part of *this that points to 1. The calling application can specify the size of the added

21

16. Design and Implementation of a Homomorphic-Encryption Library

constant (i.e. |poly(τm)|2), or else we use the default value size = φ(m) · (p/2)2, and this value
(times f2) is added to our noise estimate.

Multiplication by constant. Implemented by the methods
void Ctxt::multByConstant(const ZZX& poly, double size=0.0);

void Ctxt::multByConstant(const DoubleCRT& poly, double size=0.0);

All the parts of *this are multiplied by the constant, and the noise estimate is multiplied by the
size of the constant. As before, the application can specify the size, or else we use the default value
size = φ(m) · (p/2)2.

Multiplication. “Raw” multiplication is implemented by
Ctxt& Ctxt::operator*=(const Ctxt& other);

If needed, we modulus-switch down to the intersection of the prime-sets of both arguments, then
compute the tensor product of the two, namely the collection of all pairwise products of parts from
*this and other.

The noise estimate of the result is the product of the noise estimates of the two arguments, times
a factor which is computed as follows: Let r1 be the highest power of s (i.e., the powerOfS value)
in all the handles in *this, and similarly let r2 be the highest power of s in all the handles other.
The extra factor is then set as

(
r1+r2
r1

)
. Namely, noiseVar′ = noiseVar · other.noiseVar ·

(
r1+r2
r1

)
.

The reason for the
(
r1+r2
r1

)
factor is that the ciphertext part in the result, obtained by multiplying

the two parts with the highest powerOfS value, will have powerOfS value of the sum, r = r1 + r2.
Recall from Section 3.1.4 that we estimate E[|s(τm)r|2] ≈ r! ·Hr, where H is the Hamming weight
of the coefficient-vector of s. Thus our noise estimate for the relevant part in *this is r1! ·Hr1 and
the estimate for the part in other is r2! ·Hr2 . To obtain the desired estimate of (r1 + r2)! ·Hr1+r2 ,

we need to multiply the product of the estimates by the extra factor (r1+r2)!
r1!·r2! =

(
r1+r2
r1

)
. 1

Higher-level multiplication. We also provide the higher-level methods
void Ctxt::multiplyBy(const Ctxt& other);

void Ctxt::multiplyBy(const Ctxt& other1, const Ctxt& other2);

The first method multiplies two ciphertexts, it begins by removing primes from the two arguments
down to a level where the rounding-error from modulus-switching is the dominating noise term (see
findBaseSet below), then it calls the low-level routine to compute the tensor product, and finally
it calls the reLinearize method to get back a canonical ciphertext.

The second method that multiplies three ciphertexts also begins by removing primes from the
two arguments down to a level where the rounding-error from modulus-switching is the dominating
noise term. Based on the prime-sets of the three ciphertexts it chooses an order to multiply them
(so that ciphertexts at higher levels are multiplied first). Then it calls the tensor-product routine
to multiply the three arguments in order, and then re-linearizes the result.

We also provide the two convenience methods square and cube that call the above two-argument
and three-argument multiplication routines, respectively.

1Although products of other pairs of parts may need a smaller factor, the parts with highest powerOfS value
represent the largest contribution to the overall noise, hence we use this largest factor for everything.

22

16. Design and Implementation of a Homomorphic-Encryption Library

Automorphism. “Raw” automorphism is implemented in the method
void Ctxt::automorph(long k);

For convenience we also provide Ctxt& operator>>=(long k); that does the same thing. These
methods just apply the automorphism X 7→ Xk to every part of the current ciphertext, without
changing the noise estimate, and multiply by k (modulo m) the powerOfX value in the handles of
all these parts.

“Smart” Automorphism. Higher-level automorphism is implemented in the method
void Ctxt::smartAutomorph(long k);

The difference between automorph and smartAutomorph is that the latter ensures that the result
can be re-linearized using key-switching matrices from the public key. Specifically, smartAutomorph
breaks the automorphism X 7→ Xk into some number t ≥ 1 of steps, X 7→ Xki for i = 1, 2, . . . t,
such that the public key contains key-switching matrices for re-linearizing all these steps (i.e.
W = W [s(Xki) ⇒ s(X)]), and at the same time we have

∏t
i=1 ki = k (mod m). The method

smartAutomorph then begin by re-linearizing its argument, then in every step it performs one of
the automorphisms X 7→ Xki followed by re-linearization.

The decision of how to break each exponent k into a sequence of ki’s as above is done off line
during key-generation, as described in Section 3.2.2. After this off-line computation, the public key
contains a table that for each k ∈ Z∗m indicates what is the first step to take when implementing the
automorphism X 7→ Xk. The smartAutomorph looks up the first step k1 in that table, performs
the automorphism X 7→ Xk1 , then compute k′ = k/k1 mod m and does another lookup in the table
for the first step relative to k′, and so on.

3.1.8 More Ctxt methods

The Ctxt class also provide the following utility methods:

void clear(); Removes all the parts and sets the noise estimate to zero.

xdouble modSwitchAddedNoiseVar() const; computes the added-noise from modulus-switching,
namely it returns

∑
j(φ(m) ·p2/12) ·(rj)! ·H

rj
j where Hj and rj are respectively the Hamming

weight of the secret key that the j’th ciphertext-part points to, and the power of that secret
key (i.e., the powerOfS value in the relevant handle).

void findBaseSet(IndexSet& s) const; Returns in s the largest prime-set such that modulus-
switching to s would make ctxt.modSwitchAddedNoiseVar the most significant noise term.
In other words, modulus-switching to s results in a significantly smaller noise than to any
larger prime-set, but modulus-switching further down would not reduce the noise by much.
When multiplying ciphertexts using the multiplyBy “high-level” methods, the ciphertexts
are reduced to (the intersection of) their “base sets” levels before multiplying.

long getLevel() const; Returns the number of primes in the result of findBaseSet.

bool inCanonicalForm(long keyID=0) const; Returns true if this is a canonical ciphertexts,
with only two parts: one that points to 1 and the other that points to the “base” secret key
si(X), (where i = keyId is specified by the caller).

23

16. Design and Implementation of a Homomorphic-Encryption Library

bool isCorrect() const; and double log of ratio() const; The method isCorrect() com-
pares the noise estimate to the current modulus, and returns true if the noise estimate is
less than half the modulus size. Specifically, if

√
noiseVar < q/2. The method double

log of ratio() returns log(noiseVar)/2− log(q).

Access methods. Read-only access the data members of a Ctxt object:

const FHEcontext& getContext() const;

const FHEPubKey& getPubKey() const;

const IndexSet& getPrimeSet() const;

const xdouble& getNoiseVar() const;

const long getPtxtSpace() const; // the plaintext-space modulus

const long getKeyID() const; // key-ID of the first part not pointing to 1

3.2 The FHE module: Keys and key-switching matrices

Recall that we made the high-level design choices to allow instances of the cryptosystem to have
multiple secret keys. This decision was made to allow a leveled encryption system that does not
rely on circular security, as well as to support switching to a different key for different purposes
(which may be needed for bootstrapping, for example). However, we still view using just a single
secret-key per instance (and relying on circular security) as the primary mode of using our library,
and hence provided more facilities to support this mode than for the mode of using multiple keys.
Regardless of how many secret keys we have per instance, there is always just a single public
encryption key, for encryption relative to the first secret key. (The public key in our variant of
the BGV cryptosystem is just a ciphertext, encrypting the constant 0.) In addition to this public
encryption key, the public-key contains also key-switching matrices and some tables to help finding
the right matrices to use in different settings. Ciphertexts relative to secret keys other than the
first (if any), can only be generated using the key-switching matrices in the public key.

3.2.1 The KeySwitch class

This class implements key-switching matrices. As we described in Section 3.1.6, a key-switching
matrix from s′ to s, denoted W [s′ ⇒ s], is a 2× n matrix of polynomials from AQ, where Q is the
product of all the small primes in our chain (both ciphertext-primes and special-primes). Recall
that the ciphertext primes are partitioned into n digits, where we denote the product of primes
corresponding the i’th digit by Di. Then the i’th column of the matrix W [s′ ⇒ s] is a pair of
elements (ai, bi) ∈ A 2

Q that satisfy

[bi + ai · s]Q = (
∏
j<i

Dj) · s′ + p · ei,

for a low-norm polynomial ei ∈ AQ. In more detail, we choose a low-norm polynomial ei ∈ AQ,
where each coefficient of ei is chosen from a discrete Gaussian over the integers with variance σ2

(with σ a parameter, by default σ = 3.2). Then we choose a random polynomial ai ∈R AQ and set

bi :=
[
(
∏
j<iDi) · s′ + p · ei − ai · s

]
Q

.

The matrix W is stored in a KeySwitch object in a space-efficient manner: instead of storing the
random polynomials ai themselves, we only store a seed for a pseudorandom-generator, from which

24

16. Design and Implementation of a Homomorphic-Encryption Library

all the ai’s are derived. The bi’s are stored explicitly, however. We note that this space-efficient
representation requires that we assume hardness of our ring-LWE instances even when the seed for
generating the random elements is known, but this seems like a reasonable assumption.

In our library, the source secret key s′ is of the form s′ = s ri′ (X
t) (for some index i′ and

exponents r, t), but the target s must be a “base” secret-key, i.e. s = si(X) for some index i. The
KeySwitch object stores in addition to the matrix W also a secret-key handle (r, t, i′) that identifies
the source secret key, as well as the index i of the target secret key.

The KeySwitch class provides a method NumCols() that returns the number of columns in the
matrix W . We maintain the invariant that all the key-switching matrices that are defined relative
to some context have the same number of columns, which is also equal to the number of digits that
are specified in the context.

3.2.2 The FHEPubKey class

An FHEPubKey object is defined relative to a fixed FHEcontext, which must be supplied to the
constructor and cannot be changed later. An FHEPubKey includes the public encryption key
(which is a ciphertext of type Ctxt), a vector of key-switching matrices (of type KeySwitch), and
another data structure (called keySwitchMap) that is meant to help finding the right key-switching
matrices to use for automorphisms (see a more detailed description below). In addition, for every
secret key in this instance, the FHEPubKey object stores the Hamming weight of that key, i.e., the
number of non-zero coefficients of the secret-key polynomial. (This last piece of information is used
to compute the estimated noise in a ciphertext.) The FHEPubKey class provides an encryption
method, and various methods to find and access key-switching matrices.

long Encrypt(Ctxt& ciphertxt, const ZZX& plaintxt, long ptxtSpace=0) const; This method
returns in ciphertxt an encryption of the plaintext polynomial plaintxt, relative to the plaintext-
space modulus given in ptxtSpace. If the ptxtSpace parameter is not specified then we use the
plaintext-space modulus from the public encryption key in this FHEPubKey object, and other-
wise we use the greater common divisor (GCD) of the specified value and the one from the public
encryption key. The current-modulus in the new fresh ciphertext is the product of all the ciphertext-
primes in the context, which is the same as the current modulus in the public encryption key in
this FHEPubKey object.

Let the public encryption key in the FHEPubKey object be denoted ~c∗ = (c∗0, c
∗
1), let Qct be

the product of all the ciphertext primes in the context, and let p be the plaintext-space modulus
(namely the GCD of the parameter ptxtSpace and the plaintext-space modulus from the public
encryption key). The Encrypt method chooses a random low-norm polynomial r ∈ AQct with
−1/0/1 coefficients, and low-norm error polynomials e0, e1 ∈ AQ, where each coefficient of ei’s is
chosen from a discrete Gaussian over the integers with variance σ2 (with σ a parameter, by default
σ = 3.2). We then compute and return the canonical ciphertext

~c = (c0, c1) := r · (c∗0, c∗1) + p · (e0, e1) + plaintxt.

Note that since the public encryption key satisfies [c∗0 + s · c∗1]Qct = p · e∗ for some low-norm poly-
nomial e∗, then we have

[c0 + s · c1]Qct = [r · (c∗0 + s · c∗1) + p · (e0 + s · e1) + plaintxt]Qct
= p · (e0 + s · e1 + r · e∗) + plaintxt.

25

16. Design and Implementation of a Homomorphic-Encryption Library

For the noise estimate in the new ciphertext, we multiply the noise estimate in the public encryption
key by the size of the low-norm r, and add another term for the expression a = p · (e0 + s · e1) +
plaintxt. Specifically, the noise estimate in the public encryption key is pubEncrKey.noiseVar =
φ(m)σ2p2, the second moment of r(τm) is φ(m)/2, and the second moment of a(τm) is no more
than p2(1 + sigma2φ(m)(H + 1)) with H the Hamming weight of the secret key s. Hence the noise
estimate in a freshly encrypted ciphertext is

noiseVar = p2 ·
(
1 + σ2φ(m) ·

(
φ(m)/2 +H + 1

))
.

The key-switching matrices. An FHEPubKey object keeps a list of all the key-switching
matrices that were generated during key-generation in the data member keySwitching of type
vector<KeySwitch>. As explained above, each key-switching matrix is of the form W [s;r

i (Xt) ⇒
sj(X)], and is identified by a SKHandle object that specifies (r, t, i) and another integer that spec-
ifies the target key-ID j. The basic facility provided to find a key-switching matrix are the two
equivalent methods

const KeySwitch& getKeySWmatrix(const SKHandle& from, long toID=0) const;

const KeySwitch& getKeySWmatrix(long fromSPower, long fromXPower, long fromID=0,

long toID=0) const;

These methods return either a read-only reference to the requested matrix if it exists, or oth-
erwise a reference to a dummy KeySwitch object that has toKeyID = −1. For convenience we
also prove the methods bool haveKeySWmatrix that only test for existence, but do not return the
actual matrix. Another variant is the method

const KeySwitch& getAnyKeySWmatrix(const SKHandle& from) const;

(and its counterpart bool haveAnyKeySWmatrix) that look for a matrix with the given source
(r, t, i) and any target. All these methods first try to find the requested matrix using the keySwitchMap
table (which is described below), and failing that they resort to linear search through the entire list
of matrices.

The keySwitchMap table. Although our library supports key-switching matrices of the general
form W [s;r

i (Xt) ⇒ sj(X)], we provide more facilities for finding matrices to re-linearize after
automorphism (i.e., matrices of the form W [si(X

ti)⇒ si(X)]) than for other types of matrices.
For every secret key si in the current instance we consider a graph Gi over the vertex set Z∗m,

where we have an edge j → k if and only if we have a key-switching matrix W [si(X
jk−1

)⇒ si(X)])
(where jk−1 is computed modulo m). We observe that if the graph Gi has a path t 1 then we
can apply the automorphism X 7→ Xt with re-linearization to a canonical ciphertext relative to si
as follows: Denote the path from t to 1 in the graph by

t = k1 → k2 · · · kn = 1.

We follow the path one step at a time, for each step j applying the automorphism X 7→ Xkjk
−1
j+1

and then re-linearizing the result using the matrix W [si(X
kjk
−1
j+1)⇒ si(X)] from the public key.

The data member vector< vector<long> > keySwitchMap encodes all these graphs Gi in a
way that makes it easy to find the sequence of operation needed to implement any given auto-
morphism. For every i, keySwitchMap[i] is a vector of indexes that stores information about the
graph Gi. Specifically, keySwitchMap[i][t] is an index into the vector of key-switching matrices,
pointing out the first step in the shortest path t 1 in Gi (if any). In other words, if 1 is reachable

26

16. Design and Implementation of a Homomorphic-Encryption Library

from t in Gi, then keySwitchMap[i][t] is an index k such that keySwitching[k] = W [si(X
ts−1

)⇒
si(X)] where s is one step closer to 1 in Gi than t. In particular, if we have in the public key a
matrix W [si(X

t) ⇒ si(X)] then keySwitchMap[i][t] contains the index of that matrix. If 1 is
not reachable from t in Gi, then keySwitchMap[i][t] = −1.

The maps in keySwitchMap are built using a breadth-first search on the graph Gi, by calling the
method void setKeySwitchMap(long keyId=0); This method should be called after all the key-
switching matrices are added to the public key. If more matrices are generated later, then it should
be called again. Once keySwitchMap is initialized, it is used by the method Ctxt::smartAutomorph

as follows: to implement X 7→ Xt on a canonical ciphertext relative to secret key si, we do the
following:

1. while t 6= 1
2. set j = pubKey.keySwitchMap[i][t] // matrix index
3. set matrix = pubKey.keySwitch[j] // the matrix itself
4. set k = matrix.fromKey.getPowerOfX() // the next step
5. perform automorphism X 7→ Xk, then re-linearize
6. t = t · k−1 mod m // Now we are one step closer to 1

The operations in steps 2,3 above are combined in the method
const KeySwitch& FHEPubKey::getNextKSWmatrix(long t, long i);

That is, on input t, i it returns the matrix whose index in the list is j = keySwitchMap[i][t]. Also,
the convenience method bool FHEPubKey::isReachable(long t, long keyID=0) const check
if keySwitchMap[keyID][t] is defined, or it is −1 (meaning that 1 is not reachable from t in the
graph GkeyID).

3.2.3 The FHESecKey class

The FHESecKey class is derived from FHEPubKey, and contains an additional data member with the
secret key(s), vector<DoubleCRT> sKeys. It also provides methods for key-generation, decryption,
and generation of key-switching matrices, as described next.

Key-generation. The FHESecKey class provides methods for either generating a new secret-key
polynomial with a specified Hamming weight, or importing a new secret key that was generated by
the calling application. That is, we have the methods:

long ImportSecKey(const DoubleCRT& sKey, long hwt, long ptxtSpace=0);

long GenSecKey(long hwt, long ptxtSpace=0);

For both these methods, if the plaintext-space modulus is unspecified then it is taken to be the
default 2r from the context. The first of these methods takes a secret key that was generated by
the application and insert it into the list of secret keys, keeping track of the Hamming weight of
the key and the plaintext space modulus which is supposed to be used with this key. The second
method chooses a random secret key polynomial with coefficients −1/0/1 where exactly hwt of
them are non-zero, then it calls ImportSecKey to insert the newly generated key into the list. Both
of these methods return the key-ID, i.e., index of the new secret key in the list of secret keys.
Also, with every new secret-key polynomial si, we generate and store also a key-switching matrix
W [s 2

i (X)⇒ si(X)] for re-linearizing ciphertexts after multiplication.

27

16. Design and Implementation of a Homomorphic-Encryption Library

The first time that ImportSecKey is called for a specific instance, it also generates a public
encryption key relative to this first secret key. Namely, for the first secret key s it chooses at random
a polynomial c∗1 ∈R AQct (where Qct is the product of all the ciphertext primes) as well as a low-norm
error polynomial e∗ ∈ AQct (with Gaussian coefficients), then sets c∗0 := [ptxtSpace · e∗ − s · c∗1]Qct .

Clearly the resulting pair (c∗0, c
∗
1) satisfies m∗

def
= [c∗0 + s · c∗1]Qct = ptxtSpace · e∗, and the noise

estimate for this public encryption key is noiseVar∗ = E[|m∗(τm)|2] = p2σ2 · φ(m).

Decryption. The decryption process is rather straightforward. We go over all the ciphertext
parts in the given ciphertext, multiply each part by the secret key that this part points to, and sum
the result modulo the current BGV modulus. Then we reduce the result modulo the plaintext-space
modulus, which gives us the plaintext. This is implemented in the method

void Decrypt(ZZX& plaintxt, const Ctxt &ciphertxt) const;

that returns the result in the plaintxt argument. For debugging purposes, we also provide the
method void Decrypt(ZZX& plaintxt, const Ctxt &ciphertxt, ZZX& f) const, that returns
also the polynomial before reduction modulo the plaintext space modulus. We stress that it would
be insecure to use this method in a production system, it is provided only for testing and debugging
purposes.

Generating key-switching matrices. We also provide an interface for generating key-switching
matrices, using the method:

void GenKeySWmatrix(long fromSPower, long fromXPower, long fromKeyIdx=0,

long toKeyIdx=0, long ptxtSpace=0);

This method checks if the relevant key-switching matrix already exists, and if not then it generates
it (as described in Section 3.2.1) and inserts into the list keySwitching. If left unspecified, the
plaintext space defaults to 2r, as defined by context.mod2r.

Secret-key encryption. We also provide a secret-key encryption method, that produces cipher-
texts with a slightly smaller noise than the public-key encryption method. Namely we have the
method

long FHESecKey::Encrypt(Ctxt &c, const ZZX& ptxt, long ptxtSpace, long skIdx) const;

that encrypts the polynomial ptxt relative to plaintext-space modulus ptxtSpace, and the secret
key whose index is skIdx. Similarly to the choise of the public encryption key, the Encrypt

method chooses at random a polynomial c1 ∈R AQct (where Qct is the product of all the ciphertext
primes) as well as a low-norm error polynomial e ∈ AQct (with Gaussian coefficients), then sets

c0 := [ptxtSpace · e + ptxt − s · c1]Qct . Clearly the resulting pair (c0, c1) satisfies m
def
= [c0 + s ·

c1]Qct = ptxtSpace · e + ptxt, and the noise estimate for this public encryption key is noiseVar ≈
E[|m(τm)|2] = p2σ2 · φ(m).

3.3 The KeySwitching module: What matrices to generate

This module implements a few useful strategies for deciding what key-switching matrices for auto-
morphism to choose during key-generation. Specifically we have the following methods:

28

16. Design and Implementation of a Homomorphic-Encryption Library

void addAllMatrices(FHESecKey& sKey, long keyID=0);

For i = keyID, generate key-switching matrices W [si(X
t)⇒ si(X)] for all t ∈ Z∗m.

void add1DMatrices(FHESecKey& sKey, long keyID=0);

For i = keyID, generate key-switching matrices W [si(X
ge)⇒ si(X)] for every generator g of

Z∗m/ 〈2〉 with order ord(g), and every exponent 0 < e < ord(g). Also if the order of g in Z∗m is
not the same as its order in Z∗m/ 〈2〉, then generate also the matrices W [si(X

g−e
) ⇒ si(X)]

(cf. Section 2.4).

We note that these matrices are enough to implement all the automorphisms that are needed
for the data-movement routines from Section 4.

void addSome1DMatrices(FHESecKey& sKey, long bound=100,long keyID=0);

For i = keyID, we generate just a subset of the matrices that are generated by add1DMatrices,
so that each of the automorphisms X 7→ Xge can be implemented by at most two steps (and
similarly for X 7→ Xg−e

for generators whose orders in Z∗m and Z∗m/ 〈2〉 are different). In
other words, we ensure that the graph Gi (cf. Section 3.2.2) has a path of length at most 2
from ge to 1 (and also from g−e to 1 for g’s of different orders).

In more details, if ord(g) ≤ bound then we generate all the matrices W [si(X
ge) ⇒ si(X)]

(or W [si(X
g−e

) ⇒ si(X)]) just like in add1DMatrices. When ord(g) > bound, however, we
generate only O(

√
ord(g)) matrices for this generator: Denoting Bg = d

√
ord(g)e, for every

0 < e < Bg let e′ = e · Bg mod m, then we generate the matrices W [si(X
ge) ⇒ si(X)] and

W [si(X
ge
′
) ⇒ si(X)]. In addition, if if g has a different order in Z∗m and Z∗m/ 〈2〉 then we

generate also W
[
si(X

g−e′
)⇒ si(X)

]
.

void addFrbMatrices(FHESecKey& sKey, long keyID=0);

For i = keyID, generate key-switching matrices W [si(X
2e)⇒ si(X)] for 0 < e < d where d is

the order of 2 in Z∗m.

4 The Data-Movement Layer

At the top level of our library, we provide some interfaces that allow the application to manipulate
arrays of plaintext values homomorphically. The arrays are translated to plaintext polynomials us-
ing the encoding/decoding routines provided by PAlgebraModTwo/PAlgebraMod2r (cf. Section 2.5),
and then encrypted and manipulated homomorphically using the lower-level interfaces from the
crypto layer.

4.1 The classes EncryptedArray and EncryptedArrayMod2r

These classes present the plaintext values to the application as either a linear array (with as many
entries as there are elements in Z∗m/ 〈2〉), or as a multi-dimensional array corresponding to the
structure of the group Z∗m/ 〈2〉. The difference between EncryptedArray and EncryptedArrayMod2r
is that the former is used when the plaintext-space modulus is 2, while the latter is used when it is
2r for some r > 1. Another difference between them is that EncryptedArray supports also plaintext
values in binary extension fields F2n , while EncryptedArrayMod2r only support integer plaintext
values from Z2r . This is reflected in the constructor for these types: For EncryptedArray we have
the constructor

29

16. Design and Implementation of a Homomorphic-Encryption Library

EncryptedArray(const FHEcontext& context, const GF2X& G=GF2X(1,1));

that takes as input both the context (that specifies m) and a binary polynomial G for the repre-
sentation of F2n (with n the degree of G). The default value for the polynomial is G(X) = X,
resulting in plaintext values in the base field F2 = Z2 (i.e., individual bits). On the other hand, the
constructor for EncryptedArrayMod2r is

EncryptedArrayMod2r(const FHEcontext& context);

that takes only the context (specifying m and the plaintext-space modulus 2r), and the plaintext
values are always in the base ring Z2r . In either case, the constructors computes and store various
“masks”, which are polynomials that have 1’s in some of their plaintext slots and 0 in the other
slots. There masks are used in the implementation of the data movement procedures, as described
below.

The multi-dimensional array view. This view arranges the plaintext slots in a multi-dimensional
array, corresponding to the structure of Z∗m/ 〈2〉. The number of dimensions is the same as the
number of generators that we have for Z∗m/ 〈2〉, and the size along the i’th dimension is the order
of the i’th generator.

Recall from Section 2.4 that each plaintext slot is represented by some t ∈ Z∗m, such that the set
of representatives T ⊂ Z∗m has exactly one element from each conjugacy class of Z∗m/ 〈2〉. Moreover,
if f1, . . . , fn ∈ T are the generators of Z∗m/ 〈2〉 (with fi having order ord(fi)), then every t ∈ T can
be written uniquely as t = [

∏
i f

ei
i]m with each exponent ei taken from the range 0 ≤ ei < ord(fi).

The generators are roughly arranges by their order (i.e., ord(fi) ≥ ord(fi+1)), except that we put
all the generators that have the same order in Z∗m and Z∗m/ 〈2〉 before all the generators that have
different orders in the two groups.

Hence the multi-dimensional-array view of the plaintext slots will have them arranged in a n-
dimensional hypercube, with the size of the i’th side being ord(fi). Every entry in this hypercube
is indexed by some ~e = (e1, e2, . . . , en), and it contains the plaintext slot associated with the
representative t = [

∏
i f

ei
i]m ∈ T . (Note that the lexicographic order on the vectors ~e of indexes

induces a linear ordering on the plaintext slots, which is what we use in our linear-array view
described below.) The multi-dimensional-array view provides the following interfaces:

long dimension() const; returns the dimensionality (i.e., the number of generators in Z∗m/ 〈2〉).

long sizeOfDimension(long i); returns the size along the i’th dimension (i.e., ord(fi)).

long coordinate(long i, long k) const; return the i’th entry of the k’th vector in lexico-
graphic order.

void rotate1D(Ctxt& ctxt, long i, long k) const;

This method rotates the hypercube by k positions along the i’th dimension, moving the
content of the slot indexed by (e1 . . . , ei, . . . en) to the slot indexed by (e1 . . . , ei + k, . . . en),
addition modulo ord(fi). Note that the argument k above can be either positive or negative,
and rotating by −k is the same as rotating by ord(fi)− k.

The rotate operation is closely related to the “native” automorphism operation of the lower-
level Ctxt class. Indeed, if fi has the same order in Z∗m as in Z∗m/ 〈2〉 then we just apply the

automorphism X 7→ Xfki on the input ciphertext using ctxt.smartAutomorph(fki). If fi has

different orders in Z∗m and Z∗m/ 〈2〉 then we need to apply the two automorphisms X 7→ Xfki

30

16. Design and Implementation of a Homomorphic-Encryption Library

and X 7→ Xf
k−ord(fi)
i and then “mix and match” the two resulting ciphertexts to pick from

each of them the plaintext slots that did not undergo wraparound (see description of the
select method below).

void shift1D(Ctxt& ctxt, long i, long k) const;

This is similar to rotate1D, except it implements a non-cyclic shift with zero fill. Namely,
for a positive k > 0, the content of any slot indexed by (e1 . . . , ei, . . . en) with ei < ord(fi)− k
is moved to the slot indexed by (e1 . . . , ei + k, . . . en), and all the other slots are filled with
zeros. For a negative k < 0, the content of any slot indexed by (e1 . . . , ei, . . . en) with ei ≥ |k|
is moved to the slot indexed by (e1 . . . , ei + k, . . . en), and all the other slots are filled with
zeros.

The operation is implemented by applying the corresponding automorphism(s), and then
zero-ing out the wraparound slots by multiplying the result by a constant polynomial that
has zero in these slots.

The linear array view. This view arranges the plaintext slots in a linear array, with as many
entries as there are plaintext slots (i.e., |Z∗m/ 〈2〉 |). These entries are ordered according to the
lexicographic order on the vectors of indexes from the multi-dimensional array view above. In other
words, we obtain a linear array simply by “opening up” the hypercube from above in lexicographic
order. The linear-array view provides the following interfaces:

long size() const; returns the number of entries in the array, i.e., the number of plaintext slots.

void rotate(Ctxt& ctxt, long k) const;

Cyclically rotate the linear array by k positions, moving the content of the j’th slot (by the
lexicographic order) to slot j+k, addition modulo the number of slots. (Below we denote the
number of slots by N .) Rotation by a negative number −N < k < 0 is the same as rotation
by the positive amount k +N .

The procedure for implementing this cyclic rotation is roughly a concurrent version of the
grade-school addition-with-carry procedure, building on the multidimensional rotations from
above. What we need to do is to add k (modulo N) to the index of each plaintext slot,
all in parallel. To that end, we think of the indexes (and the rotation amount k) as they
are represented in the lexicographic order above. Namely, we identify k with the vector

~e(k) = (e
(k)
1 , . . . , e

(k)
n) which is k’th in the lexicographic order (and similarly identify each

index j with the j’th vector in that order). We can now think of rotation by k as adding the
multi-precision vector ~e(k) to all the vectors ~e(j), j = 0, 1, . . . , N − 1 in parallel.

Beginning with the least-significant digit in these vector, we use rotate-by-e
(k)
n along the n’th

dimension to implement the operation of e
(j)
n = e

(j)
n + e

(k)
n mod ord(fn) for all j at once.

Moving to the next digit, we now have to add to each e
(j)
n−1 either e

(k)
n−1 or 1+e

(k)
n−1, depending

on whether or not there was a carry from the previous position. To do that, we compute

two rotation amount along the (n− 1)’th dimension, by e
(k)
n−1 and 1 + e

(k)
n−1, then use a MUX

operation to choose the right rotation amount for every slot. Namely, indexes j for which

e
(j)
n ≥ ord(fi)−e(k)

n (so we have a carry) are taken from the copy that was rotated by 1+e
(k)
n−1,

while other indexes j are taken from the copy that was rotated by e
(k)
n−1.

31

16. Design and Implementation of a Homomorphic-Encryption Library

The MUX operation is implemented by preparing a constant polynomial that has 1’s in the

slots corresponding to indexes (e1, . . . , en) with en ≥ ord(fi) − e(k)
n and 0’s in all the other

slots (call this polynomial mask), then computing ~c′ = ~c1 · mask+~c2 · (1− mask), where ~c1,~c2

are the two ciphertexts generated by rotation along dimension n − 1 by 1 + e
(k)
n−1 and e

(k)
n−1,

respectively.

We then move to the next digit, preparing a mask for those j’s for which we have a carry into

that position, then rotating by 1+e
(k)
n−2 and e

(k)
n−2 along the (n−2)’nd dimension and using the

mask to do the MUX between these two ciphertexts. We proceed in a similar manner until
the most significant digit. To complete the description of the algorithm, note that the mask
for processing the i’th digit is computed as follows: For each index j, which is represented

by the vector (e
(j)
1 . . . , e

(j)
i , . . . e

(j)
n), we have maski[j] = 1 if either e

(j)
i ≥ ord(fi) − e(k)

i , or

if e
(j)
i = ord(fi) − e(k)

i − 1 and maski−1[j] = 1 (i.e. we had a carry from position i − 1 to
position i). Hence the rotation procedure works as follows:

Rotate(~c, k):

0. Let (e
(k)
1 , . . . , e

(k)
n) be the k’th vector in lexicographic order.

1. Mn := all-1 mask // Mn is a polynomial with 1 in all the slots

2. Rotate ~c by e
(k)
n along the n’th dimension

3. For i = n− 1 down to 1

4. M ′i := 1 in the slots j with e
(j)
i+1 ≥ ord(fi+1)− e(k)

i+1, 0 in all the other slots

5. M ′′i := 1 in the slots j with e
(j)
i+1 = ord(fi+1)− e(k)

i+1 − 1, 0 in all the outer slots
6. Mi := M ′i +M ′′i ·Mi+1 // The i’th mask

7. ~c ′ := rotate ~c by e
(k)
i along the i’th dimension

8. ~c ′′ := rotate ~c by 1 + e
(k)
i along the i’th dimension

9. ~c := ~c ′′ ·Mi + ~c ′ · (1−Mi)
10. Return ~c.

void shift(Ctxt& ctxt, long k) const; Non-cyclic shift of the linear array by k positions,
with zero-fill. For a positive k > 0, then every slot j ≥ k gets the content of slot j − k, and
every slot j < k gets zero. For a negative k < 0, every slot j < N − |k| gets the content of
slot j + |k|, and every slot j ≥ N − |k| gets zero (with N the number of slots).

For k > 0, this procedure is implemented very similarly to the rotate procedure above, except
that in the last iteration (processing the most-significant digit) we replace the operation of

rotate-by-e
(k)
1 along the 1’st dimension by shift-by-e

(k)
1 along the 1’st dimension (and similarly

use shift-by-(1 + e
(k)
1) rather than rotate-by-(1 + e

(k)
1)). For a negative amount −N < k < 0,

we use the same procedure upto the last iteration with amount N + k, and in the last
iteration use shift-by-e′ and shift-by-(1+e′) along the 1st dimension, for the negative number

e′ = e
(k)
1 − ord(fi).

Other operations. In addition to the following rotation methods, the classes EncryptedArray and
EncryptedArrayMod2r also provide convenience methods that handle both encoding and homomor-
phic operations in one shot. The class EncryptedArray uses type vector<GF2X> for a plaintext array

32

16. Design and Implementation of a Homomorphic-Encryption Library

(since the plaintext values can be elements in an extension field F2n), whereas class EncryptedAr-
rayMod2r uses type vector<long> for the same purpose (since the plaintext values in this case are
integers). The methods that are provided are the following:

// Fill the array with random plaintext data

void random(vector<GF2X>& array) const; // EncryptedArray

void random(vector<long>& array) const; // EncryptedArrayMod2r

// Encode the given array in a polynomial

void encode(ZZX& ptxt, const vector<GF2X>& array) const;

void encode(ZZX& ptxt, const vector<long>& array) const;

// Decode the given polynomial into an array of plaintext values

void decode(vector<long>& array, const ZZX& ptxt) const

void decode(vector<GF2X>& array, const ZZX& ptxt) const

// Multiply by the ciphertext by a polynomial encoding the given array

void multByConst(Ctxt& ctxt, const vector<GF2X>& array);

void multByConst(Ctxt& ctxt, const vector<long>& array);

// Add to the ciphertext a polynomial encoding the given array

void addConst(Ctxt& ctxt, const vector<GF2X>& array)

void addConst(Ctxt& ctxt, const vector<long>& array)

// MUX: for p=encode(selector), set c1 = c1*p + c2*(1-p)

void select(Ctxt& c1, const Ctxt& c2, const vector<GF2X>& selector) const;

void select(Ctxt& c1, const Ctxt& c2, const vector<long>& selector) const;

// Encode the array in a polynomial, then encrypt it in the ciphertext c

void encrypt(Ctxt& c, const FHEPubKey& pKey, const vector<GF2X>& array) const;

void encrypt(Ctxt& c, const FHEPubKey& pKey, const vector<long>& array) const;

// Decrypt the ciphertext c, then decode the result into the array

void decrypt(const Ctxt& c, const FHESecKey& sKey, vector<GF2X>& array) const;

void decrypt(const Ctxt& c, const FHESecKey& sKey, vector<long>& array) const;

5 Using the Library

Below we provide two examples of how this library can be used by an application program. These
examples compute a simple circuit with homomorphic arithmetic over either GF (28) (represented
using the AES polynomial, G(X) = X8 +X4 +X3 +X + 1), or over Z25 .

33

16. Design and Implementation of a Homomorphic-Encryption Library

5.1 Homomorphic Operations over GF (28)

/*** Determine the parameters (cf. [5, Appendix C]) ***/

long ptxtSpace = 2;

long nDigits = 2; // # of digits/# of columns in key-switching matrices

long k = 80; // security parameter

long weight = 64; // Hamming weight of secret keys

long lvls = 3; // number of ciphertext-primes in the modulus chain

long m = 11441; // the parameter m, defining Zm^* and Phi_m(X)

/*** Setup the various tables, and choose the keys ***/

FHEcontext context(m); // initialize a new context for the parameter m

buildModChain(context, lvls, nDigits); // build the modulus chain

FHESecKey secretKey(context); // initialize a secret-key object

const FHEPubKey& publicKey = secretKey; // use the same object as a public-key

secretKey.GenSecKey(weight,ptxtSpace); // draw a random secret key

addSome1DMatrices(secretKey); // compute some key-switching matrices

// We could also use add1DMatrices instead of addSome1DMatrices

GF2X G; // G is the AES polynomial, G(X)= X^8 +X^4 +X^3 +X +1

SetCoeff(G,8); SetCoeff(G,4); SetCoeff(G,3); SetCoeff(G,1); SetCoeff(G,0);

EncryptedArray ea(context, G); // An EncryptedArray object, encoding wrt G

long nslots = ea.size(); // number of plaintext slots

/*** Encrypt random arrays over GF(2^8) ***/

vector<GF2X> p0, p1, p2, p3; // Choose random arrays

ea.random(p0);

ea.random(p1);

ea.random(p2);

ea.random(p3);

vector<GF2X> const1, const2; // two more random "constants"

ea.random(const1);

ea.random(const2);

ZZX const1_poly, const2_poly; // encode constants as polynomials

ea.encode(const1_poly, const1);

ea.encode(const2_poly, const2);

// Encrypt the random arrays

Ctxt c0(publicKey), c1(publicKey), c2(publicKey), c3(publicKey);

ea.encrypt(c0, publicKey, p0);

ea.encrypt(c1, publicKey, p1);

ea.encrypt(c2, publicKey, p2);

ea.encrypt(c3, publicKey, p3);

34

16. Design and Implementation of a Homomorphic-Encryption Library

/*** Perform homomorphic operations ***/

c1.multiplyBy(c0); // also does mod-switching, key-switching

c0.addConstant(const1_poly);

c2.multByConstant(const2_poly);

Ctxt tmp(c1); // tmp = c1

long amt = RandomBnd(2*(nslots/2)+1)-(nslots/2); // in [-nslots/2..nslots/2]

ea.shift(tmp, amt); // rotate tmp by amt

c2 += tmp; // then add to c2

amt = RandomBnd(2*nslots-1) - (nslots-1); // in [-(nslots-1)..nslots-1]

ea.rotate(c2, amt);

c1.negate();

c3.multiplyBy(c2);

c0 -= c3;

/*** Decrypt the results of the computation ***/

ea.decrypt(c0, secretKey, pp0);

ea.decrypt(c1, secretKey, pp1);

ea.decrypt(c2, secretKey, pp2);

ea.decrypt(c3, secretKey, pp3);

5.2 Homomorphic Operations over Z25

This example is almost identical to the previous one, except that the FHEcontext is initialized
also with the paremeter r = 5, we use EncryptedArrayMod2r instead of EncryptedArray and
vector<long> instead of vector<GF2X>, and we do not need the polynomial G.

/*** Determine the parameters (cf. [5, Appendix C]) ***/

long r = 5;

long ptxtSpace = 1L << r; // plaintext space modulo 2^5

long nDigits = 2; // # of digits/# of columns in key-switching matrices

long k = 80; // security parameter

long weight = 64; // Hamming weight of secret keys

long lvls = 7; // number of ciphertext-primes in the modulus chain

long m = 11441; // the parameter m, defining Zm^* and Phi_m(X)

/*** Setup the various tables, and choose the keys ***/

FHEcontext context(m, r); // initialize a new context for the parameters m,r

buildModChain(context, lvls, nDigits); // build the modulus chain

FHESecKey secretKey(context); // initialize a secret-key object

const FHEPubKey& publicKey = secretKey; // use the same object as a public-key

secretKey.GenSecKey(weight,ptxtSpace); // draw a random secret key

addSome1DMatrices(secretKey); // compute some key-switching matrices

// We could also use add1DMatrices instead of addSome1DMatrices

35

16. Design and Implementation of a Homomorphic-Encryption Library

EncryptedArrayMod2r ea(context); // An EncryptedArrayMod2r object

long nslots = ea.size(); // number of plaintext slots

/*** Encrypt random arrays over Z_{32} ***/

vector<long> p0, p1, p2, p3; // Choose random arrays

ea.random(p0);

ea.random(p1);

ea.random(p2);

ea.random(p3);

vector<long> const1, const2; // two more random "constants"

ea.random(const1);

ea.random(const2);

ZZX const1_poly, const2_poly; // encode constants as polynomials

ea.encode(const1_poly, const1);

ea.encode(const2_poly, const2);

// Encrypt the random arrays

Ctxt c0(publicKey), c1(publicKey), c2(publicKey), c3(publicKey);

ea.encrypt(c0, publicKey, p0);

ea.encrypt(c1, publicKey, p1);

ea.encrypt(c2, publicKey, p2);

ea.encrypt(c3, publicKey, p3);

/*** Perform homomorphic operations ***/

c1.multiplyBy(c0); // also does mod-switching, key-switching

c0.addConstant(const1_poly);

c2.multByConstant(const2_poly);

Ctxt tmp(c1); // tmp = c1

long amt = RandomBnd(2*(nslots/2)+1)-(nslots/2); // in [-nslots/2..nslots/2]

ea.shift(tmp, amt); // rotate tmp by amt

c2 += tmp; // then add to c2

amt = RandomBnd(2*nslots-1) - (nslots-1); // in [-(nslots-1)..nslots-1]

ea.rotate(c2, amt);

c1.negate();

c3.multiplyBy(c2);

c0 -= c3;

/*** Decrypt the results of the computation ***/

vector<long> pp0, pp1, pp2, pp3;

ea.decrypt(c0, secretKey, pp0);

ea.decrypt(c1, secretKey, pp1);

ea.decrypt(c2, secretKey, pp2);

ea.decrypt(c3, secretKey, pp3);

36

16. Design and Implementation of a Homomorphic-Encryption Library

References

[1] L. I. Bluestein. A linear filtering approach to the computation of the discrete fourier transform.
Northeast Electronics Research and Engineering Meeting Record 10, 1968.

[2] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption without
bootstrapping. In Innovations in Theoretical Computer Science (ITCS’12), 2012. Available
at http://eprint.iacr.org/2011/277.

[3] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st ACM
Symposium on Theory of Computing – STOC 2009, pages 169–178. ACM, 2009.

[4] C. Gentry, S. Halevi, and N. Smart. Fully homomorphic encryption with polylog overhead. In
”Advances in Cryptology - EUROCRYPT 2012”, volume 7237 of Lecture Notes in Computer
Science, pages 465–482. Springer, 2012. Full version at http://eprint.iacr.org/2011/566.

[5] C. Gentry, S. Halevi, and N. Smart. Homomorphic evaluation of the AES circuit. In ”Advances
in Cryptology - CRYPTO 2012”, volume 7417 of Lecture Notes in Computer Science, pages
850–867. Springer, 2012. Full version at http://eprint.iacr.org/2012/099.

[6] C. Gentry, S. Halevi, and N. P. Smart. Better bootstrapping in fully homomorphic encryption.
In Public Key Cryptography - PKC 2012, volume 7293 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2012.

[7] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over
rings. In H. Gilbert, editor, Advances in Cryptology - EUROCRYPT’10, volume 6110 of Lecture
Notes in Computer Science, pages 1–23. Springer, 2010.

[8] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. In
Foundations of Secure Computation, pages 169–177. Academic Press, 1978.

[9] V. Shoup. NTL: A Library for doing Number Theory. http://shoup.net/ntl/, Version 5.5.2,
2010.

[10] N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Manuscript at
http://eprint.iacr.org/2011/133, 2011.

A Proof of noise-estimate

Recall that we observed empirically that for a random Hamming-weight-H polynomial s with
coefficients −1/0/1 and an integral power r we have E[|sr(τ)|2r] ≈ r! ·Hr, where τ is the principal
complex m-th root of unity, τ = e2πi/m.

To simplify the proof, we analyze the case that each coefficient of s is chosen uniformly at
random from −1/0/1, so that the expected Hamming weight is H. Also, we assume that s is
chosen as a degree-(m− 1) polynomial (rather than degree φ(m)− 1).

Theorem 1. Suppose m, r,H are positive integers, with H ≤ m, and let τ = e2πi/m ∈ C. Suppose
that we choose f0, . . . , fm−1 independently, where for i = 0, . . . ,m − 1, fi is ±1 with probability

37

16. Design and Implementation of a Homomorphic-Encryption Library

H/2m each and 0 with probability 1 − H/m. Let f(X) =
∑m−1

i=0 fiX
i. Then for fixed r and

H,m→∞, we have
E[|f(τ)|2r] ∼ r!Hr.

In particular, for H ≥ 2r2, we have∣∣∣∣E[|f(τ)|2r]
r!Hr

− 1

∣∣∣∣ ≤ 2r2

H
+

2r+1r2

m
.

Before proving Theorem 1, we introduce some notation and prove some technical results that
will be useful.

Recall the “falling factorial” notation: for integers n, k with 0 ≤ k ≤ n, we define nk =∏k−1
j=0(n− j).

Lemma 1. For n ≥ k2 > 0, we have nk − nk ≤ k2nk−1.

Proof. We have

nk ≥ (n− k)k = nk −
(
k

1

)
knk−1 +

(
k

2

)
k2nk−2 −

(
k

3

)
k3nk−3 +− · · · .

The lemma follows by verifying that when n ≥ k2, in the above binomial expansion, the sum of
every consecutive positive/negative pair of terms in non-negative.

Lemma 2. For n ≥ 2k2 > 0, we have nk ≤ 2nk.

Proof. This follows immediately from the previous lemma.

Next, we recall the notion of the Stirling number of the second kind, which is the number of
ways to partition a set of ` objects into k non-empty subsets, and is denoted

{
`
k

}
. We use the

following standard result: ∑̀
k=1

{
`

k

}
nk = n`. (1)

Finally, we define M2n to be the number of perfect matchings in the complete graph on 2n
vertices, and Mn,n to be the number of perfect matchings on the complete bipartite graph on two
sets of n vertices. The following facts are easy to establish:

Mn,n = n! (2)

and
M2n ≤ 2nn!. (3)

We now turn to the proof of the theorem. We have

f(τ)2r = f(τ)rf(τ̄)r =
∑

i1,...,i2r

fi1 · · · fi2r · τ i1 · · · τ ir · τ−ir+1 · · · τ−i2r .

We will extend the usual notion of expected values to complex-valued random variables: if U and
V are real-valued random variables, then E[U + V i] = E[U] + E[V]i. The usual rules for sums and
products of expectations work equally well. By linearity of expectation, we have

E[f(τ)2r] =
∑

i1,...,i2r

E[fi1 · · · fi2r] · τ i1 · · · τ ir · τ−ir+1 · · · τ−i2r . (4)

38

16. Design and Implementation of a Homomorphic-Encryption Library

Here, each index it runs over the set {0, . . . ,m− 1}. In this sum, because of independence and the
fact that any odd power of fi has expected value 0, the only terms that contribute a non-zero value
are those in which each index value occurs an even number of times, in which case, if there are k
distinct values among i1, . . . , i2r, we have

E[fi1 · · · fi2r] = (H/m)k.

We want to regroup the terms in (4). To this end, we introduce some notation: for an integer
t ∈ {1, . . . , 2r} define w(t) = 1 if t ≤ r, and w(t) = −1 if t > r; for a subset e ⊆ {1, . . . , 2r}, define
w(e) =

∑
t∈ew(t). We call w(e) the “weight” of e. Then we have:

E[f(τ)2r] =
∑

P={e1,...,ek}

(H/m)k
∑′

j1,...,jk

τ j1w(e1)+···+jkw(ek). (5)

Here, the outer summation is over all “even” partitions P = {e1, . . . , ek} of the set {1, . . . , 2r}, where
each element of the partition has an even cardinatilty. The inner summation is over all sequences
of indices j1, . . . , jk, where each index runs over the set {0, . . . ,m− 1}, but where no value in the
sequence is repeated — the special summation notation

∑′
j1,...,jk

emphasizes this restriction.
Since |τ | = 1, it is clear that∣∣∣∣E[f(τ)2r]−

∑
P={e1,...,ek}

(H/m)k
∑

j1,...,jk

τ j1w(e1)+···+jkw(ek)

∣∣∣∣ ≤ ∑
P={e1,...,ek}

(H/m)k(mk −mk) (6)

Note that in this inequality the inner sum on the left is over all sequences of indices j1, . . . , jk,
without the restriction that the indices in the sequence are unique.

Our first task is to bound the sum on the right-hand side of (6). Observe that any even partition
P = {e1, . . . , ek} can be formed by merging the edges of some perfect matching on the complete
graph on vertices {1, . . . , 2r}. So we have∑

P={e1,...,ek}

(H/m)k(mk −mk) ≤
∑

P={e1,...,ek}

(H/m)kk2mk−1 (by Lemma 1)

≤ r2

m

∑
P={e1,...,ek}

Hk

≤ r2

m
M2r

r∑
k=1

{
r

k

}
Hk (partitions formed from matchings)

≤ r22rr!

m

r∑
k=1

{
r

k

}
Hk (by (3))

≤ r22r+1r!

m

r∑
k=1

{
r

k

}
Hk (by Lemma 2)

=
r22r+1r!

m
Hr (by 1).

Combining this with (6), we have∣∣∣∣E[f(τ)2r]−
∑

P={e1,...,ek}

(H/m)k
∑

j1,...,jk

τ j1w(e1)+···+jkw(ek)

∣∣∣∣ ≤ r!Hr · 2r+1r2

m
. (7)

39

16. Design and Implementation of a Homomorphic-Encryption Library

So now consider the inner sum in (7). The weights w(e1), . . . , w(ek) are integers bounded by r
in absolute value, and r is strictly less than m by the assumption 2r2 ≤ H ≤ m. If any weight,
say w(e1), is non-zero, then τw(e1) has multiplicative order dividing m, but not 1, and so the sum∑

j τ
jw(e1) vanishes, and hence

∑
j1,...,jk

τ j1w(e1)+···+jkw(ek) =

(∑
j1

τ j1w(e1)

)(∑
j2,...,jk

τ j2w(e2)+···+jkw(ek)

)
= 0.

Otherwise, if all the weights are w(e1), . . . , w(ek) are zero, then∑
j1,...,jk

τ j1w(e1)+···+jkw(ek) = mk.

We therefore have ∑
P={e1,...,ek}

(H/m)k
∑

j1,...,jk

τ j1w(e1)+···+jkw(ek) =
∑

P={e1,...,ek}
w(e1)=···=w(ek)=0

Hk, (8)

Observe that any partition P = {e1, . . . , ek} with w(e1) = · · · = w(ek) = 0 can be formed by
merging the edges of some perfect matching on the complete bipartite graph with vertex sets
{1, . . . , r} and {r + 1, . . . , 2r}. The total number of such matchings is r! (see (2)). So we have

r!Hr ≤
∑

P={e1,...,ek}
w(e1)=···=w(ek)=0

Hk ≤ r!Hr + r!
r−1∑
k=1

{
r

k

}
Hk

≤ 2r!
r−1∑
k=1

{
r

k

}
Hk (by Lemma 2)

= 2r!(Hr −Hr) (by (1))

≤ 2r!r2Hr−1 (by Lemma 1)

Combining this with (7) and (8) proves the theorem.

40

16. Design and Implementation of a Homomorphic-Encryption Library

Motivation

Cloud
Computing
Platform

Statistical Analysis
of Medical Data

Medical Records
from Hospital B

Medical Records
from Hospital A

Medical Records
from Hospital C

Cloud-based solutions have become increasingly popular in the past few
years. An example of the cloud-based model is shown below. Here, three dif-
ferent hospitals provide data to the cloud. The cloud computing platform then
analyzes and extracts useful information from the data.

One of the main concern with cloud computing has been the privacy and confi-
dentiality of the data. One solution is to send the data encrypted to the cloud.
However, we still need to support useful computations on the encrypted data.
Fully homomorphic encryption (FHE) is a way of supporting such computa-
tions on encrypted data.

We note that while other mechanisms exist for secure computation, they gen-
erally require the different data providers to exchange information. Because
FHE schemes are public key schemes, FHE is much better suited for the sce-
nario where we have many sources of data.

Using Homomorphic Encryption for
Large Scale Statistical Analysis

David Wu and Jacob Haven
CURIS 2012

Advised by Professor Dan Boneh

Due to the significant overhead in homomorphic computation, implementa-
tions of homomorphic encryption schemes for statistical analysis have been
limited to small datasets (≈ 100 data points) and low dimensional data (≈ 2-4
dimensions).

Using recent techniques in batched computation and a different message en-
coding scheme, we demonstrate the viability of using leveled homomorphic
encryption to compute on datasets with over a million elements as well as
datasets of much higher dimension.

In particular, we consider two applications of homomorphic encryption: com-
puting the mean and covariance of multivariate data and performing linear re-
gression over encrypted datasets.

Our Approach

Computation over Large Integers
To support computation over large amounts of data, we need to be able to
handle large integers (i.e., 128-bit precision). However, it is not computation-
ally feasible to choose message spaces of this magnitude. To support compu-
tations with at least 128-bit precision, we leverage the Chinese Remainder
Theorem (CRT):

Data Result

Data

Data

Data

Result

Result
CRT

Result

We perform the computation modulo each prime. Given the results of the
computation with respect to each prime, we apply the CRT to obtain the
value modulo the product of the primes (at least 128-bit precision).
The computations with respect to each prime is completely independent of
the computation with respect to the other primes. As such, all of the compu-
tations are naturally parallelizable.

We choose primes such that

Homomorphic Encryption Scheme (Server Side)
Our leveled FHE scheme supports three basic operations: addition, multiplication, and Frobenius automor-
phisms. Below, we show how we can use these operations to compute the inner product on encrypted data.

Element-wise addition of batched ciphertexts.

5 3 1 8

0 1 1 0
0 3 1 0 3 4 1 0 4 0 0 04 4 4 4

3 1 0 0 1 0 3 4 1 0 0 0

Element-wise multiplication of batched ciphertexts.
Automorphism operation, which can apply arbitrary permutations to elements in the plaintext slots. Used
here to rotate slots by .

For security, we must add noise into ciphertexts during the encryption process. Homomorphic operations
on ciphertexts increase this noise. In order to decrypt successfully, the noise must be below a chosen
threshold.

Because the individual plaintext slots are non-interacting, we use a series of automorphisms to rotate the
slots and additions to sum up the entries in a batch
In the last step of the circuit, we zero out the values of the remaining slots. In the case where the number
of slots is not a power of two, this ensures that no additional information about the data is leaked. The
result is stored in the first slot of the final ciphertext.

In fully homomorphic computation, multiplication is substantially more expensive (both in terms of runtime
and amount of noise generated) than addition. We can quantify this by defining the depth of a circuit to be
the number of multiplications in the circuit. Evaluating deeper circuits requires larger parameters, and cor-
respondingly, longer runtimes. A comparison of addition and multiplication runtimes for different circuit
depths is given below:

Depth Time to Perform
1 Addition (ms)

Time to Perform
1 Multiplication (s)

1 1.94 0.62
2 3.23 2.14
5 10.81 14.11

10 25.44 102.20
20 141.93 771.55

Homomorphic Encryption Scheme (Client Side)
Leveled fully homomorphic encryption (FHE) schemes supports addition and multiplication over ciphertexts.
Such schemes are capable of evaluating boolean circuits with bounded depth (determined by the number of
multiplications) over ciphertexts, and thus, can perform many computations over the ciphertext.

Consider a scenario where Charlie wants to compute the inner product of Alice’s and Bob’s data. Note that co-
variance computation and linear regression can be expressed in terms of matrix products, which can be viewed
as a series of inner products.

Cloud
Computing
Platform

5 3 1 8

0 1 1 0

[5, 3, 1, 8]
Alice’s Data

[0, 1, 1, 0]
Bob’s Data

Batching Encryption Evaluation Decryption

4
skCharlie

4 0 0 0

pkCharlie

pkCharlie

0 11 0

5 3 1 8

Clear blocks represent plaintext blocks while striped blocks represent ciphertext blocks. The shading in the ci-
phertext block represents the amount of noise in the ciphertext (explained below).

Batching: Pack multiple plaintext messages (data elements) into a single ciphertext block. This enables
the server to evaluate a single instruction on multiple data with low overhead.

Encryption: Encrypt the packed plaintext blocks with the FHE public key (Charlie’s public key).
Evaluation: Send the encrypted data to the cloud server for processing.
Decryption: The client (Charlie) decrypts the result using his secret key.

Number of Data points
(2-dimensional data)

Key Generation Batching Encryption Computation Decryption

1024 4096 8192 16384 65536 262144 1048576 4194304

Ti
m

e
(m

in
ut

es
)

0

50

100

150

200

250

300

350

10.0 9.6 10.0 10.5 14.8 28.2

84.8

305.0

Timing Tests for Linear Regression as a Function of Dataset Size

Dimension of Data
(left bar: 4096 data points, middle bar: 65536 data points, right bar: 262144 data points)

Timing Tests for Linear Regression as a Function of Data Dimension

Ti
m

e
(m

in
ut

es
)

0

100

200

300

400

500

600

700

1 2 3 4 5

Key Generation Batching Encryption Computation Decryption

5.4 7.9 15.6 11.4 14.9 28.0 32.141.5 71.6

148.3
199.0

214.7

531.9
549.8

665.7

Timing Tests for Mean and Covariance Computation
as a Function of Data Dimension

1 2 4 8 12 16 20 24

Ti
m

e
(m

in
ut

es
)

0

200

400

600

800

1000

1200

Dimension of Data
(4096 data points)

Key Generation Batching Encryption Computation Decryption

5.3 10.8 34.0
119.1

250.3

444.3

689.8

1010.0

Timing Tests for Mean and Covariance Computation
as a Function of Dataset Size

Number of Data points
(left bar: 4-dimensional data, right bar: 8-dimensional data)

Ti
m

e
(m

in
ut

es
)

4096 8192 16384 65536262144 1048576
0

50
100
150
200
250
300
350
400
450

Key Generation Batching Encryption Computation Decryption

34.2 34.6 36.6 42.2
66.4

154.1
119.1 119.3 121.9 131.7

190.8

403.0

Below are results from timing tests illustrating performance of linear regres-
sion as well as mean and covariance computation on different datasets. Run-
ning times are relative to one prime in the CRT decomposition.

Experiments

Conclusion
We have constructed a scale-invariant leveled fully homomorphic
encryption system.
Using batching and CRT-based message encoding, we are able to per-
form large scale statistical analysis on millions of data points and data of
moderate dimension.

	3. Targeted Malleability.pdf
	Introduction
	Our Contributions
	Overview of Our Approach
	Related Work
	Paper Organization

	Preliminaries
	Public-Key Encryption
	Non-Interactive Extractable Arguments
	Non-Interactive Simulation-Sound Adaptive Zero-Knowledge Proofs

	Defining Targeted Malleability
	The Path-Based Construction
	The Building Blocks
	The Scheme
	Chosen-Plaintext Security
	Chosen-Ciphertext Security

	The Tree-Based Construction
	The Building Blocks
	The Scheme

	Extensions and Open Problems

	4. Trapdoors for Lattices.pdf
	Introduction
	Contributions
	Techniques
	Applications
	Other Related Work

	Preliminaries
	Linear Algebra
	Lattices and Hard Problems
	Gaussians and Lattices
	Subgaussian Distributions and Random Matrices

	Search to Decision Reduction
	Primitive Lattices
	Power-of-Two Modulus
	Arbitrary Modulus
	The Ring Setting

	Trapdoor Generation and Operations
	A New Trapdoor Notion
	Trapdoor Generation
	LWE Inversion
	Gaussian Sampling
	Trapdoor Delegation

	Applications
	Algebraic Background
	Signature Schemes
	Definitions
	Standard Model Scheme

	Chosen Ciphertext-Secure Encryption

	8. Quantum-Secure Message Authentication Codes.pdf
	Introduction
	Our results

	Preliminaries: Definitions and Notation
	Quantum Computation
	Quantum secure MACs

	The Rank Method
	An Example

	Outputting Values of a Random Oracle
	A Tight Upper Bound
	The Optimal Attack

	Quantum-Accessible MACs
	Carter-Wegman MACs

	q-time MACs
	Sufficient Conditions for a One-Time Mac

	Conclusion

	10. Hardness of SIS and LWE with Small Parameters.pdf
	Introduction
	Our Results
	Techniques and Comparison to Related Work

	Preliminaries
	One-Way Functions
	Lossy Function Families
	Lattices and Gaussians
	The SIS and LWE Functions

	Hardness of SIS with Small Modulus
	SIS-to-SIS Reduction
	Direct Reduction

	Hardness of LWE with Small Uniform Errors

